ETALE COHOMOLOGY SEMINAR: PROGRAM

Martin Gallauer

Except where indicated we aim for each topic to be covered over the course of one week -
which translates to two talks of one hour each. These may be given by one and the same
person or by different persons. Our main reference is [Mil8o]. An excellent guide through
that book is also [Mil13].

. INTRODUCTION

Motivation for studying étale cohomology and overview of topics to be covered (1 talk only)

s 2. ETALE MORPHISMS
[Mil8o, I.1-3]

* state our running hypothesis throughout: all rings are noetherian, all schemes are locally
noetherian

* recall finite and quasi-finite morphisms, give (non-)examples illustrating the difference,
state Zariski’s main theorem (without proof) and give [Mil8o, L1.10] as corollary

* define flat morphisms of rings and give (non-)examples; you should cover at least [Mil8o, I.2.9,
2.12, 2.16]

* main definition is that of étale morphism: you should spend some time exploring con-
sequences, (non-)examples; discuss [Mil8o, 1.3.4] at length, in particular explain why
between non-singular complex algebraic varieties, a morphism is étale if and only if the
associated holonomic map between complex manifolds is a local isomorphism; let d be a
square-free integer and discuss at which points the induced morphism Spec(Z[Vd]) —
Spec(Z) is étale (draw pictures!); you should cover at least [Mil8o, 1.3.6, 3.8, 3.14, 3.16]

s 3. ETALE SHEAVES

[Mil8o, IL1, I.4]
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* define small étale site (compare it with small Zariski site);' recall/define presheaves and
sheaves with values in sets and abelian groups; give lots of examples, including constant
and locally constant sheaves, representable sheaves, the structure sheaf ©; explain the
equivalence of [Mil8o, 1L.1.9] in detail

* describe stalks in terms of étale neighborhoods and the action of the absolute Galois
group; compute the stalks Oy z of the structure sheaf: these are ‘local rings for the étale
topology’, state their main properties (strictly Henselian rings) from [Mil8o, 1.4], in-
cluding [Mil80, 1.4.2abc, 4.4, 4.5], give examples

* show thata sequence of étale sheaves is exact if and only if it so on stalks, cf. [Mil8o, I1.2.17]

e 4. OPERATIONS ON SHEAVES

[Mil8o, 1I.2-3]>

* define a continuous morphism of sites and the associated direct and inverse images at the
presheaf level; give the explicit formula for the inverse image [Mil8o, proof of 11.2.2],
deduce that inverse images are exact; describe sheafification and give [Mil8o, II.2.15];
explain Kummer and Artin-Schreier sequences [Mil8o, I1.2.18]

* define direct and inverse images at the level of étale sheaves, note again that inverse
image is exact; you should cover at least [Mil8o, I1.3.2, 3.5, 3.6]; define extension-by-
zero along open immersions (for closed immersions this is just the direct image); talk
about situation around [Mil8o, I1.3.10]; briefly mention construction of tensor product
and internal hom

—— . COHOMOLOGY
[Milso, T1L1]

* most will have encountered derived functors before so you can be quick in the first
results of the section; define the étale cohomology groups and higher direct images;
discuss [Mil8o, I1L.1.7a], including some sample computations, say with K a finite field
or a number field;3 [Mil8o, I1I.1.13] is useful; deduce [Mil8o, IIL.1.15] and do [Mil13, 12.4,

12.5]

* explain [Mil8o, IIL.1.18] in the case of étale sites (see [Mil8o, IIL.1.20a]), many will not
have encountered spectral sequences before so you should give more details [Mil8o, Ap-
pendix B.1]; apply this to [Milr3, 12.8]

* define cohomology with supports, you should cover at least [Mil8o, I11.1.25, 1.27, 1.29]

Inote that what Milne calls Grothendieck topology [Mil8o, IL1.1] is usually called a Grothendieck pre-topology

2whenever it makes sense you should assume that the site in question is the small étale site of a scheme

3these are important examples: later on we will see that the cohomological dimension of a finite type scheme
over a field is bounded by twice its Krull dimension + the cohomological dimension of the field



(. FIRST COMPUTATIONS

[Mil8o, I11.2-3]

* briefly recall Cech cohomology and give the main comparison results with étale co-
homology, particularly [Mil8o, 11l.2.17]; interpret the first Cech cohomology group at
least with coefficients in G,,, that is, state Hilbert’s Theorem go [Mil8o, I11.4.9] (do not
give a proof in this generality; you will give one in a special case below)

+ discuss [Mil8o, I1I.2.22] in detail: the Weil-divisor exact sequence and the cohomology
of the multiplicative group on some schemes; show H' (X, G,,) = Pic(X) and discuss at

least the cases (a), (b), (d) of loc. cit.

* state [Mil8o, I11.3.12] and explain at least the main ingredients of the proof (Artin neigh-
borhoods, Riemann existence theorem), explain why we have to restrict to finite coef-
ficients (if nobody else has done that in a previous talk)

7. COHOMOLOGY OF CURVES

[Mil8o, V.1-2]

+ recall the notion of locally constant sheaves and note that inverse image functors pre-
serve them, but direct image functors do not; this motivates the more general notion of
constructible sheaves: fix a noetherian scheme X; an étale sheaf F of abelian groups (resp.
Z /n-modules) on X is constructible if there is a finite partition X = LIX; with X; locally
closed subschemes such that F|y, is finite locally constant (that is, locally constant with
finite stalks).# This is in fact a Zariski local condition.’ State (without proof) that the
category of constructible sheaves (as a full subcategory of Sh(Xe,) resp. Sh(Xg, Z/n)) is
very nice, for example it is closed under kernels, cokernels, extensions, tensor products
(in particular, the category is abelian). You may find [Staz1, Tag osBE] helpful in all of
this. Finally [Mil8o, p. 163], assume n is invertible in every residue field of X and define
F(r) for r € Z, recall that it is noncanonically locally isomorphic to F (exercise 1 from
week 3).

* State the main theorem of this section, [Mil8o, V.2.1], and explain the statement: co-
homology with compact support from [Mil8o, I11.1.29] and the canonical ‘cup product’
pairing of Ext groups from [Mil8o, V.I] (you can be brief here: this pairing is com-
pletely formal). Give an outline of the proof (in particular, explain where the trace map
H2(U, pn) = Z/n comes from and point out how we use the computations from Sec-
tion 6)

4Milne uses a different (but equivalent, see [Mil8o, V.1.8]) definition of constructible sheaves - please don’t use
that one.

SAnd this allows one to extend the definition of constructible sheaves to arbitrary (always: locally Noetherian)
schemes in a reasonable way.


https://stacks.math.columbia.edu/tag/05BE

* Applications: describe the cohomology ring of a smooth projective curve over an al-
gebraically closed field entirely (see also [Mil8o, V.2.4(f)]), compare with situation over
non-algebraically closed fields, for example [Mil8o, V.2.3], and possibly with non-projective
curves, maybe say something about Artin-Verdier duality [Mil8o, V.2.4(d)]

8. COHOMOLOGICAL DIMENSION

[Mil8o, VL] (1 talk only)

* in Section 5 we defined the cohomological dimension of fields; generalize this notion
to schemes [Mil8o, VL] and prove [Mil8o, VL.r.4]; given the results in Section s we
have bounds on cohomological dimension of schemes over separably closed fields, finite
fields, and number fields, among others. Also make remark [Mil8o, VL.1.5(b)].

s (. PROPER BASE CHANGE

[Staz1, Tag 095S], [Mil8o, VI.2]

* Give a sketch of the proof of the proper base change theorem [Mil8o, VI.2.3] follow-
ing [Sta21, Tag 095S]; do not use the language of derived categories though (for the
definition of the base change morphism without derived categories see [Mil8o, p. 223])

* deduce [Mil8o, VI.2.5-6, 3.1]; the last of these justifies our earlier ‘definition’ of cohoho-
mology with compact support

* iftime remains discuss the failure of proper base change for non-torsion coefhicients [Mil8o, V1.2.4]

10. SMOOTH BASE CHANGE

[Mil8o, V1.4] (1 talk only)
* sketch the proof of [Mil8o, VI.4.1]
* deduce [Mil80, VI.4.3] and compare with the earlier [Mil8o, V1.2.6] (see [Mil80, V1.4.4])

I1. FINITENESS THEOREM

Given that 1 will talk, this is only sketched. (1 talk only)

* state that, under suitable assumptions, higher direct image functors preserve constructible
sheaves, and along smooth proper morphisms even locally constant constructible ones
(compare with topological analogue); we’ll see how much of the proof we will be able
to give

* many applications: [Mil8o, VI.2.8] (for separably closed or finite fields; note that the
statement in the book is false in general), [Mil8o, VI.3.2(d)] (and maybe more general
remark about ‘six functors’), [Mil8o, VI.4.2]


https://stacks.math.columbia.edu/tag/095S
https://stacks.math.columbia.edu/tag/095S

12. COHOMOLOGICAL PURITY, CYCLE CLASSES

[Mil8o, VLs, 6, (7), 9, 10], [Milr3, § 23]

* State the absolute cohomological purity theorem in the form of [Fujoz, p. 153] (due to
Gabber): Leti: Z < X be a closed immersion quure codimension c between regular Z[1/n]-

0: q * 2c

Z/n(-c): q=2c

(At the level of derived categories this takes the more transparent form Ri'Z/n(c)[2¢] =

Z/n.) However, we will only discuss the simpler version (proved in [Mil8o, VIs.1])

where X and Z are assumed smooth over a separably closed field S = Spec(k) and i is an

S-morphism.

schemes. Then ﬂqZ(X, Z/n) :=RY%i'Z/n = {

* Before turning to the proof let us discuss complements and applications:

1. The isomorphism of the theorem Z/n — HZ (X, Z/n(c)) is induced by a map on
global sections: Z/n — HZ (X, Z/n(c)). This map sends 1 to the fundamental class
sz/x of Z in X, see [Mil8o, § VI.6]. For example, when Z is a point, this is the
analogue of a local orientation in differential topology. Describe the map in detail
when ¢ = 1, and then explain how, in principle, you can “compute” the class for
higher codimension. This is [Mil8o, V1.6.1], particularly (c) and (d), but don’t state
the Theorem in full. (Use that locally i factors as a composite of codimension 1
closed immersions, see also below for this.)

2. One can replace Z/n in our ‘simplified’ theorem by any locally constant Z/n-linear
sheaf [Mil8o, V1.5.4(b)].

3. Explain the Gysin sequence [Mil80, VI.5.3] and compute the cohomology of pro-
jective space [Mil8o, VLs.6]. If time remains, say something about Weak Lef-
schetz [Mil8o, VI1.7.1].

* Give the main ingredients of the proof of [Mil80, VLs.1]: By proving a more general
statement (for arbitrary S) one may do induction on ¢ (explain the geometry here) and
thereby reduce to ¢ = 1. This case is reduced to S as above and the cohomology of the
projective line (which we know well). (It is also worth noting that if the base field is alge-
braically closed, we computed such cohomology groups in the talks on the cohomology
of curves.)

* Recall the Chow ring of algebraic cycles, see [Mil8o, § V1.9] and [Mili3, § 23]. Also state
the basic properties of the cup product on étale cohomology. Give at least the direct
construction of the cycle class map and state [Mil8o, VI.10.7]. Depending on the time
available, explain ingredients of proof: a second description of the cycle class map via
Chern classes. (If you get to discuss that, the projective bundle theorem would be good
to state.)



13. POINCARE DUALITY

[Mil8o, VL] (1 talk only)

* Recall Poincaré duality in differential topology as motivation and state the analogue [Mil8o, VL.1r.2].
Note that the pairing was already constructed in the required generality when we
proved PD for curves.

* Explain where the trace map comes from and give a sketch of the proof of PD follow-
ing [Mil8o, VLir1].

* (Its doubtful you’ll have time but if you do:) Discuss [Mil8o, VL11.5/6]. Both of these
are satisfyingly analogous to the situation in differential topology.

14. TowARDS THE WEIL CONJECTURES

[Mil8o, V.1, VL.12] (1 talk only)

* As mentioned in the first talk (parts of ) the Weil conjectures should follow from a ‘good
cohomology theory’. One of the requirements of such a theory is that it takes values in
a characteristic zero field. On the other hand, we saw that étale cohomology is well-
behaved only for torsion coefhicients. The solution to this impediment is ¢-adic cohomol-
ogy. Follow [Mil8o, V.1, p. 163ff ] in defining (constructible and lisse) £-adic sheaves, give
examples (say, Z/¢"-sheaves, or Z,(r)). Define Cons(X, Q) [Mil8o, bottom of p. 164]
and give [Mil80, V.r.11]® which allows to reduce certain properties for £-adic sheaves to
finite coefhicients. Finally, define Betti numbers and Euler characteristics.

* State and prove the Lefschetz trace formula [Mil8o, VI.12.3]. This is a nice argument
and you should be able to give it in full.

I5. WEIL CONJECTURES!: RATIONALITY, FuncTioNAL EQUATION

[Mil8o, VL.12] (1 talk only)

* Briefly recall the Weil conjectures [Mil8o, p. 286]; they were stated already (possibly in
a slightly different form) in the first talk of the seminar. Prove W.s

* Prove [Mil8o, VL.12.4 and 12.6] (corresponding to Wr and W3).
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