A unified treatment of concrete sheaf models for higher-order recursion

Cristina Matache (joint work with Sean Moss and Sam Staton)

University of Oxford
Modelling higher-order programs with recursion

Model

- Cartesian closed category (CCC)
- Partiality monad, L
- Interpretation: Type \leftrightarrow Object
 Program \leftrightarrow Partial morphism

Examples:

1. **Probabilistic programming**: partial maps that are measurable
 [Heunen et al.’17, Vákár et al.’19]

2. **Automatic differentiation**: partial maps that are smooth
 [Huot et al.’20, Vákár’20]

3. Piecewise differentiable programs [Lew et al.’21]

4. **Full abstraction** for a sequential language: definable partial maps
 [O’Hearn & Riecke’95], [Matache, Moss, Staton, FSCD’21]
Goal of this talk

Main Theorem [Matache, Moss, Staton, in preparation]

The examples

1. Probabilistic programming
2. Automatic differentiation
3. Piecewise differentiation
4. Full abstraction

all model higher-order recursion using the same recipe
- using concrete sheaves
- using ideas from synthetic domain theory for recursion

In each case more domain specific work needs to be done.

Examples of concrete sheaves: subsequential spaces [Johnstone’79], C-spaces [Escardó & Xu’16]
Examples of concrete presheaves: [Rosolini & Streicher’99], finiteness spaces [Ehrhard’07]
Goal of this talk (continued)

Main Theorem [Matache, Moss, Staton, in preparation]

The examples

1. Probabilistic programming
2. Automatic differentiation
3. Piecewise differentiation
4. Full abstraction

- all model higher-order recursion using the same recipe
 - using **concrete sheaves**
 - using ideas from synthetic domain theory for **recursion**

Corollary: conservativity result for (1), (2), (3)

E.g. (2): Programs $\text{real} \rightarrow \text{real}$ are still interpreted as smooth maps even if they use higher-order recursion.
PCF_v: A call-by-value language

Call-by-value λ-calculus with:
- base types e.g. `nat`, `real`
- function types
- product and sum types
- recursive functions.

An interpretation looks like:

\[
\begin{align*}
 [\text{nat}] &= 1 + 1 + \ldots \\
 [\tau_1 + \tau_2] &= [\tau_1] + [\tau_2] \\
 [\tau_1 \times \tau_2] &= [\tau_1] \times [\tau_2] \\
 [\tau \rightarrow \tau'] &= [\tau] \Rightarrow L[\tau'] \\
 [\Gamma \vdash t : \tau] : [\Gamma] \rightarrow L[\tau]
\end{align*}
\]
Why use categories of concrete sheaves?

Example: **first-order probabilistic computation** can be modelled in Sbs. Sbs is NOT cartesian closed.

The category of **presheaves** on Sbs is cartesian closed.

Yoneda embedding

\[y : \text{Sbs} \hookrightarrow \text{PSh}(\text{Sbs}) \]

Full, faithful, preserves limits. Does not preserve colimits.

Restricting to **sheaves** on a site (Sbs, J) preserves some colimits from Sbs.

Concrete sheaves = sets with structure $+$ structure-preserving functions.

\[\text{ConcSh}(\text{Sbs}, J) \hookrightarrow \text{Sh}(\text{Sbs}, J) \hookrightarrow \text{PSh}(\text{Sbs}) \]
Well-pointed categories and concrete sites

A category \mathcal{C} is **well-pointed** if

- it has a terminal object \star
- $\mathcal{C}(\star, -) : \mathcal{C} \to \text{Set}$ is faithful
 i.e. maps $h : d \to c$ are distinguished functions $|h| : |d| \to |c|$ where $|c| = \mathcal{C}(\star, c)$. So \mathcal{C} is a category of sets and certain functions.

Concrete site (\mathcal{C}, J)

- A small well-pointed category \mathcal{C}
- For every $c \in \mathcal{C}$ a set $J(c)$ of **covering families** $\{f_i : c_i \to c\}_{i \in I}$ of c s.t.
 (C) pullback stability
 (\star) If $\{f_i : c_i \to c\}_{i \in I}$ covers c, then $\bigcup_{i \in I} \text{Im}(|f_i|) = |c|$
A concrete sheaf $X : \mathbb{C}^{\text{op}} \to \text{Set}$ is:

- a set $X(\star)$
- $X(c) \subseteq \{ |c| \to X(\star) \}$

$X(h : d \to c)$ is precomposition by $|h|$.

A morphism $\alpha : X \to Y$ is a structure-preserving function $\alpha : X(\star) \to Y(\star)$.
Example: modelling probabilistic programming [Heunen et al.’17, Vákár et al.’19]

A functor $X : \mathbb{C}^{\text{op}} \to \text{Set}$ is a **concrete sheaf** on a **concrete site** (\mathbb{C}, J) if $X(c) \subseteq [\mathbb{C} \to X(\star)]$ and X satisfies the **sheaf condition**.

Quasi-Borel spaces is the category of concrete sheaves on:

- **Sbs**: objects U are Borel subsets of \mathbb{R}
 morphisms are measurable functions between these sets.
- $J(U) =$ countable sets of measurable inclusions $\{U_i \hookrightarrow U\}_{i \in I}$ where $U = \bigcup_{i \in I} U_i$ and the U_i’s are disjoint.

$X(\mathbb{R}) \subseteq [\mathbb{R} \to X(\star)]$ is the set of “random elements” of $X(\star)$.
Example: modelling probabilistic programming in ConcSh(Sbs, J)

A functor $X : \mathbb{C}^{\text{op}} \to \text{Set}$ is a **concrete sheaf** on a **concrete site** (\mathbb{C}, J) if $X(c) \subseteq [\mathbb{C} \to X(\ast)]$ and X satisfies the **sheaf condition**.

$\text{Sbs} = \text{Borel subsets } U \subseteq \mathbb{R} + \text{measurable functions}$

$J(U) = \text{sets of inclusions } \{U_i \to U\}_{i \in I}$ where $U = \bigcup_{i \in I} U_i$ and the U_i’s are disjoint.

In $\text{PSh}(\text{Sbs})$, take X concrete. In Sbs, take $\mathbb{R} = \bigcup_{i \in I} U_i$ and U_i’s disjoint:

\[
y\mathbb{R} \xrightarrow{y} \sum_{i \in I} yU_i \xrightarrow{X} X \text{ by Yoneda lemma}
\]

\[
(g : \mathbb{R} \to X(\ast)) \in X(\mathbb{R}) \Downarrow
\]

\[
\{(f_i : U_i \to X(\ast)) \in X(U_i)\}_{i \in I}
\]

Sheaf condition at \mathbb{R}: for each function $g : \mathbb{R} \to X(\ast)$ and each covering family $\{f_i : U_i \to \mathbb{R}\}_{i \in I} \in J(c)$, if each $g \circ f_i \in X(U_i)$, then $g : \mathbb{R} \to X(\ast) \in X(\mathbb{R})$.

$U_i \xleftarrow{f_i} \mathbb{R} \xrightarrow{g} X(\ast)$
A functor $X : \mathbb{C}^{\text{op}} \to \text{Set}$ is a **concrete sheaf** on a **concrete site** (\mathbb{C}, J) if $X(c) \subseteq [c \to X(\star)]$ and X satisfies the **sheaf condition**.

Diffeological spaces is the category of concrete sheaves on:

- **Site**: objects are open subsets $U \subseteq \mathbb{R}^n$ for any n
 morphisms are smooth maps.

- $J(U) =$ countable sets of open inclusions $\{U_i \hookrightarrow U\}_{i \in I}$ where $U = \bigcup_{i \in I} U_i$.

$X(U) \subseteq [U \to X(\star)]$ is the set of “plots” of $X(\star)$.
1 Introduction

2 Higher-order computation: categories of concrete sheaves

3 Modelling partiality

4 Modelling recursion

5 Putting it all together
In any category, a partial map $X \rightarrow Y$ is a pair (m, f):

where \mathcal{N} is stable class of monos:

- contains all isomorphisms
- closed under composition
- stable under pullback (with arbitrary maps)

(1) **Quasi-Borel spaces**: partial maps that are measurable, with Borel domain

(2) **Diffeological spaces**: partial maps that are smooth, with open domain
From partial maps to a lifting monad

How do we get a monad L with the following property?

For every $X' \xrightarrow{f} Y$,

For every $\exists m \in \mathcal{N}$, where \mathcal{N} is a stable class of monos,

there is exactly one corresponding total map $X \to LY$ such that

and conversely.

L might not exist in general.
In a sheaf category $\text{Sh}(\mathcal{C}, J)$:

Theorem

\mathcal{N} has an associated lifting monad L if the class of monos \mathcal{N} “comes from” a class of pre-admissible monos \mathcal{M} in \mathcal{C}.

\mathcal{M} is a class of pre-admissible monos in \mathcal{C} if:

- stable class
- $\Delta_\mathcal{M} : \mathcal{C}^{\text{op}} \to \text{Set}$ is a J-sheaf, where:
 - $\Delta_\mathcal{M}(c) = \text{iso. classes of } c' \to c \in \mathcal{M}$
 - $\Delta_\mathcal{M}(f : d \to c) = \text{pullback along } f$

\mathcal{N} stable class of monos:
- contains all isomorphisms
- closed under composition
- stable under pullback

Lifting monad:
for every $(m, f) : X \to Y$ with $m \in \mathcal{N}$, there is exactly one total map $X \to LY$.

\[
\begin{array}{cccc}
d' & \overset{\in \mathcal{M}}{\longrightarrow} & d \\
\downarrow & & \downarrow f \\
c' & \overset{\in \mathcal{M}}{\longrightarrow} & c
\end{array}
\]
In a sheaf category $\mathbf{Sh}(\mathcal{C}, J)$:

Theorem

\mathcal{N} has an associated lifting monad L if the class of monos \mathcal{N} “comes from” a class of pre-admissible monos \mathcal{M} in \mathcal{C}.

\mathcal{N} “comes from” \mathcal{M} if $\mathcal{N} = \text{all pullbacks of } \top : 1 \rightarrow \Delta_{\mathcal{M}}$, where $\top_c = [\text{id}_c]$

$$
\begin{array}{ccc}
X' & \xrightarrow{!} & 1 \\
\downarrow & & \downarrow \top \\
\in \mathcal{N} & \downarrow & \\
X & \xrightarrow{\chi} & \Delta_{\mathcal{M}}
\end{array}
$$

\mathcal{N} stable class of monos:
- contains all isomorphisms
- closed under composition
- stable under pullback

Lifting monad:
for every $(m, f) : X \rightarrow Y$ with $m \in \mathcal{N}$, there is exactly one total map $X \rightarrow LY$.

\mathcal{M} stable class
$\Delta_{\mathcal{M}} : \mathcal{C}^{\text{op}} \rightarrow \mathbf{Set}$ a J-sheaf
$\Delta_{\mathcal{M}}(c) = \text{iso. classes of } c' \rightarrow c \in \mathcal{M}$
$\Delta_{\mathcal{M}}(f : d \rightarrow c) = \text{pullback along } f$

see e.g. [Rosolini'86] for dominance, [Mulry'94], [Fiore&Plotkin'97] for constructing a lifting monad
Examples: classes of pre-admissible monos

Quasi-Borel spaces:

- Site: objects U are Borel subsets of \mathbb{R}, morphisms are measurable functions.
- $\mathcal{M} = \{ \text{for every } U, \text{ the measurable monos with codomain } U \}$

Diffeological spaces:

- Site: objects are open subsets $U \subseteq \mathbb{R}^n$ for any n, morphisms are smooth maps.
- $\mathcal{M} = \{ \text{for every } U, \text{ the open inclusion maps into } U \}$

For a concrete sheaf X, the lifting monad:

\[
LX(\star) = X(\star) \uplus \{ \bot \}
\]

\[
LX(U) = \{ g : U \to X(\star) \uplus \{ \bot \} \mid \exists U' \to U \in \mathcal{M} \text{ s.t. dom}(g) = U' \text{ and } g|_{U'} \in X(U') \}\]

In general, having the lifting monad is not enough to model recursion.
1 Introduction

2 Higher-order computation: categories of concrete sheaves

3 Modelling partiality

4 Modelling recursion

5 Putting it all together
The \(\omega \text{cpo} \) model of \(\text{PCF}_v \)

Types = partially ordered sets with least upper bounds of \(\omega \)-chains

Terms = continuous functions

To model recursive functions:

- a lifting monad on \(\omega \text{cpo} \)
- Tarski’s fixed point theorem

We want to recover this model as presheaves with a class of admissible monos in the site.
vSet: A concrete presheaf model of PCF_

\[V = \{0 < 1 < 2 < \ldots < \infty\} = \text{poset of vertical nat. numbers} \]

\[\mathbb{V} = \text{two-object category} \]

\[\text{vSet} = \text{presheaves on } \mathbb{V} \]

Concrete presheaf on \(\mathbb{V} \):
- a set \(X(\star) \)
- a set of functions \(X(V) \subseteq [V \to X(\star)] \)

\(x \in X(V) \) is a completed chain of elements in \(X(\star) \).

Map \(X \to Y = \text{function } X(\star) \to Y(\star) \) that preserves chains.

\(\omega\text{cpo} \) is a full subcategory of \(\text{vSet} \):
\[D \mapsto (|D|, \omega\text{cpo}(V, D)) \]

See the category \(\mathcal{H} \) from [Fiore & Rosolini'97, '01].
Lifting in $vSet$

$\mathbb{V} = \text{vertical naturals as a two-object category}$
$vSet = \text{presheaves on } \mathbb{V}$

Theorem:
A class of pre-admissible monos \mathcal{M} in \mathcal{C} induces a lifting monad L on the sheaf category $\mathbf{Sh}(\mathcal{C}, J)$.

\mathbb{V} has a class of pre-admissible monos:

$$\mathcal{M}_\mathbb{V} = \{(\lambda x.x + n) \in \mathbb{V}(V, V) \mid n \in \mathbb{N}\} \cup \\{\text{id}_*: \star \to \star\}$$

which induces a lifting monad L on $vSet$, where for a concrete presheaf X:

$$(LX)(\star) = X(\star) \uplus \{\bot\} \quad (LX)(V) = \{\bot\} \uplus \biguplus_{n\in\mathbb{N}} (X(V))_n$$

$(X(V))_n \approx \text{chains from } X(V) \text{ with } n \bot \text{'s added at the beginning.}$
Modelling PCF\textsubscript{v} in \textit{vSet}

Fixed point theorem in \textit{vSet}

We can construct a fixed point of a map $(A \Rightarrow LB) \rightarrow (A \Rightarrow LB)$ if LB is “complete”.

\[
\omega \times X \xrightarrow{h} LB
\]

\[
yV \times X \xrightarrow{\downarrow} \omega \times X
\]

$\omega = $ greatest subobject of yV without ∞

Theorem

\textit{vSet} is an adequate model of PCF\textsubscript{v} where types are concrete presheaves.

The interpretation of PCF\textsubscript{v} commutes with the inclusion $\omega_{\text{cpo}} \hookrightarrow \textit{vSet}$. 23/26
1. Introduction
2. Higher-order computation: categories of concrete sheaves
3. Modelling partiality
4. Modelling recursion
5. Putting it all together
Modelling PCF$_v$ in a category of concrete sheaves

Main Theorem [Matache, Moss, Staton, in preparation]

Given a **concrete site** with a **class of admissible monos** ($\mathcal{C}, J, \mathcal{M}$), “combine” it with the site for vSet, ($\mathcal{V}, J_\mathcal{V}, \mathcal{M}_\mathcal{V}$).

The category of **concrete sheaves** on the combined concrete site ($\mathcal{C} + \mathcal{V}, J \cup J_\mathcal{V}, \mathcal{M} \cup \mathcal{M}_\mathcal{V}$) is an adequate model of PCF$_v$.

Example: we recover the ωQbs model

Concrete site for Qbs:

Sbs: objects U are Borel subsets of \mathbb{R}, morphisms are measurable functions. $J(U) =$ countable sets of inclusions $\{U_i \hookrightarrow U\}_{i \in I}$ where $U = \bigcup_{i \in I} U_i$ and the U_i’s are disjoint.

$\mathcal{M} =$ all monos.
Main Theorem [Matache, Moss, Staton, in preparation]

Given a concrete site with a class of admissible monos \((\mathcal{C}, J, \mathcal{M})\), “combine” it with the site for \(v\text{Set}\), \((\mathcal{V}, J_{\mathcal{V}}, \mathcal{M}_{\mathcal{V}})\).

The category of concrete sheaves on the combined concrete site \((\mathcal{C} + \mathcal{V}, J \cup J_{\mathcal{V}}, \mathcal{M} \cup \mathcal{M}_{\mathcal{V}})\) is an adequate model of PCF\(_v\).

Model higher-order recursion for:

1. Probabilistic programming
2. Automatic differentiation
3. Piecewise differentiation
4. Full abstraction

Using:
- sheaves on a concrete site
- class of admissible monos in the site
- presheaves on the vertical naturals