Concrete categories and higher-order recursion

With applications including probability, differentiability, and full abstraction

Cristina Matache†‡, Sean Moss† and Sam Staton†

LICS 2022

†University of Oxford and ‡University of Edinburgh
Modelling higher-order programs with recursion

Model

- Cartesian closed category (CCC) — higher-order functions
- Partiality monad, L — recursion
- Interpretation:
 - Type \leftrightarrow Object
 - Program \leftrightarrow Partial morphism with admissible domain

Examples:
1. Probabilistic programming [Heunen et al.’17, Vákár et al.’19]
2. Differentiable programming [Huot et al.’20, Vákár’20]
3. Full abstraction for a sequential language [O’Hearn & Riecke’95], [Matache, Moss, Staton, FSCD’21]
Goal of this work

The examples all model higher-order recursion using the same recipe

1. Probabilistic programming
2. Differentiable programming
3. Full abstraction for a sequential language

Main Theorem (Adequacy)

We build an adequate model of higher-order recursion as a category of concrete sheaves.

Each example is a special case + some domain specific work.

Concreteness: types = sets with structure, terms = structure preserving functions.
Categories of concrete sheaves $\text{ConcSh}(\mathbb{C}, J)$

$\mathbb{C} = \text{small (well-pointed) category; models first-order computation}$

- concrete presheaves on \mathbb{C} model higher-order computation
- restricting to concrete sheaves for a coverage J on \mathbb{C} changes the colimits, e.g. $[\text{nat}]$ is the coproduct $\sum_{\mathbb{N}} 1$

Concrete sheaf $X = \text{set } |X| + \text{sets of functions into } |X| + \text{some conditions}$

(1) Probability: sets of random elements $\mathbb{R} \to	X	$
(2) Differentiability: sets of smooth plots $\mathbb{R}^n \to	X	$
(3) Sequentiality: logical relations on $	X	$
Partiality monad L on $\text{ConcSh}(\mathcal{C}, J)$

Theorem

Starting with a **class of admissible monos** \mathcal{M} in the site (\mathcal{C}, J) we can construct a lifting monad L on $\text{ConcSh}(\mathcal{C}, J)$.

Proof sketch:

- From \mathcal{M} we obtain a dominance Δ in $\text{Sh}(\mathcal{C}, J)$ (in the sense of synthetic domain theory e.g. [Rosolini’86])
- Δ classifies the admissible domains of partial maps
- From the dominance Δ we construct L [Mulry’94, Fiore&Plotkin’97].
ConcSh(\(\mathbb{C}, J\)) with \(L\) will not in general admit a fixed point theorem.

Consider the partial order \(V = [0 \leq 1 \leq \ldots \leq \infty]\) and combine with \(\mathbb{C}\) \(X\) in ConcSh(\(\mathbb{C} + \{V\}, J\)) has a set of completed chains \(X(V) \subseteq [V \rightarrow |X|]\)
\[\implies\] FP theorem in ConcSh(\(\mathbb{C} + \{V\}, J\)) see also [Fiore & Rosolini'97, '01], [Fiore & Plotkin'97]

Main Theorem (Adequacy)

ConcSh(\(\mathbb{C} + \{V\}, J\)) with \(L\) is an adequate model for call by value PCF.

Example: the \(\omega\)Qbs model of probabilistic computation

\[
\begin{align*}
L & \hookrightarrow \omega\text{Qbs} \\
\omega\text{Qbs} & \xrightarrow{F} \text{ConcSh}(\Sigmabs + \{V\}, J) \\
\text{ConcSh}(\Sigmabs + \{V\}, J) & \hookleftarrow L
\end{align*}
\]
We built an **adequate concrete sheaf** model of **higher-order recursion**.

Examples that are an instance of this construction:

1. Probabilistic programming
2. Differentiable programming
3. Full abstraction for a sequential language

Expect more examples in the future

e.g. piecewise differentiability [Lew et al.’21]