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Introduction

Fitting a parametric model

Likelihood

function of the (unknown) parameters and the data

Maximum Likelihood Estimates (MLE) → parameter estimates which
make the observed data most likely

General approach, as long as tractable likelihood function exists

Calculate derivative of log likelihood, set to zero and solve for parameter,
check that it is a maximum
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Likelihood

Data x

If x known we take `(θ; x) = log{f (x; θ)} and maximise it w.r.t. θ

In one or two dimensions the likelihood function can be tabulated.

May be very difficult in many dimensions and complex models.

x not fully observed → not possible

Expectation–Maximisation (EM) algorithm → iterative procedure for
maximising the likelihood
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Expectation–Maximisation (EM) algorithm

EM algorithm → maximise a conditional likelihood for the unobserved
data

Generalisation of maximum likelihood estimation to ’incomplete’ data

Any problem that is simple to solve for complete data, but the available
data are ’incomplete’ in some way

The likelihood for the incomplete data may have multiple local maxima
and no closed form solution, even if for the complete version it has a
global maximum and closed form solution
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Expectation–Maximisation (EM) algorithm

Starting parameter values

Use them to ’estimate’ complete data

Use estimates of complete data to update parameters

Repeat until converge (estimates close to each other).
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EM algorithm

Incomplete data.

Starting parameter values

Supplement by synthetic data

E step

Analyse

M step

Use estimate to improve the synthetic data.

Analyse.

Repeat until stable answer.
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Incomplete data

Latent variables (present participle of lateo (lie hidden))

variables that are not directly observed but are rather inferred from other
variables that are observed
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Expectation–Maximisation (EM) algorithm

The fitting of certain models is simplified by treating the observed data
as an incomplete version of an ideal dataset whose analysis would have
been easy.

Key idea → estimate the log likelihood contribution from the missing
data by its conditional value given the observed data
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Expectation–Maximisation (EM) algorithm

Many versions of ’the’ EM algorithm.

Rather than picking a single most likely completion of the missing
assignments on each iteration, the EM algorithm computes probabilities
for each possible completion of the missing data, using the current
parameters θ̂(t)

→ create a weighted set of data consisting of all possible completions of
the data

A modified version of maximum likelihood estimation that deals with
weighted data provides new parameter estimates θ̂(t+1)

’Estimates’ completions of missing data given the current model (E step)
and then estimates the model parameters using these completions (M
step)
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Expectation–Maximisation (EM) algorithm

complete data yC = (yO , yU)

parameter θ

Expectation–Maximisation algorithm

initialize parameter: θ ← θ(0)

for t = 1 to ...

E step

Q(θ | θ(t)) = E
{

log f (yC | θ) | yO , θ(t)
}

Q(θ | θ(t)): conditional expectation

f (yC | θ): complete-data likelihood

M step

θ(t+1) = argmax
θ

Q(θ | θ(t))
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Expectation–Maximisation (EM) algorithm

Expectation step: given the current estimate θ(t) of θ, calculate
Q(θ | θ(t)) as a function of θ

Maximisation step: determine a new estimate θ(t+1) as the value of θ
which maximises Q(θ | θ(t))
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Some considerations

Ascent property M step increases Q ⇒ increases L(θ) = f (yO ; θ)

The log likelihood `(θ, yC ) is never decreased at any iteration of the algorithm.

Convergence to local maxima choose multiple initial values

Convergence rate → depends on the amount of missing information

E and/or M steps may be too complicated can be broken into smaller

components, sometimes involving Monte Carlo simulation to compute the

conditional expectations required for the E step

Christiana Kartsonaki March 2, 2017 12 / 40



Precision

How flat or peaked the likelihood is around the maximum determines the
precision of the estimate.

The EM algorithm on its own does not give this and much further
development is involved in getting an idea of precision via EM.

Oakes (1999) JRSS B
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Expectation–Maximisation (EM) algorithm

Y : observed data

U: unobserved variables

Our goal is to use the observed value y of Y for inference on a parameter
θ, in models where we cannot easily calculate the density

f (y ; θ) =

∫
f (y | u; θ)f (u; θ)du

and hence cannot readily compute the likelihood for θ based only on y .
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Expectation–Maximisation (EM) algorithm

We write the complete-data log likelihood based on both y and the value
u of U as

log f (y , u; θ) = log f (y ; θ) + log f (u | y ; θ), (1)

first term on the right → observed-data log likelihood `(θ)

As the value of U is unobserved, the best we can do is to remove it by
taking expectation of (1) with respect to the conditional density
f (u | y ; θ) of U given that Y = y .
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Expectation–Maximisation (EM) algorithm

This yields

E{log f (Y ,U; θ) | Y = y ; θ′} = `(θ) + E{log f (U | Y ; θ) | Y = y ; θ′},

which can be expressed as

Q(θ; θ′) = `(θ) + C (θ; θ′).
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Expectation–Maximisation (EM) algorithm

EM

Starting from an initial value θ′ of θ,

1 Compute Q(θ; θ′) = E{log f (Y ,U; θ) | Y = y ; θ′} E step

2 With θ′ fixed, maximise Q(θ; θ′) over θ, giving θ∗ M step

3 Check if the algorithm has converged, using `(θ∗)− `(θ′) if
available, or |θ∗ − θ′|, or both. If not, set θ′ = θ∗ and repeat.
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Example: ABO allele frequencies

Blood group: A, AB, B, O

ABO → 3 alleles

A and B codominant, both dominant over O

assume Hardy–Weinberg equilibrium and random sampling

pA = 2NAA+NAa

2N = nAA + 1
2nAa

dominance → cannot distinguish the homozygotes and the heterozygotes
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Example: ABO allele frequencies
Hardy–Weinberg equilibrium

Genotypic frequencies → always determine the allelic frequencies

The reverse is not necessarily true

Under some assumptions, for an autosomal gene with 2 alleles (A and a)
with frequencies p and q respectively, we have 3 genotypes (AA, Aa and
aa) whose frequencies are

p2, 2pq and q2

= (p + q)2

G. H. Hardy, W. Weinberg (1908) (independently)

For more than 2 alleles:

(p1 + p2 + . . .+ pn)2 = p2
1 + 2p1p2 + . . .+ 2p1pn

+p2
2 + . . .

+p2
n + . . .+ 2pn−1pn
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Example: ABO allele frequencies

Phenotype Genotype Phenotype Genotype Expected
(Blood group) counts counts frequency

A AA + AO nA nAA + nAO p2 + 2pr
B BB + BO nB nBB + nBO q2 + 2pr
AB AB nAB nAB 2pq
O OO nO nOO r2

Total n n 1
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Example: ABO allele frequencies
History

Bernstein (1925)

r ′ =

√
nO
n

E
(
nA + nO

n

)
= (p + r)2 = (1− q)2 ⇒ q′ = 1−

√
nA + nO

n

and similarly

p′ = 1−
√

nB + nO
n

I do not generally add up to 1
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Example: ABO allele frequencies
History

Bernstein (1930)

d = 1− (p′ + q′ + r ′)

therefore

p′′ = p′
(

1 +
d

2

)

q′′ = q′
(

1 +
d

2

)

r ′′ =

(
r +

d

2

)(
1 +

d

2

)

I still don’t add up to 1, but difference smaller
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Example: ABO allele frequencies
History

Wiener (1929)

r ′′′ =

√
nO
n

E
(
nA + nO

n

)
= (p + r)2 ⇒ p′′′ =

√
nA + nO

n
−
√

nO
n

and similarly

q′′′ =

√
nB + nO

n
−
√

nO
n

I don’t add up either
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Example: ABO allele frequencies

Phenotype Genotype Phenotypic Genotypic Expected
(Blood group) counts counts frequency
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Example: ABO allele frequencies

Complete data: X = (nAA, nAO , nBB , nBO , nAB , nOO) (genotype counts)

Observed data: Y = (nA, nB , nAB , nO) (phenotype counts)

n (total number of individuals in the sample), in terms of the complete
data

nA in terms of the complete data

nB in terms of the complete data

nAB in terms of the complete data

nO in terms of the complete data

complete data likelihood – assume HWE
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Example: ABO allele frequencies

If a person has type A (B), the underlying genotype could be either AA
(BB) or AO (BO).

nA = nAA + nAO

nB = nBB + nBO

nAB = nAB

nO = nOO

The likelihood for the complete data is simple:

(nAA, nAO , nBB , nBO , nAB , nOO) ∼ Multinomial(n, p2, 2pr , q2, 2pr , 2pq, r2)
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Example: ABO allele frequencies

Phenotype Genotype Phenotypic Genotypic Expected
(Blood group) counts counts frequency

A AA + AO nA = 186 nAA + nAO p2 + 2pr
B BB + BO nB = 38 nBB + nBO q2 + 2pr
AB AB nAB = 13 nAB 2pq
O OO nO = 284 nOO r2

Total n n 1

Clarke et al. (1959) BMJ

p =?

q =?

r =?
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Example: ABO allele frequencies

Available data are incomplete

nAA, nAO , nBB , nBO are unknown

Observed data: nO = (nA, nB , nAB , nO)

Unobserved data: nU = (nAA, nAO , nBB , nBO)

Complete data: nC = (nAA, nAO , nBB , nBO , nAB , nOO)

nAA + nAO = nA

nBB + nBO = nB

nO = nOO
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Example: ABO allele frequencies

EM algorithm

• Start from estimates of the allele frequencies and use them to
calculate the expected frequencies of all genotypes (step E),
assuming Hardy–Weinberg equilibrium

• Use these ’hypothetical’/’augmented’ complete genotypic
frequencies to obtain new estimates of the allele frequencies, using
maximum likelihood (step M)

Then use these new allele frequency estimates in a new E step, iterating
until the values converge.
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History

Ceppellini et al. (1955) – estimation of gene frequencies

Dempster et al. (1977)
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Other applications

I Allele frequencies – recessive

I Haplotype frequencies

I Welch–Baum algorithm – Hidden Markov Models

I RNAseq

I Mixture densities
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Haplotypes

Co-dominant markers:

count number of chromosomes (e.g. 2N)
count number of alleles (e.g. n)
allele frequency → simple proportion (n/2N)

Unphased genotypes of individuals from some populations, where each
unphased genotype consists of unordered pairs of SNPs taken from
homologous chromosomes of the individual

Haplotypes: contiguous blocks of SNPs inherited from a single
chromosome

Unknown phase

Haplotypes can’t always be counted directly – focusing on unambiguous
genotypes introduces bias

Excoffier and Slatkin (1995) Mol Biol Evol
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Haplotypes

Assuming that each individual’s genotype is a combination of two
haplotypes (one maternal and one paternal), the goal of haplotype
inference is to determine a small set of haplotypes that best explain all of
the unphased genotypes observed in the population

Observed data: unphased genotypes

Latent variables: assignments of unphased genotypes to pairs of
haplotypes

Parameters: frequencies of each haplotype in the population

E step: using the current haplotype frequencies to estimate probability
distributions over phasing assignemnts for each unphased genotype

M step: using the expected phasing assignments to refine estimates of
haplotype frequencies
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RNA-Seq

Challenges in transcript assembly and abundance estimation, arising from
the ambiguous assignment of reads to isoforms
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Baum–Welch algorithm

→ estimate parameters of a Hidden Markov Model (HMM)

EM algorithm

e.g. Copy Number Variants (CNVs)

uses the forward-backward algorithm

HMM: joint probability of a collection of ’hidden’ (latent) and
observed discrete random variables

• ith hidden variable given the (i − 1)th hidden variable is independent
of previous hidden variables

• current observed variables depend only on the current hidden state
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Clustering

E step of EM algorithm → assigns clusters to each data point based in
its relative density under each mixture component

M step → recomputes the component density parameters based on the
current clusters

k mixture components, each with a Gaussian density

’soft’ version of k-means clustering

probabilistic (rather than deterministic) assignments of points to cluster
centers
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Variational Bayes

Variational Bayes → family of techniques for approximating intractable
integrals arising in Bayesian inference and machine learning

Typically used in complex statistical models consisting of observed and
latent variables and unknown parameters, as might be described by a
graphical model

To provide an approximation to the posterior probability of the unobserved
variables

Alternative to Monte Carlo sampling methods (particularly, Markov chain Monte
Carlo methods such as Gibbs sampling) for a Bayesian approach for complex
distributions that are difficult to directly evaluate or sample from

To derive a lower bound for the marginal likelihood of the observed data

Used for model selection – higher marginal likelihood for a given model indicates
a better fit (thus greater probability that the model in question was the one that
generated the data).
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Variational Bayes

Can be seen as an extension of the EM algorithm from maximum a
posteriori (MAP) estimation of the single most probable value of each
parameter to fully Bayesian estimation which computes (an
approximation to) the entire posterior distribution of the parameters and
latent variables.

It finds a set of optimal parameter values, and it has the same alternating
structure as does EM, based on a set of equations that cannot be solved
analytically.
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Discussion

• The EM algorithm enables parameter estimation in probabilistic
models with incomplete data.

• Can be used in cases where a complex problem can be formulated in
terms of a simple problem if the data were complete.
If log likelihood of the data that would have been observed if
complete has an appreciably simpler functional form than that of the
data actually observed, then EM useful.

• Many variations.

• Standard errors not produced directly.
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