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Hypothesis testing

H0: null hypothesis

H1: alternative hypothesis
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Hypothesis testing

• test statistic

• critical region

• significance level α

→ reject or not reject H0
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Hypothesis testing

test

not reject H0 reject H0

truth
H0 correct correct type I error

H1 correct type II error correct
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Power

power = P(reject H0 | H1 true)
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Hypothesis testing and power

test

not reject H0 reject H0

truth

H0 correct
correct type I error

true negative false positive

α: false positive rate

H1 correct
type II error correct

false negative true positive

β: false negative rate 1 − β: power

significance level α: an upper bound for the probability of type I error
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Power and sample size

I cost of observations vs loss in reaching conclusions of low precision

I calculate size of study desirable / establish whether the resources available
are sufficient

I standard error of estimate of quantity of interest

I probability of detecting a preassigned departure from a null hypothesis at a
specified level of statistical significance

power ↑ effect size ↑
sample size ↑
significance level ↑
variability ↓
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Power and sample size

P(value of test statistic in critical region | H0) = α

can solve for n (sample size)
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Time-to-event outcome
Cox proportional hazards model – A single binary explanatory variable

Suppose we have a Cox proportional hazards model with a single binary covariate,

h(t) = h0(t)eβ1x .

Suppose a two-sided test is to be performed with a significance level α and power
β when the hazard ratio is HR. Assume that treatment effect is tested by an
appropriate test based on the partial likelihood.

Then the total number of events required is given by

(z1−α/2 + z1−β)2

p(1− p) log2(HR)
,

where z1−α/2, z1−β are quantiles of the normal distribution and p is the
proportion randomized to treatment 1 (Schoenfeld, 1983)1.

1Schoenfeld, D. A. (1983). Sample-size formula for the proportional-hazards regression
model. Biometrics, 39 (2), 499–503.

Christiana Kartsonaki December 17, 2015 11 / 26



Time-to-event outcome
Cox proportional hazards model – A single binary explanatory variable

Suppose we have a Cox proportional hazards model with a single binary covariate,

h(t) = h0(t)eβ1x .

Suppose a two-sided test is to be performed with a significance level α and power
β when the hazard ratio is HR. Assume that treatment effect is tested by an
appropriate test based on the partial likelihood.

Then the total number of events required is given by

(z1−α/2 + z1−β)2

p(1− p) log2(HR)
,

where z1−α/2, z1−β are quantiles of the normal distribution and p is the
proportion randomized to treatment 1 (Schoenfeld, 1983)1.

1Schoenfeld, D. A. (1983). Sample-size formula for the proportional-hazards regression
model. Biometrics, 39 (2), 499–503.

Christiana Kartsonaki December 17, 2015 11 / 26



Cox proportional hazards model – example

Example

Suppose we want to test whether having a particular gene ’signature’ has an effect on
progression-free survival of colorectal cancer patients.

Suppose the proportion of the sample that is in group 1 is 0.4 (based on previous studies about
40% of patients have the signature).

Number of events required to achieve each level of power for each hazard ratio, for significance
level α = 0.05 and a two-sided test:

power
0.95 0.9 0.8 0.7 0.6

0.5 113 92 69 54 43
0.6 208 168 126 99 79

HR 0.7 426 345 258 203 161
0.8 1088 880 657 517 410
0.9 4878 3944 2947 2317 1839

If the probability of an uncensored observation is p, these numbers should be divided by p to find
the total sample size needed.
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Time-to-event outcome
Cox proportional hazards model – A single continuous explanatory variable

h(t) = h0(t)eβ1x

Total number of events required:

(z1−α/2 + z1−β)2

σ2 log2(HR)
,

where z1−α/2, z1−β are quantiles of the normal distribution and σ2 is the variance
of x (Hsieh and Lavori, 2000)2.

2Hsieh, F. Y. and Lavori, P. W. (2000). Sample-size calculations for the Cox proportional
hazards regression model with nonbinary covariates. Controlled Clinical Trials, 21, 552–560.
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Time-to-event outcome
Cox proportional hazards model – More than one explanatory variable

correction

n∗ =
n

1− ρ2

ρ: multiple correlation coefficient (proportion of variance explained by the
remaining covariates)
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Logistic regression
A single continuous explanatory variable

binary outcome Y
explanatory variable x

log
P(Y = 1)

1− P(Y = 1)
= β0 + β1x

OR: odds ratio comparing the odds at one standard deviation of x above the
mean with the odds at the mean of x

Number of individuals required:

(z1−α/2 + z1−β)2

p(1− p) log2(OR)
,

p: P(Y = 1) at the mean of x (Hsieh et al., 1998)3

3Hsieh, F. Y., Bloch, D. A. and Larsen, M. D. (1998). A simple method of sample size
calculation for linear and logistic regression. Statistics in Medicine, 17, 1623–1634.
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Logistic regression
A single continuous explanatory variable

Example

logistic regression with continuous explanatory variable, n = 1200

Bonferroni-corrected power calculation for 96 tests

OR

1.25 1.5 1.75 2

0.1 0.12 0.77 0.99 1.00

0.2 0.35 0.98 1.00 1.00

p 0.3 0.53 1.00 1.00 1.00

0.4 0.62 1.00 1.00 1.00

0.5 0.65 1.00 1.00 1.00

p: P(Y = 1) at the mean of x
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Logistic regression
A single binary explanatory variable

n =
(z1−α/2[p(1− p)/B]1/2 + z1−β[p1(1− p1) + p2(1− p2)(1− B)/B]1/2)2

(p1 − p2)2(1− B)

p1 = P(Y = 1 | x = 0)
p2 = P(Y = 1 | x = 1)
B = P(X = 1)
p = (1− B)p1 + Bp2

multiple logistic regression logit(p) = β0 + β1x1 + . . .+ βkxk

adjustment n∗ = n
1−ρ2 , where ρ2 is the multiple correlation coefficient of the

covariate of interest with the remaining covariates (Hsieh, 1989; Hsieh et al.,
1998)
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In R
Sample size for Cox proportional hazards model with a single binary explanatory variable

z_a <- qnorm(alpha/2, lower = FALSE)

z_b <- qnorm(beta, lower = FALSE)

sample_size <- function(z_a, z_b, p, HR) {

((z_a + z_b)^2)/(p * (1 - p) * ((log(HR))^2))

}
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In R
Power for Cox proportional hazards model with a binary explanatory variable

library(powerSurvEpi)

powerEpi.default(n, theta, p, psi, rho2, alpha = 0.05)

n: total number of subjects.
theta: postulated hazard ratio.
p: proportion of subjects taking the value one for the covariate of interest.
psi: proportion of subjects who had event.
rho2: square of the multiple correlation coefficient between the covariate of
interest and other covariates.
alpha: type I error rate.
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In R
Power for Cox proportional hazards model with a continuous explanatory variable

library(powerSurvEpi)

powerEpiCont.default(n, theta, sigma2, psi, rho2, alpha = 0.05)

n: total number of subjects.
theta: postulated hazard ratio.
sigma2: variance of the covariate of interest.
psi: proportion of subjects who had event.
rho2: square of the multiple correlation coefficient between the covariate of
interest and other covariates.
alpha: type I error rate.
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In R
Power for logistic regression with a single binary explanatory variable

library(powerMediation)

powerLogisticBin(n, p1, p2, B, alpha = 0.05)

n: total number of sample size.

p1: P(Y = 1|x = 0), i.e. the event rate at x = 0 in logistic regression
logit(p) = β0 + β1x , where x is the binary explanatory variable.

p2: P(Y = 1|x = 1), i.e. the event rate at x = 1 in logistic regression
logit(p) = β0 + β1x , where x is the binary explanatory variable.

B: pr(X = 1), i.e. proportion of the sample with X = 1

alpha: Type I error rate.
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In R
Power for logistic regression with a single continuous explanatory variable

library(powerMediation)

powerLogisticCon(n, p1, OR, alpha = 0.05)

n: total sample size.

p1: the event rate at the mean of the continuous explanatory variable x in logistic
regression logit(p) = β0 + β1x .

OR: assumed odds ratio.

alpha: Type I error rate.
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Other

?power.t.test

Simulation.
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