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Introduction

Time series data gathered sequentially in time

different types:

• one or a few long series

• a large number of short series

focusing on the first

usually at equally spaced intervals

dependence between nearby time points
trend
seasonality
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Applications

• economics

• engineering

• environmental statistics

• physics, including meteorology

• medical statistics

• ...
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Objectives of time series analysis

I description (plots, summaries)

I estimation (model to describe the data structure, interpretation)

I prediction/forecasting (given a series of observations, predict future values)

I adjustment for time dependence (time dependence as a nuisance)
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Example: Sleep EEG
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Figure: A 30-minute segment of a recording from a electroencephalogram
(EEG) channel from polysomnography recording of a 40 year old man.

University of Mons, Belgium, TCTS Laboratory (Stphanie Devuyst, Thierry Dutoit) and Universit Libre de Bruxelles CHU de Charleroi

Sleep Laboratory (Myriam Kerkhofs)
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Example: fMRI

Thalamus
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Figure: Multiple time series of fMRI BOLD signals at different brain locations,
when a stimulus was applied for 32 seconds and then stopped for 32 seconds.

Shumway, R. H. and Stoffer, D. S. (2011). Time series analysis and its application, Third edition, Springer.
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Other types of series

many features of time series apply to other types of series, e.g. spatial

however time has a unique before → after direction whereas space does
not, which affects some aspects of interpretation
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Example: Soil surface temperatures
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Figure: Two-dimensional spatial series of temperature measurements taken on
a rectangular field (64 × 36 with 17-foot spacing). Data from Bazza et al.
(1988).

Shumway, R. H. and Stoffer, D. S. (2011). Time series analysis and its application, Third edition, Springer.
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Stationarity

A process {Xt} is weakly stationary or second-order stationary if for
all integers t, τ ,

E(Xt) = µ

cov(Xt ,Xt+s) = γs

where µ is constant and γs does not depend on t.

It is strictly stationary (or strongly stationary) if

(Xt1 , . . . ,Xtk ) and (Xt1+s , . . . ,Xtk+s)

have the same distribution for all sets of time points t1, . . . , tk and all
integers s.
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Autocovariance and autocorrelation

For a stationary time series:

Autocovariance function γs = cov(Xt ,Xt+s)

Autocorrelation function (ACF) ρs = cor(Xt ,Xt+s) = γs

γ0

var(Xt) = γ0
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ACF – estimation
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Figure: Time series of a fMRI BOLD signal from one location in the thalamus,
when a stimulus was applied for 32 seconds and then stopped for 32 seconds.
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Figure: ACF of a fMRI BOLD signal from one location in the thalamus, when a
stimulus was applied for 32 seconds and then stopped for 32 seconds.
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Partial autocorrelation function (PACF)

Partial autocorrelation at lag s: the correlation between Xt and Xt+s

after regression on Xt+1, . . . ,Xt+s−1

estimated using Levison–Durbin recursion
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PACF – estimation
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Figure: Time series of a fMRI BOLD signal from one location in the thalamus,
when a stimulus was applied for 32 seconds and then stopped for 32 seconds.
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Figure: PACF of a fMRI BOLD signal from one location in the thalamus, when
a stimulus was applied for 32 seconds and then stopped for 32 seconds.
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Example: white noise
white noise: uncorrelated variables wt with mean 0 and variance σ2

w

wt ∼ wn(0, σ2
w )
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Figure: White noise.
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Figure: ACF of white noise.
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Figure: PACF of white noise.
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Cross-covariance and cross-correlation

For stationary time series:

Cross-covariance function between two series x , y :

γxy (t, t + s) = cov(xt , yt+s)

Cross-correlation function

ρxy (t, t + s) =
γxy (t, t + s)√
γx(0)γy (0)

Christiana Kartsonaki Time series January 20, 2017 15 / 35



Cross-covariance and cross-correlation

For stationary time series:

Cross-covariance function between two series x , y :

γxy (t, t + s) = cov(xt , yt+s)

Cross-correlation function

ρxy (t, t + s) =
γxy (t, t + s)√
γx(0)γy (0)

Christiana Kartsonaki Time series January 20, 2017 15 / 35



Example: Cross-correlation
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Figure: Cross-correlation of two time series of fMRI BOLD
signals at different brain locations, when a stimulus was applied
for 32 seconds and then stopped for 32 seconds.

cross-correlation of X
and Y at lag s → not
the same as lag −s
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Linear process

{Xt} is a linear process if it has a representation of the form

Xt = µ+
∞∑

r=−∞
cr εt−r

where

µ: common mean
{cr}: sequence of fixed constants
{εt}: independent random variables with mean zero and common
variance

We assume that
∑

c2
r <∞ to ensure that the variance of Xt is finite.
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Autoregressive processes

I the current value of the series depends linearly on its previous values
with some error

AR(1) (autoregressive process of order (lag) 1)

Xt = φXt−1 + εt

εt : white noise (a series of uncorrelated random variables with mean 0
and variance σ2)

AR(p) (autoregressive process of order (lag) p)

Xt =

p∑
i=1

φiXt−i + εt

AR(1) stationary if |φ| < 1.
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Example: AR(1)

xt = 0.9xt−1 + εt
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Figure: AR(1).
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Figure: ACF of AR(1).
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Figure: PACF of AR(1).
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Moving average processes

I the current value of the series is a weighted sum of past white noise
terms

MA(1) (moving average process of order (lag) 1)

Xt = εt + θεt−1

εt : white noise (a series of uncorrelated random variables with mean 0
and variance σ2)

MA(q) (moving average process of order (lag) q)

Xt = εt +

q∑
j=1

θjεt−j

MA(q) stationary for any θ
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Example: MA(1)

xt = εt + 0.9εt−1
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Figure: MA(1).
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Figure: ACF of MA(1).
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Figure: PACF of MA(1).
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ARMA processes

ARMA(p, q) (autoregressive moving average process)

Xt =

p∑
i=1

φiXt−i +

q∑
j=0

θjεt−j

AR(p) and ARMA(p, q) models → not necessarily stationary

autoregressive polynomial: φ(z) = 1− φ1z − . . .− φpzp, defined for any
complex number z

stationarity condition for an AR(p) process:
all the zeros of the function φ(z) lie outside the unit circle in the complex
plane
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The backshift operator

Backshift operator B

BXt = Xt−1, B2Xt = B(BXt) = Xt−2, . . .

identity operator: IXt = B0Xt = Xt

ARMA(p, q) in terms of the backshift operator:

φ(B)X = θ(B)ε

φ(·), θ(·): generating functions of the autoregressive and moving average
operators
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Differencing

Difference operator ∇

∇Xt = Xt − Xt−1, ∇2Xt = ∇(∇Xt) = Xt − 2Xt−1 + Xt−2, . . .

If a series is not stationary we can look at the differenced series and look
for an ARMA model for the differenced series.
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ARIMA processes

ARIMA(p, d , q) (autoregressive integrated moving average process) if
its dth difference ∇dX is an ARMA(p, q) process

φ(B)∇(B)dX = θ(B)ε

φ(·), θ(·): generating functions of the autoregressive and moving average
operators
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Fitting ARIMA models – The Box–Jenkins approach

Focused on prediction/forecasting.

identification

estimation

verification

Iterated until a suitable model is identified.
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Box–Jenkins approach – identification

Identification initial processing of the data to make the series stationary,
preliminary identification of suitable orders p and q for the ARMA
components of the model

AR(p) MA(q) ARMA(p, q)
ACF decay cuts off after lag q decay
PACF cuts off after lag p decay decay

Table: ACF and PACF for ARMA models.
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Box–Jenkins approach – estimation

Estimation of model parameters

for AR processes, solving the Yule–Walker equations
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Box–Jenkins approach – verification

Verification

check for overfitting

check that residuals are consistent with white noise
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Seasonal ARIMA (SARIMA) models

Seasonal ARIMA

special case of ARIMA with seasonal component with period M

extension → periodically correlated processes
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Time series regression – short-term associations of
exposures

investigate whether some of the short-term variation in the outcome is
associated with variation in an exposure

associations with a few lags

Time-stratified model

Periodic functions (Fourier terms)

Flexible spline functions

confounding by other time-varying factors
short-term displacement, or ’harvesting’

model checking and sensitivity analyses

(Bhaskaran et al., 2013)
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Interrupted time-series

Assessing the effect of an ’interruption’ on some outcome measured in
time.

e.g. effect of public health intervention on disease counts

Using ARIMA modelling.

Using a segmented linear regression, adjusting the standard errors
for autocorrelation (e.g. Newey–West standard errors).

(Lagarde, 2011)
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More...

Analysis in the frequency domain.
Spectrum, periodogram, smoothing, filters.

State space models.
Linear models, Kalman filters.

Nonlinear models.
ARCH and stochastic volatility models, chaos.

Multivariate time series.
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