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Hypothesis testing

Null hypothesis: the hypothesis to be tested.

A statistical hypothesis, usually about the frequency distribution of the
population of values from which the data are drawn.

e.g. are the distribution of values in two groups the same?

Often denoted by H0 (and the alternative hypothesis H1).
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Hypothesis testing

choose a property, the test statistic such that when the null hypothesis
holds, the probability distribution of the test statistic is known
numerically

formulated such that the larger the value of the test statistic, the
stronger the evidence against the null hypothesis

’small’ values suggest that the data are consistent with the null
hypothesis
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Hypothesis testing

the value of the test statistic is calculated from the data and compared
to its expected distribution under the null hypothesis

p-value (observed statistical significance level)

p = P(|T | ≥ tobs | H0)

where T is the test statistic and tobs its observed value

equivalently set a significance level α and calculate the critical value c
such that

P(|T | > c | H0) ≤ α

we reject H0 if |T | > c
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Parametric and non-parametric methods

can be done using parametric and non-parametric methods

parametric methods → rely on distributional assumptions

usually more interpretable, relationship between estimation and testing

sometimes assumptions based on approximations such as the central limit
theorem unrealistic, such as when sample size very small

non-parametric methods → no distributional assumptions (but in
general not completely assumption-free)

usually do not yield some interpretable measure of effect/association

can be very computationally intensive

may waste some information in the data
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Resampling-based methods

may be useful where either standard approximations cannot be used or
where their accuracy is suspect
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Permutation tests

A permutation test calculates the p-value as the proportion of
permuted datasets which produce a test statistic at least as extreme as
the one observed from the actual data.

no assumptions, but can be infeasible to calculate exactly

I calculate the value of the test statistic for the observed data

I calculate the value of the test statistic on all possible permutations
of the sample

I p-value = proportion of permutations which yielded a value of the
test statistic at least as extreme as the one calculated from the data
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Permutation tests

estimate the sampling distribution of the test statistic

can only be used for a null hypothesis of ’no effect’

If the null hypothesis is true the shuffled data sets should look like the
real data, otherwise they should look different from the actual data.
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Permutation tests
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Figure: Empirical distirbution of test statistic. The red line is the value of the
observed test statistic.

can be used as a check of the resampled data
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Example: group means

Null hypothesis: the distributions of observations from each group are the
same

then the group ’labels’ are irrelevant

consider a data frame with outcome and group

permute the group labels

y z
2 5
3 1
1 4
5 4

value group
2 y
3 y
1 y
5 y
5 z
1 z
4 z
4 z

Christiana Kartsonaki February 16, 2017 10 / 28



Example: group means

Null hypothesis: the distributions of observations from each group are the
same

then the group ’labels’ are irrelevant

consider a data frame with outcome and group

permute the group labels

y z
2 5
3 1
1 4
5 4

value group
2 y
3 y
1 y
5 y
5 z
1 z
4 z
4 z

Christiana Kartsonaki February 16, 2017 10 / 28



Example: group means

Null hypothesis: the distributions of observations from each group are the
same

then the group ’labels’ are irrelevant

consider a data frame with outcome and group

permute the group labels

y z
2 5
3 1
1 4
5 4

value group
2 y
3 y
1 y
5 y
5 z
1 z
4 z
4 z

Christiana Kartsonaki February 16, 2017 10 / 28



Example: group means

several possible test statistics

e.g.

means

geometric means

t statistic

re-calculate for each permutation

calculate the percentage of simulations where the simulated statistic was
more extreme than the observed → p-value
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Example: GWAS

can be used as an alternative to multiple-testing correction (e.g.
Bonferroni correction) if the tests are thought to not be independent

• the phenotypes are randomly shuffled and all m tests are
recalculated on the shuffled datasets → repeat many times to
construct empirical frequency distribution

• for each permutation, the smallest p-value of the m tests is recorded

• procedure repeated may times → empirical frequency distribution of
the smallest p-value

• empirical adjusted p-value = (r + 1)/(n + 1), where n is the number
of permutations and r is the number of p-values that are equal to or
greater than the p-value from the actual data

distribution of the most extreme of all test statistics
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Example: GWAS

set of SNPs that each have some effect on an outcome

want to test for interactions (epistasis)

Permuting the genotype data would break the links between genotype
and outcome and created shuffled data with no main effects of SNPs.

Even if there are no interactions the shuffled data will look different from
the real data.
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Randomization tests

Statistical inference not based on a probabilistic model of the underlying
data-generating process

permutation tests numerically equivalent to randomization tests but
conceptually different

permutation tests → based on some symmetries induced by the
probabilistic model

assumed independence and identical distributional form of the random
variability

randomization tests → randomization used in allocating the treatments;
no assumption about the stochastic variability of the individual units

by-product of the procedure used in design
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Sign test

test of location zero

non-parametric alternative to the one-sample t-test or the t-test for
paired data

pairs of data (x1, y1), (x2, y2), . . . , (xn, yn)

assume differences Xi − Yi are independent and identically distributed

null hypothesis: median = 0

test statistic: number of values greater than 0

Under the null hypothesis, positive and negative differences are equally
likely, so the number of positive values follows a binomial distribution
with parameters n and 0.5.
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Wilcoxon signed rank test

pairs of data (x1, y1), (x2, y2), . . . , (xn, yn)

assume differences Xi − Yi are independent and identically distributed

null hypothesis: median = 0

test statistic: sum of the ranks for the differences with positive sign

large absolute values of the test statistic suggest departure from null

p-value can be calculated exactly for small samples using the
permutation distribution (if there are no ties)

for large samples a normal approximation to the sampling distribution can
be used
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Wilcoxon signed rank test

1 Calculate paired differences

2 Calculate absolute values of differences

3 Rank the absolute values, discarding 0s

4 Multiply ranks by the sign of the difference

5 Calculate the rank sum of the positive ranks

for small sample sizes the rank sum has an exact distribution under the
null
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Wilcoxon rank sum (Mann–Whitney) test

A permutation test on the ranks rather than the observations themselves.

non-parametric alternative to the two-sample t-test

location shifts between two independent samples

If the samples are of size n1 and n2 respectively, then the test statistic is
the sum of the ranks of the observations from the first sample minus
n1(n1 + 1)/2.

For small sample sizes the rank sum has an exact distribution under the
null.
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Wilcoxon rank sum (Mann–Whitney) test

under H0 the two groups are exchangeable

therefore any allocation of the ranks between the two groups is equally
likely

two samples of size n1 and n2

1. Rank the observations 1, . . . , n1 + n2

2. Permute the ranks (if there are ties, the rank of the tied observations is

the average of the ranks of the tied observations)

3. Take the first n1 and assign them to group 1 and the remaining n2
to group 2

4. Calculate the test statistic

5. Repeat 1–4

6. p-value = proportion of times the test statistic is more extreme than
the observed value
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Fisher’s exact test

contingency table

Y
0 1 Row total

X
0 a b a + b
1 c d c + d

Column total a + c b + d a + b + c + d(= n)

under a null hypothesis of independence of rows and columns –
hypergeometric distribution of the numbers in the cells of the table
(conditionally on margin totals)

p =

(
a+b
a

)(
c+d
c

)(
n

a+c

) =
(a + b)!(c + d)!(a + c)!(b + d)!

a!b!c!d!n!
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Jackknife

Jacknife a resampling-based method

each observation is deleted in turn and an estimate is calculated based on
the remaining n − 1 of them

this set of estimates is then used for estimating quantities like bias and
variance

useful for quantities that may not be unbiased or have known variance
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Jackknife

set of data x1, . . . , xn

estimate a parameter θ

θ̂: estimate based on the full data set

θ̂−i : estimate of θ obtained by deleting observation i

θ̄ = 1
n

∑n
i=1 θ̂−i
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Jackknife

Jackknife estimate of bias

(n − 1)(θ̄ − θ̂)

Jackknife estimate of standard error

{
n − 1

n

n∑
i=1

(θ̂i − θ̄)2

}1/2
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Bootstrap

Bootstrap (Efron and Tibshirani, 1993; Davison and Hinkley, 1997)

using repeated sampling with replacement from the data to approximate
the sampling distribution of a parameter

distribution-free method

many variations

confidence intervals, tests, ...
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Bootstrap

θ̂ = T (x) symmetric function of the sample (does not depend on the
sample order)

take m samples from x with replacement and calculate θ̂∗ for these
samples

the new samples consist of an integer number of copies of each of the
original data points and so will have ties

assess the variability of θ̂ about the unknown true θ by the variability of
θ̂∗ about θ̂

bias of θ̂: mean of θ̂∗ − θ̂

commonly used when the distribution of θ cannot be found analytically
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In R

?sample

library(boot)

library(bootstrap)

When using simulation-based procedures, always make them reproducible
by setting the ’seed’ for the random number generation.

set.seed(5)
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Discussion

• permutation tests useful when parametric tests unavailable or
assumptions implausible

• some assumptions still implied, e.g. independence

• usually give similar results as corresponding parametric tests

• no simple direct relationship with estimation

• more resistant to extreme observations than parametric tests
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