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Abstract It is commonly recognized that altruism may have socially detrimental effects. This paper
seeks further insights by analyzing the interaction between an abstract punishment “technology” and the
intensity of altruistic motivation in an elementary game of sequential punishment. Sufficiently high levels
of altruism are shown to generally result in a socially suboptimal outcome. Although the central model is
stylized, the key driving effects should appear in more specific examples. These are the temptation effect
(more altruistic individuals are less tempted to do harm to others), the willingness effect (more altruistic
individuals are less willing to inflict punishment), and the severity effect (“non-wasteful” punishments are
less severe for more altruistic individuals).
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1 Introduction

[T]he ideal society would be one in which each citizen developed a real split
personality, acting selfishly in the market place and altruistically at the ballot
box. (Meade, 1973)

[W]hen altruism improves static non-cooperative outcomes, it lessens the
severity of credible punishments. An altruist may well be perceived as a
“softy” and his threats may not be taken seriously. (Bernheim and Stark, 1988)

1.1 A Parable

Many problems of economic and social policy share the common feature that a
mechanism must be found to give individual agents the incentive to act in a manner
which is beneficial for society as a whole. Such incentives can be intrinsic to the
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individual (altruistic preferences) or extrinsic (threats of punishment if the individual
agent does not comply with the socially prescribed action). This paper analyses
the interaction between these two alternative “technologies”. We see that the two
methods of achieving social order cannot be freely mixed at will, and that, in order
for extrinsic incentives to work most effectively, it is necessary to limit the operation
of intrinsic incentives, so as to avoid counterproductive interference between the
two. An important implication is that the heavy (perhaps predominant) reliance upon
extrinsic incentives in complex human societies may in fact be a socially optimal
“policy mix”, rather than a mere second-best correction for the inadequate intrinsic
motivation of individuals to act in a socially efficient manner.1

Altruistic behaviour has been fruitfully modelled in economic theory using
infinitely-repeated stage games (Fudenberg and Maskin, 1986; Abreu, 1986), and
infinite dynamic sequential games such as models with overlapping generations
(Samuelson, 1958; Hammond, 1975; Cremer, 1986). This paper uses a similar
stylized canonical framework to approach its central question. In common with the
infinitely-repeated stage game model, agents in the model are infinitely-lived and
discount the future. In common with overlapping generations models, players are
“born”2 and move sequentially, each player only getting to move once during the
entire game.3 The sequential punishment game is intended to capture an abstract
essential feature of the social and economic world in a simple but general manner.
Other models with a similar idiom include the “Robinson Crusoe” economy (Ruffin,
1972), Samuelson’s “pension game” (Samuelson, 1958) and Diamond’s model of
fiat money in a “coconut economy” (Diamond, 1984). Each of these models can
be illustrated intuitively with the help of a simple “parable”, as can the sequential
punishment game.

Consider a desert island where individuals are sufficiently settled to have
established their own “back gardens”. Each individual is sitting in their garden
drinking a cold beer. One by one, at regular discrete intervals, one inhabitant finishes
their drink, and must decide whether or not to walk to the bin, or to throw their bottle
into one of their neighbour’s gardens. (This cost of a bottle landing in ones’ garden
is normalized to 1 throughout the paper.) All gardens are adjacent, and each person’s
bin is a variable distance away. (Imagine a giant pie-shaped island, each garden being
a “wedge” - everyone is sitting at the middle of the island.) It is possible for each
inhabitant to be threatened that, if they throw their bottle, everyone who subsequently
finishes their beer will throw a bottle into the malefactor’s garden. Sometimes this
threat will be enough to make every inhabitant walk to the bin every time, leading
to a socially efficient litter-free island. Sometimes the threat will not be enough, and
some or all of the bottles will be thrown, leading to a socially inefficient outcome.

The central feature of reality encapsulated in this model is the fundamental
vicariousness of human social interaction. In any society, individuals are able to
impose negative externalities upon one another for personal gain, in myriad ways.

1 For a discussion of other ways in which extrinsic motivations may undermine intrinsic ones, see
Bénabou and Tirole (2003).

2 This significantly simplifies welfare metrics.
3 This may seem unrealistic, but we can argue that we only need to split a finite set of players into an

infinite set of “egos” (Hammond, 1975).
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However, the very existence of this problem also offers a potential solution, in that
it creates the possibility of punishing miscreants who take such opportunities, by
threatening them with harm in the future.4 On the other hand, an alternative potential
solution to the problem is altruism; if people care about others, they may refrain from
harming them. The question we will set out to answer is whether greater altruism
on the part of the inhabitants of the island will always make it easier to achieve a
litter-free island. The answer is a resounding and conclusive “no”.5

It is commonly recognized that the repetition of stage games such as the
prisoners’ dilemma, or the Cournot and Bertand oligopoly games, allows apparently
altruistic behaviour to be incentivized, resulting in a Pareto-superior outcome for the
players. However, such apparent altruism only reflects “enlightened self-interest”.
The well-known Folk Theorem establishes that, if players are sufficiently patient,
any equilibrium which Pareto dominates the min-max payoff in the stage game can be
supported as a subgame-perfect equilibrium in an infinitely repeated game (Aumann
and Shapley, 1992; Rubinstein, 1979; Fudenberg and Maskin, 1986; Wen, 2002).
The key implication is that, with imperfect altruism leading to a Pareto-inefficient
equilibrium in the stage game, if there is sufficiently low discounting of the future
then a Pareto efficient outcome in the infinitely-repeated game can be achieved. This
paper provides a general workhorse model in which such results can be extended in
order to accommodate bona fide altruistic motivation.6 It approaches the standard
question of sustainability of collusion but in the reverse direction: Given a certain
level of impatience, how high or low can the level of altruism be in order for a
socially efficient outcome to be attained? It is shown that there must generally be
a “Goldilocks” level of altruism, neither too high or too low.

4 We will throughout use “harm” to refer to the inflicting of a negative externality and “punish” to the
specific use of such harm opportunities to construct punishment equilibria.

5 Such a result has been hinted at in an intuitive manner in the existing literature, most directly by
Bernheim and Stark:

[I]n comparison with a situation wherein altruism is absent altogether, the prevalence of just some
altruism could result in Pareto inferior outcomes. Hence, if the formation of altruism may not only
fail to do any good but may actually make things worse whereas the formation of sufficiently
high levels of altruism is almost always beneficial,...a troubling discontinuity arises: to the extent
that the formation of altruism is like the rising of bread dough (i.e. it has to be gradual) groups
yearning to build up their social stock of altruism may have to endure Paretial deterioration
before experiencing Paretial gains. Perhaps one reason why a great many societies consist of
self-interested economic men and women rather than altruistic economic men and women has to
do with this nonmonotonicity. Stark (1989)

Altruism has also been shown to be potentially welfare-reducing in the context of time inconsistency of
interactions between altruistic agents due to moral hazard or “free-riding” (Lindbeck and Weibull, 1988)
and intergenerational altruism in OLG models with environmental externalities (Asheim and Nesje, 2016).
However, none of these studies examine the drawbacks to the abstract form of universal altruism modelled
in the sequential punishment game explored in this paper.

6 Hence we investigate the social welfare consequences of a simple version of “intrinsic reciprocity”
(Sobel, 2005), assuming for simplicity and tractability a homogenous level of such motivation in the
population of agents.
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1.2 A Three-Effects Framework

In a game in which individuals make sequential moves (or in a repeated
simultaneous-move game structure), they are able to punish one another based upon
previously observed behaviour. Individuals who are less altruistic are more willing to
harm others because they place a lower value on the cost to the person being harmed.
We shall therefore call this the willingness effect. Agents are also more afraid of
being harmed because they value their own welfare more relative to that of others.
For example, if a miscreant is fined a certain amount and the revenue is spent on
other individuals, this is a more severe punishment for a less altruistic agent because
the fact that the fine revenue is spent on others mitigates the detrimental effect of the
fine on the agent’s utility by a smaller amount than if the agent were more altruistic.7

We shall therefore refer to this as the severity effect . Together, these two effects
create a potential social benefit from individuals not being too altruistic. However,
this must be balanced against the greater temptation towards wrongdoing by a less
altruistic individual. Hence there is also a temptation effect from greater altruism. The
central result of this paper is that, under certain fairly non-restrictive assumptions, the
three effects conspire to render a socially efficient outcome impossible if the level of
altruism becomes high enough.8

1.3 Overview

Section 2 discusses some preliminary issues regarding the modelling of altruistic
preferences. Sections 3 through 4 set up the notation for the sequential punishment
game. The main body of novel results is in Sections 5 through 8, which progressively
derive the central results characterizing the “Goldilocks” range of altruism levels
within which a socially efficient outcome is obtainable. Section 9 provides an
important final piece of the argument, in that it is necessary not only to show that too
high a level of altruism will break the supportability of the socially efficient outcome,
but also that the loss of social welfare in the resulting second-best world will often
be non-negligible. Section 10 concludes by discussing some applications of the key
theoretical results to economic, social and political institutions.

2 Modelling Altruism

When modelling altruism, a common approach, which will be applied in this
paper, is to distinguish between felicity, which represents “direct” individual welfare

7 The revenue from the fine could, of course, be “burned” in order to avoid this adverse effect, but this
would be wasteful in that it would create a deadweight loss to punishment.

8 Stark and Bernheim have observed that altruism can reduce the credibility of punishment if the
potential punisher is perceived as a “softy” (Bernheim and Stark, 1988). They observe that this can lead
greater altruism to have a negative impact (this is precisely the phenomenon we term the willingness
effect) but argue that this must be analysed on a case-by-case basis. Here we provide an abstract minimal
framework in which a plausible and intuitive socially optimal level (or, more precisely, range of levels) of
altruism emerges, and which is shaped by the three incentive effects introduced in section 1.2 that should
reproduce themselves in many more specific situations.
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from consuming economic goods and utility, which, although personal to each
individual, may depend upon the felicities of more than one individual. In order to
conduct a normative analysis, a social welfare function must also be constructed,
which must be a function of individual felicities or utilities (or both). The main
alternative to the felicity-based approach is to model altruism as a “warm glow”
where the altruistic action (e.g. giving resources to another individual) is itself a good
which directly enters the individual’s utility function (hence avoiding the need for the
distinct felicity concept).9

The normative analysis of altruism raises some interesting additional issues.
Suppose we have a society containing two individuals, each of whom cares about
the other. Let felicity be represented by v1 (x1) and v2 (x2) and utility be denoted by
u1 (x1,x2) and u2 (x1,x2), where xi is the consumption bundle of agent i. We could
take a number of directions in representing the two individuals’ utility functions. We
could have each individual’s utility depend on a weighted sum of their felicity and
the felicity of the other. Letting θi ≥ 0 be the coefficient of altruism for agent i, this
can be represented as:

u1(x1,x2) = v1(x1)+θ1v2(x2)

u2(x1,x2) = v2(x2)+θ2v1(x1)

The potential problem with this formulation is that increasing their coefficient
of altruism automatically increases the utility of each individual, regardless of any
effect upon their behaviour. The sequential punishment game nonetheless uses this
approach, because felicities rather than utilities form the basis of the normative
analysis via a utilitarian (simple sum of felicities) social welfare function.10

An alternative approach worth considering briefly is to have each individual’s
utility depend on their felicity and the utility of other individuals:

u1(x1,x2) = (1−θ1)v1(x1)+θ1u2(x1,x2)

u2(x1,x2) = (1−θ2)v2(x2)+θ2u1(x1,x2)

9 For a much more detailed survey of the many different forms that altruism has taken in the theoretical
and empirical literature in economics, as well as an extensive justification for making the modelling of
altruism a central research objective, see Sobel (2005).

10 This approach does raise its own set of questions about whether it is legitimate to make a distinction
between felicity and the “moral preferences” embodied in the utility function. We wish to be able to assess
whether moral preferences such as altruism are welfare-improving, and to show that this is sometimes not
the case. Since altruism is endogenous to social welfare, there is a risk that the argument becomes circular.
There are a number of potential approaches to providing a basis for a utilitarian (simple sum of felicities)
welfare metric. As shown by Bergstrom (2006), if altruism takes a non-paternalistic form as in equation
(2) and certain other conditions are fulfilled then a necessary condition for Pareto-efficiency is that the
simple sum of felicities (private utilities) is maximized. However, given the infinite number of players
and OLG-like structure of the sequential punishment model, the simplest way to justify the necessary
and sufficient condition for social efficiency that no harm opportunities be taken (no bottles thrown in the
island parable analogy) is to consider an “original position” (Rawls, 1999) where players currently “born”
act as a “co-ordination device” by choosing equilibrium strategies for players who will be “born” and
move in subsequent time periods. In that case, currently living players would unanimously agree upon an
equilibrium in which no harm opportunities are taken in future, since any harm opportunity taken only
produces a (social utility) benefit of θ multiplied by the “distance to the bin” (π) which is always less than
the (social utility) cost of θ (multiplied by 1, the felicity cost of a bottle landing).
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When this system of simultaneous equations is solved, we get:

u1(x1,x2) =

(
1−θ1

1−θ1θ2

)
v1(x1)+

(
θ1−θ1θ2

1−θ1θ2

)
v2(x2)

u2(x1,x2) =

(
1−θ2

1−θ1θ2

)
v2(x2)+

(
θ2−θ1θ2

1−θ1θ2

)
v1(x1)

Even though the utilities of both individuals have been normalized so that they
are an average of their own felicity and the utility of the other individual, we still get a
multiplier term at the beginning of each individual’s solved-out utility function. This
multiplier effect can produce interesting results in some models.11

Note however that (as long as θ1θ2 6= 1) we can still express each individual’s
utility as being ultimately dependent only on the felicities of all individuals. This
suggests that, if we want to abstract away from these multiplier effects caused by
altruism, it would seem to be sensible simply to base individuals’ social utilities
directly upon felicities, as outlined above.

The definition of social utility functions in terms of weighted averages of felicities
(and, if we wish to use this normative justification - see footnote 10 - the assessment
of outcomes using a social welfare function defined as the simple sum of felicities),
requires ratio-scale interpersonal comparability of felicities (Roberts, 1980). As
argued by Harsanyi (1986), only once we permit such interpersonal comparisons does
it make sense to view the utilitarian social welfare function as requiring perfect, which
he calls “impartial”, altruism (all individuals weighted equally), and individuals’
social utility functions as falling short of this by exhibiting imperfect altruism (lower
weighting on some or all other individuals than upon onesself).

3 The Sequential Punishment Game

Suppose there are an infinite number of players and that distinct players,
referenced by the period in which they move, each get a chance in sequence to impose
damage upon another player. In period t, player t receives a harm opportunity, and
must decide whether to accept or reject it, and a “target” for the harm opportunity,
player At . If player t chooses to accept their harm opportunity, then player At suffers a
cost in felicity of 1 unit. If player t rejects the opportunity, then there are no changes
in felicity. If player t accepts, then they gain felicity equal to the benefit, πt , which
is drawn randomly and independently from a distribution defined by the probability
density function g(π), with support [0,1]. All players publicly observe the value of
πt before player t moves. We assume throughout that g(π) is twice continuously
differentiable. We will frequently use as an exemplar the case of a uniform benefit
distribution so that g(π) = 1 for 0≤ π ≤ 1, but results will be general for any g(π).

Definition 1 The expected benefit value will be denoted: π̄ =
∫ 1

0 πg(π)dπ .

11 See for example Stark’s model of marriage between altruistic females and males where males vary in
their degree of altruism towards females, so that females may actually prefer a less altruistic male partner
due to the multiplier effect (Bernheim and Stark, 1988).
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3.1 Players’ Preferences

Players act to maximise their utility function, which is a weighted sum of the
felicities of all players.12 We assume all players are risk-neutral and share the same
discount factor 0 ≤ δ < 1.13 We let θ represent the weighting placed upon the
felicities of others in each player’s social utility function. We assume that θ is
identical for all players and that 0≤ θ ≤ 1.14

0≤ δ < 1 (1)

0≤ θ ≤ 1

Let Tt denote a trigger level for the benefit πt above which player t chooses to
inflict harm in period t (as we shall see, this depends upon the equilibrium strategies
being played). Let vi,t be the felicity of player i in period t and let ut be the expected
stream of discounted utility of player t looking forward from period t:15

vi,t =


−1 if Tt < πt and t 6= i and At = i
πt if Tt < πt and t = i and At 6= i

πt −1 if Tt < πt and t = i and At = i
0 otherwise


ut =

(
vt,t +θ

∞

∑
k 6=t

[vk,t ]

)

+
∞

∑
j=t+1

[
δ

j−t

(
Eπ [vt, j]

∣∣∣∣
π1...πt

+θ

∞

∑
k 6=t

Eπ

[
vk, j
]∣∣∣∣

π1...πt

)]

3.2 Punishment Paths

The sequential punishment game has close parallels with the traditional frame-
work of infinitely-repeated games with discounting. Seminal results for the nature
of the optimal penal codes in these types of game were provided by Abreu

12 Every individual’s utility function is a social welfare functional which aggregates all players’ felicities,
and which satisfies the Pareto principle, independence of irrelevant alternatives and unrestricted domain.
Ratio scale comparability (Roberts, 1980) must be assumed, with all individuals gaining 0 felicity when
no harm opportunities at all are taken. If we let θ = 1 then we get the social welfare function, which also
satisfies anonymity.

13 The role of the assumption of discrete time periods with discounting of the future can be justified as
the simplest way of capturing the idea that the technology used to detect deviation is imperfect and thus
takes time (Cremer, 1986).

14 Note that “martyrs” with θ > 1 and malevolent individuals with θ < 0 are ruled out a priori for sake
of tractability.

15 The assumption that players are infinitely lived may appear restrictive, but its primary role is to
simplify the model. Versions of the Folk Theorem have been proved for games with finitely-lived players
and overlapping generations (Kotlikoff et al., 1988; Kandori, 1992; Messner and Polborn, 2003), and
the general result is that having finitely-lived agents reduces, but does not eliminate, the possibility of
supporting mutually beneficial equilibria in an infinitely-repeated stage game framework. It therefore
seems reasonable to focus on the role of altruism by assuming away the issue of finite lifespans.
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(1988)16, who showed that optimal punishment can be exhaustively described using
punishment paths. These will in general have a carrot-and-stick structure, with
players incentivized to co-operate with the more unpleasant early stages of the
path by the “carrot” offered by the return to more pleasant co-operative behaviour
in the later part of the path. The introduction of non-stationary carrot-and-stick
punishments is particularly interesting in the sequential punishment game because
partially altruistic individuals must themselves be threatened with harm if they refuse
to co-operate with the punishment of others. This feature of the model generates a
rich interaction between the altruistic preferences of the players and the structure of
optimal punishment paths.

Strategy profiles and the corresponding equilibria in the sequential punishment
game can be described in terms of an initial path and a punishment path. Along the
initial path, no harm opportunities are permitted to be taken. If a player deviates from
the initial path, then a punishment path tailored for that player is initiated. If a player
deviates from an ongoing punishment path, then a new punishment path tailored for
the most recent deviator is initiated.

A punishment path, denoted by ψ , is a vector of trigger levels for π above which
harm opportunities are taken in a punishment equilibrium. Punishment paths provide
a natural way to conceive of punishment equilibria in the sequential punishment
game. If a punishment path, which was initiated in period j through a deviation by
player j, is being followed in period t, then player t sets their trigger level Tt equal
to ψt− j (so that player t takes the harm opportunity when πt > ψt− j) and punishes
player j by setting At = j.

Definition 2 A punishment path, denoted ψ , is a vector of trigger levels, subscripted
by the point reached along the path.17 Trigger levels must lie within the support for
π , therefore ∀ψ∀k : ψk ∈ [0,1]. The set of possible punishment paths is Ψ , so that
∀ψ : ψ ∈Ψ . A flat punishment path, ψ̄ , has the property that ∀k : ψ̄k = ψ̄ .18 The set
of flat punishment paths is denoted Ψ̄ .

Following Abreu’s argument, in order to find out if the socially efficient outcome
is supportable for any given θ and δ , it is in general necessary to derive the optimal

16 Abreu also foresaw that his method would have far-reaching applications in other models:

Analogues to the theorems established here ought to appear in any model with discounting
and a “repeated” structure. Finally, the conceptualization of punishment in terms of paths and
deviations from prescribed paths should prove useful in other contexts.

Abreu (1988)

The sequential punishment game analysed here is one such context. Although the sequential punishment
game is not strictly speaking a repeated stage game, the ability of individuals to condition their behaviour
on the past, with deviations immediately observable next period, gives it an essentially analogous structure.

17 We use the term “period” to refer to “game time” and “point” to refer to the current position along an
ongoing path.

18 We use ψ̄ to denote both a flat punishment path and the constant trigger level that defines it. This
simplifies notation significantly in subsequent lemmas and theorems. A number of functions will be defined
later on as taking a path (a vector of real numbers) or a constant trigger level along a flat path (a real
number) as an input. When we are dealing with flat paths, the two interpretations of the notation can
be used interchangeably without causing any problematic ambiguity. When dealing with non-flat paths,
however, the distinction between the two types of input must be kept in mind.
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punishment path. Along a punishment path, it will be desirable to harm the most
recent deviator as much as possible. Since players are indifferent as to whom they
harm, any harm opportunities taken along an optimal punishment path will therefore
be “focused” upon the most recent deviator.

We can imagine choosing a fixed punishment, and then finding out the most
severe path we can support given the use of that fixed punishment for any deviation.
However, as argued by Abreu, we will only have found the most severe path we
can support if we are in fact using that path to punish any deviation from any
ongoing punishment path. Hence the optimal punishment path must be used to punish
any deviation from itself. This is a useful recursive symmetry which we exploit in
constructing the conditions for supportability in Definition 3.

There are two constraints at each point along a punishment path. The first
concerns the “squeamishness” of partially altruistic individuals in implementing the
“stick”. Individual t is only willing to take a harm opportunity when πt ≤ θ if they are
themselves threatened with punishment, in order to give them an incentive to inflict
harm when it is unpleasant for them to do so. The second constraint concerns the
“carrot” part of the path. In order to provide a carrot, it is necessary that trigger levels
be higher later in the path (so that harm is inflicted only for high benefit values). This
may involve individuals being required to abstain from taking a harm opportunity
when πt > θ , for which they will also need to be given an incentive via carrot-and-
stick punishment.

The second constraint turns out to be more difficult to deal with, but we are able
to prove that, as θ −→ 1−, this constraint becomes insignificant, because even when
it is not imposed, the socially efficient outcome becomes unsupportable using the
optimal path anyway. Also, in many cases the second (“upper”) constraint will not
bind at any point along the path, whereas the first (“lower”) constraint must always
bind at the beginning of the optimal path. It is therefore the first constraint which
primarily drives the shape of optimal punishment paths in the sequential punishment
game.

Ignoring the upper constraint, optimal paths will be shown to have a quasi-
flat structure, in that the trigger level is identical following the second point along
the path. This is a surprising result, since optimal paths in the standard infinitely-
repeated stage game models treated in the existing literature, such as the Cournot
and Bertrand oligopoly models, involve a finite punishment phase followed by a
return to full co-operation, where the Pareto efficient outcome in the stage game
is restored (Abreu, 1986) (Lambson, 1987). The different result in the sequential
punishment game is driven by the presence of altruistic preferences, which cause
“neutral observers”, who are not being punished (but who are still affected by the
“carrot” created by the remainder of the path) to be more sensitive to variation in the
trigger levels than the individual being punished (the first have a more concave inter-
temporal utility function than the second). Intuitively, with partial altruism (θ < 1),
the individual being punished is hurt partly or primarily simply because they are
being punished, whereas the benefit values for which harm opportunities are taken
makes more difference to a “neutral observer”. (See Lemma 6.)

The socially efficient outcome is said to be supportable for given values of δ and
θ if and only if there exists a punishment path such that the corresponding strategy
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profile forms a subgame-perfect Nash equilibrium with a socially efficient initial path.
A punishment path can be conceived as an infinite sequence of values of At and
Tt (using notation defined in section 3.1), which is imposed following a deviation
from the socially efficient initial path (upon which ∀t : Tt = 1 so that no harm is
ever inflicted at any time19). Checking for supportability involves two conditions.
Firstly, the punishment path must be sustainable. This requires that individuals be
incentivized to co-operate with the punishment path, generally by inflicting harm
when they would prefer not to unless further unpleasant consequences are threatened.
Secondly, given a sustainable punishment path, this path must also be of sufficient
severity to incentivize all players to co-operate with the initial path, so that the
socially efficient outcome occurs in equilibrium.

Definition 3 Let Uk : Ψ −→R be the per-period average discounted expected utility
of the individual being punished along path ψ , looking forward from point k. Let
Vk : Ψ −→ R be the per-period average discounted expected utility of a “neutral
observer” who is not being punished along path ψ .

Uk(ψ) =

(
1−δ

δ

)
∞

∑
i=k+1

[
δ

i−k
∫ 1

ψi

(θπ−1)g(π)dπ

]
(2)

Vk(ψ) =

(
1−δ

δ

)
∞

∑
i=k+1

[
δ

i−k
∫ 1

ψi

(θπ−θ)g(π)dπ

]
(3)

Note that, for a flat path, ψ̄ , these functions simplify to give (where U : R−→ R
and V : R−→ R):20

∀k : Uk (ψ̄) =U (ψ̄) =
∫ 1

ψ̄

(θπ−1)g(π)dπ

∀k : Vk (ψ̄) =V (ψ̄) =
∫ 1

ψ̄

(θπ−θ)g(π)dπ

(4)

The supportability constraints are as follows. λk : Ψ −→ R is the lowest possible
net loss of utility from refusing to punish when required to at point k along
punishment path ψ (this only “bites” when ψk < θ ) and µk : Ψ −→ R is the lowest
possible net loss of utility from punishing when required not to along punishment
path ψ (this only “bites” when ψk > θ ). κ : Ψ −→ R, meanwhile, is the lowest
possible net loss in utility from defecting from the initial path, given that path ψ

is used to punish such a deviation.21

In order for punishment path ψ to support the socially efficient equilibrium, it
must be the case that ∀k : λk(ψ)≥ 0, ∀k : µk(ψ)≥ 0 and that κ(ψ)≥ 0. The optimal

19 Given the assumptions laid out in section 3, the socially efficient initial path always involves no harm
opportunities ever being taken for any value of π in the support of g(π).

20 The functions defined in (5) through (8) are therefore also alternatively functions of a constant trigger
level ψ̄ along a flat path (a real number). Note also that we can suppress the subscript to indicate the point
reached along a flat path, since a flat path looks identical at all points.

21 These are also functions of δ and θ but we generally suppress this in the notation, for clarity and
simplicity.
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punishment path is the one which minimises U0(ψ) subject to these constraints,
which is the same as maximizing the severity of the punishment path for the punishee,
denoted by φ : Ψ −→ R. The optimal path, ψ∗ is therefore the path that maximizes
φ (ψ) whilst satisfying all the constraints. The optimal flat path, ψ̄∗ is defined
analogously.

λk(ψ) =

(
δ

1−δ

)
Vk(ψ)−

(
δ

1−δ

)
U0(ψ)+ψk−θ ≥ 0 (5)

µk(ψ) =

(
δ

1−δ

)
Vk(ψ)−

(
δ

1−δ

)
U0(ψ)−ψk +θ ≥ 0 (6)

κ(ψ) =−
(

δ

1−δ

)
U0(ψ)+θ −1≥ 0 (7)

φ(ψ) =−
(

δ

1−δ

)
U0(ψ) (8)

3.3 Intuition for the Central Result

In the one-shot version of the sequential punishment game (where δ = 0), a
socially efficient outcome can only be achieved if the coefficient of altruism θ is high
enough. This is due solely to the temptation effect. Since there is therefore always
a lower limit on θ , a higher θ (i.e. closer to 1) is always socially superior. (See
Proposition 1.) In this simplest case there are no willingness or severity effects to
consider, and so the result that altruism is always socially beneficial is unambiguous.

In the more general infinite-period sequential punishment game (where 0 < δ <
1), a socially efficient outcome can be achieved more easily due to the fact that
players are able to observe other players’ past actions and to choose whom they
harm in order to enforce credible threats of future punishment upon players who are
tempted to inflict harm in the current period when this would be socially inefficient.
The ability of a player to inflict harm now plays the dual role of a temptation to
impose a deadweight loss upon society at benefit to oneself, but also the opportunity
for society to credibly threaten to punish those who do so.22 This means that there can
then be some advantages to players being less than fully altruistic, since the threat of
punishment is more severe the less altruistic players are, both because less altruistic
players are willing to inflict harm more often (the willingness effect), but also because
the loss of utility from being harmed in place of another is greater for a less altruistic
player (the severity effect).

It turns out that, provided there is sufficiently low discounting, the severity
effect dominates and the lower constraint on the required level of altruism drops

22 It may seem unreasonable to assume that each harm opportunity inflicts an identical cost to the
punishee, but by stringing together an infinite series of such opportunities, it is possible to construct a
punishment of any desired level of severity if the future is discounted sufficiently slowly. We are in essence
assuming that each period of time gives the same finite intensity of harm opportunity, and that punishments
must therefore be composited from the harm opportunities of an infinite number of individuals. Although
this is a stylized assumption, it is arguably realistic in the sense that many individuals must generally
co-operate in order to implement real-world punishment systems.



12 Richard Povey

Fig. 1 Socially efficient equilibria (first-best shown in grey) and the first-best over most possible worlds
coefficient of altruism θ ∗

away because further decreasing the level of altruism beyond a certain point always
increases the severity of punishment more than enough to outweigh the increased
temptation to deviate from the socially efficient equilibrium by inflicting harm (see
Proposition 3). More significantly, however, it transpires that too much altruism will,
for any value of the discount factor, prevent the socially efficient outcome from being
achieved (see Proposition 2). Most importantly of all, for low enough values of δ ,
it will be shown that the values of θ which enable a socially optimal outcome lie
between 0 and 1, involving imperfect altruism of the benevolent form (0 < θ < 1) but
not perfect altruism (θ = 1) (see Proposition 4).

4 Defining Social Optima

Figure 1 provides a preliminary illustrative schematic (using a uniform benefit
distribution) for the possible subgame-perfect socially efficient equilibria which are
supportable for different values of θ and δ in the sequential punishment game. The
most lightly shaded area A shows values of (θ ,δ ) where, by using “Nash-reversion”
punishment (which requires each individual in an equilibrium where a malefactor is
being punished to take their harm opportunity whenever πt > θ , as they would with a
one-shot harm opportunity in a single-move game - see section 5) a socially efficient
equilibrium can be constructed.23 The darker grey area B shows those values of (θ ,δ )

23 “Nash-reversion” punishment is analogous to Nash-reversion in infinitely-repeated stage games
and, as with most infinitely-repeated stage games (such as the Cournot model) there are more severe
punishments available via a “carrot-and-stick” approach (Fudenberg and Maskin, 1986; Abreu, 1986)
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for which social efficiency can only be supported by using a punishment path more
severe than that available with “Nash-reversion” punishment. This requires that the
individuals doing the punishing be induced to go “beyond their comfort zone” by
inflicting harm in some cases where πt ≤ θ where they would not wish to do so in
a single-move game, due to their partial altruism. Recall that we use ψ̄ to denote
the benefit value above which harm opportunities are taken along a flat equilibrium
punishment path (i.e. Tt = ψ̄ at any time t along the punishment path). The main
analytic task of this paper is to characterise the socially efficient equilibria that can be
supported using an optimal flat punishment scheme24 (conducted in section 6) before
generalizing the most important results to the optimal generic punishment scheme
(i.e. allowing for non-flat punishment paths).

The black region C shows those values of (θ ,δ ) for which social efficiency is not
supportable, even with the use of an optimal punishment path.25 One of the central
results of this paper is that region C is “thinnest” at a first-best over most possible
worlds level of altruism, θ ∗ (see definition 5). It will be shown that, under the fairly
general assumptions made regarding the distribution of the benefit and the value of θ

and δ , it is always the case that 0 < θ ∗ < 1 (see Proposition 4).
There are in fact a number of senses in which we shall use the concept of social

efficiency and of a socially optimal level of altruism throughout the paper:

Definition 4 A first-best efficient outcome refers to a subgame-perfect equilibrium
where no harm is ever inflicted. Conditional on a particular level of δ , a coefficient
of altruism θ is first-best optimal if it supports a first-best efficient equilibrium and
this first-best outcome is robust to an infinitesimal change in θ . There may, given δ ,
exist no such θ value or a range of such θ values. We can denote the set of such first-
best optimal values of θ given δ as Θ ∗(δ ). A value of θ is second-best optimal for a
given δ if there exists no first-best optimum, and the θ value minimises the range of
values of the benefit π for which harm opportunities are taken in the domain θ ≤ 1.

We use π∗ to denote the benefit value below which harm opportunities are
deterred from being taken in equilibrium. Thus a first-best optimum achieves π∗ = 1
and a second-best optimum maximises the value of π∗ at a value less than 1.

Definition 5 The first-best over most possible worlds level of altruism refers to the
value of θ which constitutes a first-best optimum for the widest possible range of
δ . The lowest δ for which a first-best optimum exists is denoted δ ∗. A value of θ is
knife-edge optimal if it supports an efficient outcome but an infinitesimal increase or
decrease in θ results in an inefficient outcome whilst an infinitesimal increase in δ

maintains an efficient outcome.

The first-best over most possible worlds coefficient of altruism θ ∗ will be knife-
edge optimal for discount rate δ ∗. This is the approach we shall use to prove the
existence of θ ∗ and to derive its characteristics throughout the paper.

whereby altruistic agents implementing a punishment path are persuaded to accept the “stick” of harming
another agent when they would prefer not to (due to their altruism) in exchange for the “carrot” of not
becoming the agent onto whom all future punishment is “focussed”.

24 See equations (9) through (14) for a formal description.
25 We later establish, in Proposition 7, that the optimal punishment path must in this uniform distribution

case (though not in all cases) be flat.
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5 The Single-Move Game

Consider first a single-move game (this can be thought of as a special case of
the infinite-move game in which δ = 0 so that there is no future) in which a single
individual (without loss of generality we will label the current time period and
the individual who moves 1) has an opportunity to harm another. The individual’s
altruism level must therefore be sufficiently high in order to prevent them from
yielding to the temptation to inflict harm socially inefficiently, and so here the
deleterious willingness and severity effects of greater altruism do not apply. In this
simple case there is therefore no sense in which too much altruism is bad for society.

Proposition 1 In a single-move game, there is no first-best optimum, and the second-
best optimal coefficient of altruism is 1. (If δ = 0, then limθ→1−{π∗}= 1−.)

Proof It is first-best efficient for a harm opportunity to be taken only if π1 ≥ 1. The
individual receiving the harm opportunity (individual 1), meanwhile, will choose to
inflict harm if π1 > θ , since they value 1 unit of harm done to another individual
at θ . Hence π∗ = θ . The outcome can therefore only be second-best efficient as
θ −→ 1−. The outcome is not first-best efficient, however, because an infinitesimal
reduction in θ below 1 will result in an inefficient outcome for values of π1 in the
range θ < π1 < 1.

6 The Infinite-Move Game - Equilibria Using Flat Punishment Paths

In this section, we proceed to characterise the first-best efficient equilibria which
can be supported in the infinite-move sequential punishment game (i.e. where 0 <
δ < 1) using the optimal flat punishment scheme. Figures 2 through 7 show a variety
of different possible shapes to the black area in (θ ,δ ) space (depending on the
benefit distribution g(π)) where the first-best efficient outcome is not achievable.
Propositions 2 through 4 derive the key features of this region in a general manner.
The uniform benefit distribution will be further used as a specific illustrative example,
but Propositions 2 through 4 apply for any continuously differentiable benefit
distribution.

The first key result to be established is that as θ −→ 1− (individuals become
perfectly altruistic), the interaction of the three effects leads to a breakdown of the
first-best efficient equilibrium. The intuition is, firstly, that when θ = 1, the severity
of any punishment path will be 0, and the optimal path will not involve any harm
being inflicted. This is because perfectly altruistic individuals do not mind harm being
focused from other agents onto them, and so there is no loss of utility from defecting
from the punishment path, and therefore individuals cannot be incentivized to do any
punishing at all. The constraint for supportability of the initial path must therefore be
just fulfilled with equality at this point (because there is also no temptation to defect).

If the coefficient of altruism is reduced slightly below θ then, since very little
punishment can be sustained with such a high coefficient of altruism, the willingness
and severity effects must be negligible. Hence the temptation effect must dominate,
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Fig. 2 Socially efficient equilibria for g(π) = 1 Fig. 3 Socially efficient equilibria for g(π) = 2π

Fig. 4 Socially efficient equilibria for g(π) = 3π2 Fig. 5 Socially efficient equilibria for g(π) = 4π3

Fig. 6 Socially efficient equilibria for g(π) = 5π4 Fig. 7 Socially efficient equilibria for g(π) = 6π5

and social efficiency must be rendered unsupportable. However, as θ is further
reduced, provided δ is sufficiently high, the combined willingness and severity effects
will eventually become large enough to offset the temptation effect and lead the
condition for social efficiency to be supported again. For high enough values of δ ,
this will occur as θ −→ 0+, meaning that social efficiency can be supported with pure
self interest. (This phenomenon is driven by the severity effect - see Proposition 3.)
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There will in general exist a threshold level of altruism θ̂thr (where 0 < θ̂thr < 1),
which has the property that it is low enough for the punishment path to involve
inflicting harm for the widest possible range of benefit values (i.e. punishment trigger
level ψ̄ = 0), but not any lower, in order to prevent the temptation effect outweighing
the severity effect (and thus π∗ falling) as θ is further reduced. There will be a
corresponding δ̂thr (where 0 < δ̂thr < 1) which results in ψ̄ = 0 for δ ≥ δ̂thr if
θ = θ̂thr. We will show that it must be the case either that the first-best over most
possible worlds coefficient of altruism θ ∗ = θ̂thr (and corresponding δ ∗ = δ̂thr), or
that θ ∗ ∈

(
θ̂thr,1

)
and δ ∗ ∈

(
0, δ̂thr

)
. (See Proposition 4.) Hence θ̂thr provides a

lower bound for θ ∗.
An expression for the punishment “trigger level” ψ̄ can be found by constructing

a condition for co-operation with the punishment path (co-operation meaning “going
through with” the punishment) and making it bind when the benefit takes the least
attractive value so that all individuals are being pushed right up against the limit of
their willingness to punish given that they themselves are threatened with punishment
if they refuse. Hence along a punishment path the “target” for punishment At is set
to be the most recent deviator at all points along the punishment path. A deviation
from the punishment path (refusal to inflict harm) at time t will therefore occur if the
following inequality holds:

θ −πt ≥
δ

1−δ

(∫ 1

ψ̄

(1−θ)g(π)dπ

)
(9)

The LHS of (9) is the gain in utility by player t by refusing to take the harm
opportunity, which is equal to the utility gain of θ (from avoiding harming another
individual whose resultant net felicity gain of 1 is then weighted by θ ) minus the
utility (and felicity) loss to player t of πt (due to player t not receiving the benefit
from the harm opportunity). The RHS is the expected present discounted value of the
infinite stream of utility lost by player t when all future punishment is “focussed”
onto them (assuming all future players co-operate by inflicting harm for all realized
benefit values where πt > ψ̄).

Making (9) bind when πt = ψ̄ and rearranging gives us the following:

ψ̄(θ) = θ − (1−θ)
δ

1−δ

∫ 1

ψ̄(θ)
g(π)dπ (10)

Although this only implicitly defines ψ̄ , and cannot be solved without making
specific assumptions about the functional form of g(π), it can be totally differen-
tiated and rearranged to yield the following expression for the derivative dψ̄

dθ
. This

determines the direction of the willingness effect - the impact of a change in the
coefficient of altruism upon the optimal punishment “trigger level”. We should note at
this point that as θ −→ 1−, this expression becomes unambiguously positive. Hence,
as θ increases at an already high level of altruism, then the willingness effect reduces
the effectiveness of punishment.

dψ̄

dθ
=

(1−δ )+δ
∫ 1

ψ̄
g(π)dπ

(1−δ )−δ (1−θ)g(ψ̄)
(11)



Socially Optimal Altruism in a Game of Sequential Punishment 17

We now apply the following notation (from Definition 3) for the gain in utility
from co-operating with the first-best efficient initial path, κ(ψ̄(θ);θ), and with the
punishment path, λ (ψ̄(θ);θ) (assuming in both cases that the realized benefit value is
the one that makes co-operation least attractive, i.e. πt = 1 on the initial path and πt =
ψ̄(θ) on the punishment path). For an equilibrium, we require κ(ψ̄(θ);θ) ≥ 0 and
λ (ψ̄(θ);θ) ≥ 0. U (ψ̄(θ);θ) represents the per period expected present discounted
utility looking forwards along a punishment path which begins next period for an
individual who is being punished. V (ψ̄(θ);θ) represents the per period expected
present discounted utility looking forwards along a punishment path for a “neutral
observer” who is not being punished.

U (ψ̄(θ);θ) =
∫ 1

ψ̄(θ)
(θπ−1)g(π)dπ

V (ψ̄(θ);θ) =
∫ 1

ψ̄(θ)
(θπ−θ)g(π)dπ

(12)

λ (ψ̄(θ);θ) =

(
δ

1−δ

)
V (ψ̄(θ);θ)−

(
δ

1−δ

)
U(ψ̄(θ);θ)+ ψ̄(θ)−θ (13)

κ(ψ̄(θ);θ) =−
(

δ

1−δ

)
U(ψ̄(θ);θ)+θ −1 (14)

If θ is less than δ , individuals will be willing to punish for all possible values of
the benefit. This implies that λ (ψ̄(θ);θ)≥ 0 when ψ̄ = 0 and δ ≥ θ . The intuition for
this result is that if individuals are sufficiently patient, the cost of having an infinite
stream of future punishment “focussed” upon them is sufficiently great that they will
never want to deviate from a punishment path for any possible value of the benefit πt .

Lemma 1 If θ ≤ δ then punishment will occur for all benefit values along the
optimal flat punishment path. (If θ ≤ δ then ψ̄(θ) = 0, otherwise ψ̄(θ) = θ − (1−
θ) δ

1−δ

∫ 1
ψ̄

g(π)dπ .)

Proof Substituting (12) into (13) and setting λ (ψ̄(θ);θ)≥ 0 where ψ̄(θ) = 0 gives
us (1−θ) δ

1−δ

∫ 1
0 g(π)dπ−θ ≥ 0. Since

∫ 1
0 g(π)dπ = 1, rearranging yields the stated

inequality. If θ > δ , on the other hand, then ψ̄ must be where λ (ψ̄(θ);θ) = 0 in an
interior solution (i.e. 0 < ψ̄(θ)< 1) as described by equation (10).

Having derived the optimal flat punishment path, we are now in a position
to characterise the first-best efficient equilibria which can be supported using it.
Substituting (12) into (14) gives us the following for κ(ψ̄(θ);θ), (along with its total
derivative with respect to θ , with ψ̄(θ) suppressed to ψ̄ for clarity and decomposed
into temptation, willingness and severity effects):

κ (ψ̄(θ);θ) =− δ

1−δ

∫ 1

ψ̄(θ)
(θπ−1)g(π)dπ +θ −1 (15)
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dκ

dθ
= 1︸︷︷︸ +

(
− δ

1−δ
(1−θψ̄)g(ψ̄)

dψ̄

dθ

)
︸ ︷︷ ︸

temptation willingness
effect effect

+

(
− δ

1−δ

(∫ 1

ψ̄

πg(π)dπ

))
︸ ︷︷ ︸

severity
effect

(16)

We can now prove that, for any functional form for g(π), there will exist values
of θ close to but below 1 for which social efficiency will not be supportable (i.e. for
which κ(ψ̄)< 0).

Proposition 2 As altruism becomes perfect, the optimal flat punishment path cannot
support a first-best efficient equilibrium, for any value of the discount factor. (As
θ −→ 1−, ψ̄(θ) −→ 1, κ (ψ̄(θ);θ) −→ 0 and dκ

dθ
−→ 1, therefore as θ −→ 1−,

κ (ψ̄(θ);θ)−→ 0−.)

Proof As θ −→ 1, it can be seen from expression (10) that ψ̄ −→ 1. The RHS of
(15) thus goes to 0. Meanwhile, the RHS of (16) goes to 1. Since κ(ψ̄(θ);θ) is a
continuously differentiable function, it must therefore be the case that κ(ψ̄(θ);θ)
falls below 0 for some values of θ close to but less than 1.

We will now show that, if δ is high enough, then, once ψ̄ = 0, so that punishment
is occurring for all possible values of the benefit, the severity effect will dominate.
This means that as θ −→ 0+ social efficiency becomes unambiguously supportable.
The following proposition derives the required condition on δ .

Proposition 3 If δ > 1
1+π̄

then a first-best efficient equilibrium can be supported with
pure self interest. (If δ > 1

1+π̄
then κ (ψ̄(θ);θ)> 0 as θ −→ 0+.)

Proof By Proposition 1, when θ ≤ δ and so ψ̄ = 0, there is no further willingness
effect and so dψ̄

dθ
= 0. As θ −→ 0+, this must occur. Therefore, as can be seen

from (15), as θ −→ 0+, κ(ψ̄(θ);θ) > 0 provided that δ

1−δ
> 1∫ 1

0 πg(π)dπ
. Letting

π̄ =
∫ 1

0 πg(π)dπ and rearranging yields the stated result.

The intuition for Proposition 3 is that as the coefficient of altruism becomes
infinitely negative, the severity effect will dominate if δ > 1

1+π̄
. Since this lower

bound for δ is less than 1, there will be a range of values of δ where too high a
level of altruism renders the first-best efficient equilibrium unsupportable but, once
θ is below the upper limit, no arbitrarily high degree of malevolence will do so.
If, however, δ ∗ < δ < 1

1+π̄
then both too high and too low a level of altruism may

potentially cause a breakdown of efficiency. (We will shortly show that δ ∗ < 1
1+π̄

-
see Proposition 4.)

As discussed in section 4, there are a number of approaches which we can take
in defining the socially optimal level of altruism in the sequential punishment game.
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In a world in which we were unable to achieve the first-best solution, we could ask
what impact a change in the coefficient of altruism has upon the efficiency of the
second-best equilibrium. This we do in section 9. For the remainder of this section,
however, we continue to concentrate on worlds where the first-best solution may be
available, and hence ask what value of θ allows the first-best efficient outcome to be
supportable for the widest range of δ . Therefore, although we do later on consider
the best we can do in each possible world, we primarily focus here upon the broader
and more “philosophical” issue of which coefficient of altruism we would choose as
a social planner if we did not know which world (specified entirely by δ ) that we
would end up in.

The following proposition defines the first-best over most possible worlds level of
altruism, θ ∗ and corresponding minimum δ , δ ∗. The optimal coefficient of altruism
has a number of key features. Firstly, it must be a “knife-edge” first-best efficient
equilibrium so that κ(ψ̄(θ);θ) = 0. Secondly, it must be the case that δ is just high
enough so that punishment can occur for all values of π , in order that punishment
paths are maximally severe for the individual being punished (i.e. given Proposition
1 we set θ = δ ). Lemma 2 below will be necessary:

Lemma 2 If there exist first-best optimal values of θ when δ = δ ′, and all those
which exist satisfy the inequality θ ≥ θ ′, then there must exist a first-best over most
possible worlds level of altruism θ ∗ such that θ ′ < θ ∗ < 1 and which is knife-edge
optimal for a δ ∗ such that 0 < δ ∗ < δ ′.

Proof If Θ ∗(δ ′) (see Definition 4) is a non-empty and non-singleton set (so that δ ′ >
δ ∗) then if δ is infinitesimally reduced to δ ′′ then {θ ∗} ⊂Θ ∗(δ ′′) ⊂Θ ∗(δ ′). Thus,
as δ limits to δ ∗ from above, Θ ∗(δ ) will limit to a singleton value, which we can
define as θ ∗ = lim

δ−→δ ∗+{Θ
∗(δ )}. Finally, Proposition 2 implies that θ ∗ < 1 and

Proposition 1 implies that δ ∗ > 0.

Proposition 4 The first-best over most possible worlds level of altruism θ ∗ is always
strictly positive and strictly less than 1. (θ ∗ ∈ [θ̂thr,1) and δ ∗ ∈

(
0, θ̂thr

]
, where

θ̂thr =
3−
√

5−4 π̄

2(1+π̄) .)

Proof First observe that θ̂thr is where both κ(ψ̄(θ);θ) = 0 and θ = δ . The following
two equations must therefore hold simultaneously: (Equation (18) is derived from
Proposition 3. Equation (17) is derived from setting equation (15) equal to 0 and
plugging in ψ̄ = 0 and π̄ =

∫ 1
0 πg(π)dπ .)

δ

1−δ
=

1−θ

1−θπ̄
(17)

θ = δ (18)

Equations (17) and (18) together form a quadratic equation system, yielding the
following solution: (Note that the second solution to the quadratic can be discounted
since we require that θ̂thr < 1 in order for (18) to be satisfied with δ̂thr < 1.)

θ̂thr = δ̂thr =
3−
√

5−4π̄

2(1+ π̄)
(19)
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Fig. 8 θ̂thr as a function of π̄

There are now two logical possibilities to consider. The first is that Θ ∗
(

δ̂thr

)
is an

empty set, in which case
(

θ̂thr, δ̂thr

)
is knife-edge optimal and

lim
δ→(θ̂thr)

+{Θ ∗ (δ )} = θ̃ , hence θ ∗ = δ ∗ = θ̂thr = δ̂thr. The second possibility is

that Θ ∗
(

δ̂thr

)
is non-empty. In that case, applying Lemma 2 with θ ′ = δ ′ = θ̂thr, we

have θ ∗ ∈
[
θ̂thr,1

)
and δ ∗ ∈

(
0, θ̂thr

]
.

Since 3−
√

5−4π̄ < 2, Propositions 3 and 4 have also together established that
δ ∗ < 1

1+π̄
for any benefit distribution, so that both too high and too low a level

of altruism relative to θ ∗ will cause a break-down of social efficiency when δ is
sufficiently close to (but remains above) δ ∗ (so δ ∗ < δ < 1

1+π̄
).

Figure 8 shows the value of θ̂thr as a function of π̄ . It can immediately be seen
that θ̂thr ∈

[
3−
√

5
2 , 1

2

]
. So, the first-best over most possible worlds level of altruism

θ ∗ must be greater than or equal to 3−
√

5
2 ≈ 38%.

In order to make the welfare economic justification for singling out the first-best
over most possible worlds coefficient of altruism θ ∗ as clear as possible, we now
present a final Proposition which elaborates its desirable properties:

Proposition 5 If a first-best efficient outcome is supportable for any values of θ , then
it will be supportable for the first-best over most possible worlds level of altruism
θ ∗.(If Θ(δ ) 6= /0 then θ ∗ ∈Θ ∗(δ ).)

Proof Applying the result from Proposition 4, (θ ∗,δ ∗) is knife-edge optimal so that
κ (ψ̄(θ);θ) = 0 as described by equation (15). If Θ(δ ) 6= /0 then δ > δ ∗. Since the
RHS of (15) is increasing in δ then θ = θ ∗ implies κ (ψ̄(θ ∗);θ ∗) > 0. Thus a first-
best outcome is supportable for (θ ∗,δ ) and so θ ∗ ∈Θ ∗(δ ).
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Fig. 9 Socially efficient equilibria where g(π) = 1 for 0≤ π ≤ 1
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Fig. 10 Values of κ(ψ̄(θ);θ) in cross-sections a-g

6.1 Illustration: continuous uniform distribution

Figure 9 illustrates the application of Propositions 2, 3 and 4 to the case of a
uniform distribution with support between 0 and 1 and therefore where ∀0≤π≤1 :
g(π) = 1 and π̄ = 1/2. The key features are the first-best over most possible worlds
level of altruism θ ∗ and corresponding δ ∗ (by substituting π̄ = 1/2 into expression
(19), we find that this is at θ ∗ = δ ∗ = 1− 1√

3
≈ 42%) and the value of δ = 1

1+π̄
= 2

3

above which the severity effect dominates as θ −→ 0+. Figure 10 illustrates how the
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value of κ(ψ̄(θ);θ) changes (on the y-axis) for a series of “cross sections” taken
through figure 9 (labelled a-g) where δ is fixed and θ is allowed to vary along the x-
axis. When δ = 1− 1√

3
,26 it can be seen that κ(ψ̄(θ);θ) lies below 0 for any value of

θ apart from θ ∗ = 1− 1√
3

and θ = 1.27 Another key “cross-section” is at the value of

δ = 1/2.28 The significance of this point is that it is where the co-operation constraint
for the optimal “Nash-reversion” punishment path and the co-operation constraint
for the optimal flat punishment path both bind at the boundary of the black region
(which is, for this point only, also on the boundary of the dark grey region). A third
important value is δ = 1

1+π̄
= 2

3 .29 The unique property of this particular value of δ

is that the severity and temptation effects exactly cancel, as shown by the fact that
the value of κ(ψ̄(θ);θ) is constant for any θ < δ . It is instructive to compare this
to values of δ slightly above and below 2/3 respectively.30 Here we notice that the
value of κ(ψ̄(θ);θ) increases as θ is reduced below δ when δ > 2

3 , showing that the
severity effect outweighs the temptation effect, and the opposite occurs when δ < 2

3 .
Cross-sections are also shown for δ values slightly above and below 1− 1√

3
.31 The

main feature to note here is that when δ is below 1− 1√
3
, the only value of θ for

which κ(ψ̄(θ);θ) is not negative is 1.

7 Quasi-Flat Paths

The next two sections will primarily be concerned with extending the result from
Proposition 2 to the general case where the optimal punishment path is not restricted
to be flat. We begin by characterizing the equilibria supportable using the optimal
quasi-flat punishment path. We then proceed, in section 8, to establish that, as θ −→
1−, the socially efficient equilibrium becomes unsupportable even using the optimal
generic punishment path.

Definition 6 A quasi-flat path is one which is flat from point 2 onwards, and is
denoted by ψ̃ . The point 1 trigger level is ψ̃1. The point 2 and after trigger level
is ψ̃2.32

An important concept that will be used repeatedly in the lemmas and propositions
to follow is the definition of an average trigger level which defines a flat path which
is equivalent in terms of per-period average discounted utility to a given non-flat path
looking forward from a particular point. This average will in general be different for
the punishee and for a “neutral observer”.

26 This corresponds to line f in figure 9.
27 When θ = 1 there is no temptation to defect and so efficiency can always be achieved.
28 This corresponds to line d in figure 9.
29 This corresponds to line b in figure 9.
30 These correspond to lines a and c in figure 9.
31 These correspond to lines e and g in figure 9.
32 This is the simplest punishment path structure enabling carrot-and-stick punishment, because the

individual required to punish at point 1 will take into account the future they face if they co-operate,
where the path continues to the less severe “carrot” part, whereas if they defect the path will reset and the
“stick” at point 1 will be repeated.
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Definition 7 Let the U-average and the V-average be respectively denoted as
U−1(Uk(ψ)) and V−1(Vk(ψ)). These two averages are defined below, and total
differentiation is also used to find their derivatives with respect to the trigger level at
a particular point i+k (where i > 0 since the average is “forward looking”), and the
implicit derivative of V−1(Vk(ψ)) with respect to U−1(Uk(ψ)).

Uk (ψ) =
∫ 1

U−1(Uk(ψ))
(θπ−1)g(π)dπ

=

(
1−δ

δ

)(
∞

∑
i=1

[
δ

i
(∫ 1

ψi+k

(θπ−1)g(π)dπ

)])

Vk (ψ) =
∫ 1

V−1(Vk(ψ))
(θπ−θ)g(π)dπ

=

(
1−δ

δ

)(
∞

∑
i=1

[
δ

i
(∫ 1

ψi+k

(θπ−θ)g(π)dπ

)])

d
dψi+k

U−1(Uk(ψ)) =

(
1−δ

δ

)
δ

i
(

g(ψi+k)

g(U−1(Uk(ψ)))

)(
1−θψi+k

1−θU−1(Uk(ψ))

)

d
dψi+k

V−1(Vk(ψ)) =

(
1−δ

δ

)
δ

i
(

g(ψi+k)

g(V−1(Vk(ψ)))

)(
1−ψi+k

1−V−1(Vk(ψ))

)

d
dψi+k

V−1(Vk(ψ))

d
dψi+k

U−1(Uk(ψ))
=

(
1−ψi+k

1−θ ψi+k

)(
g
(
U−1(Uk(ψ))

)
g(V−1(Vk(ψ)))

)(
1−θ U−1(Uk(ψ))

1−V−1(Vk(ψ))

)
(20)

The following two lemmas will prove very useful in this and subsequent sections.
Importantly, Lemma 3 applies to all optimal punishment paths, not just quasi-flat
ones. It states that Uk must we weakly minimized at point 0 along an optimal path.
Lemma 4 states that constraint (5) must bind at point 1 along an optimal quasi-flat
path.33

Lemma 3 The U-average must be weakly minimized at the beginning of an optimal
punishment path. ((a) If a punishment path ψ∗ is optimal then ∀k : Uk(ψ

∗)≥U0(ψ
∗).

(b) If a punishment path ψ∗ is optimal then ψ∗1 ≤U−1(U0(ψ
∗))≤U−1(U1(ψ

∗)).)

33 We only need, given our overall strategy, to prove this result for optimal quasi-flat paths but, intuitively,
it will also hold for all optimal paths.
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Proof For the first claim, note that it would be possible to construct a new path ψ ′

identical to ψ∗ except beginning at point k so that ∀i : ψ ′i = ψ∗k+i, resulting in the
following sustainability constraints:

λi(ψ
′) =

(
δ

1−δ

)
Vi(ψ

′)−
(

δ

1−δ

)
U0(ψ

′)+ψ
′
i −θ

λi(ψ
′) = µi(ψ

′) =

(
δ

1−δ

)
Vi(ψ

′)−
(

δ

1−δ

)
U0(ψ

′)−ψ
′
i +θ

These can be rewritten as:

λi(ψ
′) =

(
δ

1−δ

)
Vk+i(ψ

∗)−
(

δ

1−δ

)
Uk(ψ

∗)+ψ
∗
k+i−θ

µi(ψ
′) =

(
δ

1−δ

)
Vk+i(ψ

∗)−
(

δ

1−δ

)
Uk(ψ

∗)−ψ
∗
k+i +θ

Now, since ψ∗ must, by assumption, be sustainable, we know that, for any k and i:

λk+i(ψ
∗) =

(
δ

1−δ

)
Vk+i(ψ

∗)−
(

δ

1−δ

)
U0(ψ

∗)+ψ
∗
k+i−θ ≥ 0

µk+i(ψ
∗) =

(
δ

1−δ

)
Vk+i(ψ

∗)−
(

δ

1−δ

)
U0(ψ

∗)−ψ
∗
k+i +θ ≥ 0

If we now suppose that there exists a k such that Uk(ψ
∗)<U0(ψ

∗), this would mean,
by observation, that the supportability constraints for ψ ′ would unambiguously be
fulfilled at every point. Also, this would mean that φ(ψ ′) > φ(ψ∗). Therefore ψ ′

would be sustainable, and would be more severe than ψ∗. Hence ψ∗ could not be
optimal - a contradiction.

For the second claim, note that the following identity holds for any path ψ:

δ

1−δ

(∫ 1

U−1(U0(ψ))
(θπ−1)g(π)dπ

)
=

δ

∫ 1

ψ1

(θπ−1)g(π)dπ +
δ 2

1−δ

∫ 1

U−1(U1(ψ))
(θπ−1)g(π)dπ

(21)

This can be rewritten as:(
δ

1−δ

)
U0 (ψ) =

(
δ

1−δ

)
U1 (ψ) +δ

∫ U−1(U1(ψ))

ψ1

(θπ−1)g(π)dπ

Since we know from the argument made above that U0 (ψ
∗)≤U1 (ψ

∗), we also know

that
∫U−1(U1(ψ

∗))
ψ∗1

(1−θπ)g(π)dπ ≥ 0, and therefore that ψ∗1 ≤U−1(U1(ψ
∗)).

Finally, identity (21) can also be rewritten as:

0 = δ

∫ U−1(U0(ψ))

ψ1

(θπ−1)g(π)dπ +
δ 2

1−δ

∫ U−1(U0(ψ))

U−1(U1(ψ))
(θπ−1)g(π)dπ

Since U−1(U0(ψ
∗)) ≤ U−1(U1(ψ

∗)), in order for this to hold it must follow that
U−1(U0(ψ

∗))≥ ψ∗1 . Intuitively, the U-average must be “dragged down” from below
by the trigger level at point 1.
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Lemma 3 implies that the optimal quasi-flat path ψ̃∗ must have a weakly lower
trigger level at point 1 (ψ̃∗1 ) than at point 2 and after (ψ̃∗2 ), so that ∀ψ̃∗ : ψ̃∗1 ≤ ψ̃∗2 .
This fits the intuition that the “stick” of harsher punishment should come earlier in
the punishment path so that the “carrot” of less harsh punishment later along the
path will operate as an incentive for those doing the punishing to co-operate with the
harsher punishment earlier on. Note also that, for any quasi-flat path ψ̃ , ∀k≥1 : ψ̃2 =
V−1(Vk(ψ̃)) =U−1(Uk(ψ̃)).

Lemma 4 The “lower” constraint must bind at the beginning of an optimal quasi-flat
punishment path. If a quasi-flat punishment path ψ̃∗ is optimal then λ1(ψ̃

∗) = 0.

Proof Firstly, note that differentiating λk(ψ̃) or µk(ψ̃) where k > 1 with respect to
ψ̃1 yields dλk

dψ̃1
= dµk

dψ̃1
= −δ (1− θψ̃1)g(ψ̃1). Since this is unambiguously negative,

decreasing ψ̃1 improves the incentive to co-operate at all later points along the
path. dφ

dψ̃1
= −δ (1− θψ̃1)g(ψ̃1) is also negative, so decreasing ψ̃1 also makes the

punishment path more severe. Therefore, to have reached an optimal path, ψ̃1 should
have been reduced until λ1(ψ̃

∗) = 0. It may, however, be the case that ψ̃1 reaches
0 before the period 1 constraint binds. Since ψ̃2 = U−1(U1(ψ̃)), Lemma 3 implies
that ψ̃∗2 ≥ ψ̃∗1 . This means that, for a quasi-flat path ψ̃∗, λ1(ψ̃

∗) ≥ 0 is a sufficient
condition for λk(ψ̃

∗) ≥ 0 to hold for all k. Therefore, if λ1(ψ̃
∗) > 0 and ψ̃∗1 = 0,

then (since dφ

dψ̃2
= − δ 2

1−δ
(1− θψ̃2)g(ψ̃2) is negative) ψ̃∗2 could instead be reduced,

resulting in an improvement to the severity of the path - a contradiction.

7.1 A taxonomy of optimal quasi-flat paths

The general framework of strategy profiles constructed from punishment paths
does not, in and of itself, provide enough structure to allow a complete and
comprehensive solution to the problem of finding the form of optimal punishment
in a specific context such as that of the sequential punishment game. Although they
all share a similar carrot-and-stick structure, each particular model requires its own
toolkit of “tricks” to derive the precise shape of the optimal paths.

The concept of a quasi-flat punishment path turns out to be essential to analyzing
the equilibria supportable by optimal generic punishment paths in the sequential
punishment game. This is because, as will be shown in section 8, it is always possible
to construct a quasi-flat path whose severity (φ ) value forms an upper bound for
all sustainable generic paths, and to derive sufficient structure from this to extend
Proposition 2 to all the necessary general cases. Also, quasi-flat paths themselves
come in a variety of “flavours”, the differences between them driven by the optimal
structure of carrot-and-stick punishment in the sequential punishment game, and its
interaction with the partially altruistic preferences of the players, along with the limits
on the support for the distribution of the benefit π .

The positioning of trigger levels in a quasi-flat path involves a key trade-off,
allowing greater punishment to be “bought” at point 1, but at the cost of less severe
punishment at later points in the path. The “sacrifice ratio” will be given by expression
(20), which measures the increase in “carrot” (measured as a higher V-average) for a
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given reduction in severity of the path (a higher U-average), brought about by a rise
in a later trigger level, ψk+i. It can be seen that this ratio is more favourable when
ψk+i is lower. (The benefits and costs are discounted, so the exchange ratio, given a
particular trigger level, looks the same for all future periods.) It is therefore optimal
to “spread out” the punishment evenly over the entire tail of the path.

The gain in severity of the punishment path from a reduction in the point 1
trigger level depends upon the probability density at that benefit value, whilst the
effectiveness of the carrot in offsetting this to ensure sustainability also depends on
the probability density at the point 2 and after trigger level. The cost of incentivizing
co-operation with a lower trigger level at point 1, however, does not depend upon the
probability density at the point 1 trigger level, since it is “paid” in full if the value of
the benefit turns out to be in the relevant range. Intuitively, therefore, if the probability
density function for the benefit is sufficiently flat then this cost will always outweigh
the benefit of making the quasi-flat punishment path non-flat.

There are a number of possibilities for the precise form that the optimal quasi-
flat path might take. By Lemma 3, it is impossible for the trigger level at point 1 to
be higher than at point 2 onwards. Also, the optimal path cannot possibly be “fully-
minimal” (i.e. exhibit ∀k : ψk = 1 because it can be seen from Lemma 1 and condition
(10) that there will always exist a sustainable, and more severe, flat path.34 This then
leaves six logical possibilities, types A-F, illustrated in figures 11 through 16. Type A
is the maximal path characterized in Lemma 1. Possibility B is a quasi-maximal path,
where the trigger level is “maxed-out” at point 1 but not from point 2 onwards. Type
C is a flat path. The next type, D, is a path where the amount of punishment at point 1
runs up against the constraint imposed by not being able to make the future “carrot”
attractive enough to allow more severe punishment. This happens because we reach
the top of the support of the distribution for π (i.e. ψ̃2 reaches 1). We shall call this a
quasi-minimal path. With type E paths, on the other hand, the amount of punishment
at point 1 runs up against constraint (6) in that we cannot further increase ψ̃2 without
rendering the path unsustainable. We shall refer to this case as a carrot-constrained
path. A sixth possibility, F, is that there is an optimal marginal trade-off between
punishment at point 1 and at point 2 and after. We shall call this a carrot-maximized
path.

We shall also find it essential in the lemmas and propositions to follow to
distinguish between two different types of optimal path. Fully-constrained paths must
satisfy all co-operation conditions defined by (5) and (6). Semi-constrained paths
only need satisfy the conditions defined in (5). A fully-constrained optimal quasi-flat
path satisfies co-operation conditions λ1 ≥ 0, λ2 ≥ 0, µ1 ≥ 0 and µ2 ≥ 0. Given quasi-
flatness, these form a sufficient condition for all the co-operation constraints to be
fulfilled. A semi-constrained optimal quasi-flat path is one which is only constrained
to satisfy λ1 ≥ 0 and λ2 ≥ 0 (though it may, by “chance”, also satisfy µ1 ≥ 0 and
µ2 ≥ 0, and therefore also be in the set of fully-constrained paths).

34 Lemma 1 implies that there will always exist an optimal flat path with ψ̄∗ < 1, which is strictly
more severe than the ”fully-minimal” path (where ψ̄∗ = 1). (This is unless θ = 1, which is ruled out by
assumption.)
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Fig. 11 A - A maximal path
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Fig. 12 B - A quasi-maximal path

Definition 8 Let Ψ denote the set of unconstrained paths, in increasing order of φ .
Let Ψsc and Ψf c be the sets of sustainable semi-constrained and fully-constrained
paths respectively, so that Ψf c ⊂Ψsc ⊂Ψ . These are similarly ordered by φ . The
optimal generic path can be defined as ψ∗= supΨf c =max ψ∈Ψf c {φ(ψ)}. Let Ψ̃ ⊂Ψ

be the set of quasi-flat paths and Ψ̄ ⊂Ψ̃ and be the set of flat paths. Let Ψ̃sc =Ψ̃ ∩Ψsc,
Ψ̄sc = Ψ̄ ∩Ψsc, Ψ̃f c = Ψ̃ ∩Ψf c and Ψ̄f c = Ψ̄ ∩Ψf c denote analogous sets of semi-
constrained and fully-constrained quasi-flat and flat paths. Other optimal paths can
be defined using these sets. So, for example, ψ̃∗sc = supΨ̃sc = max

ψ∈Ψ̃sc
{φ(ψ)} is the

optimal semi-constrained quasi-flat path.

It should be noted at this point that the optimal semi-constrained quasi-flat
path cannot be “carrot-constrained”, since constraint (6) does not apply. Also,
observe that the optimal semi-constrained path will be at least as severe as the
optimal fully-constrained path. In other words, if all paths are ordered in φ , the
optimal semi-constrained path will equal or beat the optimal fully-constrained path:
φ (supΨsc)≥ φ

(
supΨf c

)
. Analogously, φ(supΨ̃sc)≥ φ(supΨ̃f c). This observation is

key in enabling Proposition 2 to be generalized to the case where the optimal generic
path is used to punish deviations from the socially efficient initial path.

Definition 9 Define ψλ
k and ψ

µ

k as the values of ψk that satisfy (5) and (6) with
equality. ψλ

k and ψ
µ

k therefore represent the upper and lower limits for the trigger
level that could be sustained at point k given the structure of the entire punishment
path. Note that, for a quasi-flat path, they will be the same for any k because ∀k :
Vk(ψ̃) =V1(ψ̃).
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Fig. 13 C - A flat path
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Fig. 14 D - A quasi-minimal path

Propositions 1, 3 and 4 continue to hold for the equilibria supportable by generic
optimal paths (and, therefore, quasi-flat paths) without alteration. As we shall argue
shortly, in general the quasi-maximal case only occurs when θ is close to the
boundary established in Lemma 1 below which the optimal path is maximal. We
shall also see that the quasi-minimal case cannot possibly be optimal. The flat, carrot-
constrained and carrot-maximized paths illustrated in figures 13, 15 and 16 therefore
respectively represent the three possibilities for an interior solution.

7.2 Conditions for a flat path

To intuitively derive necessary and sufficient conditions for the optimal quasi-flat
path to be flat (type C), we can use a trick from Abreu by considering the optimal
path we are able to construct using a fixed punishment for a deviation. If this can be
shown to be flat, then the optimal path constructed using itself as a punishment will
also be flat. Let Ū = ( δ

1−δ
)U0

(
ψ

)
be the expected utility for the punishee along the

fixed path ψ . Let λ̄k(ψ̃) = ( δ

1−δ
)Vk(ψ̃)−Ū + ψ̃k−θ be the co-operation constraint

at point k for quasi-flat path ψ̃ given the use of fixed path ψ̄ to punish a deviation.
Since the trigger level at point 1 should be set so that λ̄1(ψ̃) = 0, we know that the
following condition must hold:

ψ̃1 = θ −
(

δ

1−δ

)
V1(ψ̃)+Ū = θ +

(
δ

1−δ

)∫ 1

ψ̃2

(θ −θπ)g(π)dπ +Ū (22)
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Fig. 15 E - A carrot-constrained path
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Fig. 16 F - A carrot-maximized path

We are seeking to maximize the disutility of the person being punished along the
quasi-flat punishment path ψ̃ . This will be given by:

φ =−
(

δ

1−δ

)
U0 (ψ̃) = δ

∫ 1

ψ̃1

(1−θπ)g(π)dπ +

(
δ 2

1−δ

)∫ 1

ψ̃2

(1−θπ)g(π)dπ

(23)
Totally differentiating (22) gives us:

dψ̃1

dψ̃2
=−

(
δ

1−δ

)
(θ −θψ̃2)g(ψ̃2) (24)

Totally differentiating (23) with respect to ψ̃2 gives us:

dφ

dψ̃2
= δ (θψ̃1−1)g(ψ̃1)

dψ̃1

dψ̃2
−
(

δ 2

1−δ

)
(1−θψ̃2)g(ψ̃2)

Substituting in (24) and simplifying yields:

dφ

dψ̃2
=

(
δ 2

1−δ

)
g(ψ̃2)((1−θψ̃1)(θ −θψ̃2)g(ψ̃1)− (1−θψ̃2)) (25)

This is unambiguously negative if and only if the following condition holds:

g(ψ̃1)<
1−θψ̃2

(1−θψ̃1)θ (1− ψ̃2)
(26)

The RHS of the above expression is increasing in ψ̃1 and ψ̃2. This means that the
most stringent condition will be where ψ̃1 = ψ̃2 = 0. Requiring that the probability
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density function g(π) always be less than this ensures that the above condition will
always hold. This yields the following condition:

∀π : g(π)<
1
θ

(27)

Provided this condition holds, increasing ψ̃2 in order to further reduce ψ̃1 always
makes the punishment path less effective by reducing φ . It is therefore optimal to set
ψ̃2 = ψ̃1 since to set ψ̃2 < ψ̃1 will result in a clearly non-optimal path, by Lemma 3.
Condition (27) is therefore sufficient for the optimal quasi-flat path to be flat. (This
result is extended to a generic punishment path in Proposition 7 in section 8.)

A necessary condition for the optimal quasi-flat path to be flat (or rather for
a particular flat path to be optimal in the set of quasi-flat paths) can be found by
substituting ψ̃1 = ψ̃2 = ψ̄∗ into condition (26) to give the following:

g(ψ̄∗)<
1

θ (1− ψ̄∗)
(28)

7.3 Conditions for non-flat paths

We now proceed to lay out the conditions which must hold for the various
possible configurations of a non-flat fully-constrained optimal quasi-flat path. We
already know the necessary and sufficient condition for a maximal (type A) path
from Proposition 1. Next, taking the case of a quasi-maximal (type B) path, we know
that ψ̃1 = 0. The value for ψ̃2 can then be derived using the λ1(ψ̃) = 0 condition. This
should be checked as a candidate for the fully-constrained optimal quasi-flat path.

For a carrot-constrained (type E) path, constraint (5) binds at point one and
constraint (6) at points two and after. In this case, the limit to how much “carrot”
can be created is imposed by the difficulty in incentivizing individuals to refrain from
punishing when they would like to along the “tail” of the punishment path.35 The
optimal carrot-constrained path is characterized by the property that both λ1(ψ̃) = 0
and µ2(ψ̃) = 0. Solving µ2(ψ̃)−λ1(ψ̃) = 0 (applying constraints (5) and (6)) gives
us:

ψ̃2 = 2θ − ψ̃1 (29)

The fact that a carrot-maximized (type F) path is also a possibility can be seen
by observation of condition (26). As ψ̃2 −→ 1, the RHS of (26) goes to infinity.
Therefore the inequality will definitely be fulfilled, and further increases in ψ̃2 in
order to decrease ψ̃1 will no longer improve the severity of the path. If this happens
before ψ̃2 reaches ψ

µ

j then the optimal quasi-flat path will be “carrot-maximized”.
A carrot-maximized path must thus have the property that condition (26) is satisfied
with equality. Rearranging this yields:

35 Although it might be felt intuitively that if the socially efficient initial path is to be sustainable using
a particular path, then co-operation with the “tail” of the punishment path would automatically also be
sustainable, this does not necessarily follow because there is still a less attractive future along the tail of
the punishment path if punishers co-operate, rendering the severity of punishment lower and thus making
co-operation with the “tail” more difficult to incentivize than co-operation with the initial path.
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ψ̃2 =
g(ψ̃1)(1−θψ̃1)θ −1
g(ψ̃1)(1−θψ̃1)θ −θ

(30)

The above argument from condition (26) also shows why a quasi-minimal (type
D) path is impossible, since as ψ̃2 −→ 1− the RHS of the inequality goes to ∞. Thus,
when raising ψ̃2 in search of the optimal quasi-flat path, a path would always become
carrot-maximized before it becomes quasi-minimal.

Lemma 5 (a) As altruism becomes perfect, the optimal semi-constrained quasi-flat
path becomes flat. (b) If the benefit distribution is sufficiently flat, the optimal semi-
constrained quasi-flat path becomes flat. ((a) As θ −→ 1−, ψ̃∗sc ∈Ψ̄ . (b) If ∀π : g(π)<
1
θ

then ψ̃∗sc ∈ Ψ̄ .)

Proof As already argued in subsection 7.3, the possible types of quasi-flat path are
exhaustively categorized by types A-F from the taxonomy in subsection 7.1. Also,
we have already seen from (25) that quasi-minimal type D paths are not possible.
Since we are only considering semi-constrained quasi-flat paths, type E (carrot-
constrained) paths are also not possible.

In order to prove claim (a), we need to show that, as θ −→ 1−, types A, B and
F are also impossible, leaving type C (flat) paths as the only possibility. Consider
firstly type A (maximal) paths. From Lemma 1, we know that the optimal path will
be maximal if and only if θ ≤ δ . This cannot possibly occur as θ −→ 1−. Moving to
type B (quasi-maximal) paths, by Lemma 4 these can only be optimal if λ1(ψ̃

∗) = 0
holds where ψ̃∗1 = 0. As θ → 1− this equation limits to yield−δ

∫ 1
ψ̃2
(1−π)g(π)dπ =

1− δ (1− π̄), which is impossible since the RHS is unambiguously positive whilst
the LHS is unambiguously negative. Finally, type F (carrot-maximized) paths are
also not possible as θ → 1− because condition (30) limits to yield ψ̃2 = 1 and so the
λ1(ψ̃

∗) = 0 condition simplifies to give 1− ψ̃1 = δ
∫ 1

ψ̃1
(1−π)g(π)dπ , for which the

only possible solution is ψ̃1 = 1, yielding a flat path (which is also “fully-minimal”
in the limit).

Additionally, for claim (b), note that Lemmas 3 and 4 together imply that
condition (27) is sufficient for types B and F to be impossible, given the derivative of
the severity, φ(ψ̃) function as derived in equation (25). Unless θ ≤ δ , therefore, the
optimal path must be flat (type C).

8 The Optimal Generic Path

We are now ready to generalize Proposition 2 to the case where the optimal
generic punishment path is used to support the initial path. The result hinges upon
three intuitive observations. Firstly, the optimal semi-constrained path is quasi-flat,
because it is always possible to take any given optimal semi-constrained path and
“flatten-out” the tail, producing an equally severe path without breaking any of the co-
operation constraints. Secondly, as θ −→ 1−, it is impossible to support the socially
efficient equilibrium using the optimal semi-constrained quasi-flat path, because it
must become flat (this is proved in Lemma 5), and we already know (from Proposition
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2) that the result holds for flat paths. Thirdly, since the optimal fully-constrained
generic path must be weakly less severe than the optimal semi-constrained generic
path, then it must also follow that, as θ −→ 1−, the socially efficient equilibrium
cannot be supported by any sustainable path.

Proposition 6 will work by arguing, firstly, that any generic optimal punishment
path can be replaced by a semi-constrained quasi-flat path constructed by “flattening
out” to the point 1 U-average from point 2 onwards. This newly constructed quasi-flat
path will continue to fulfil the point 1 and point 2 cooperation conditions36 λ1 ≥ 0
and λ2 ≥ 0. It will therefore continue to be in the set of semi-constrained paths, and
will be as severe as the path it was generated from.

Definition 10 Let γ : Ψ −→ Ψ̃ be the function which constructs a quasi-flat path
from a generic path by “flattening-out” the trigger levels from point 2 onwards to the
point 1 U-average. This means that γ1(ψ) = ψ1 and γ2(ψ) =U−1(U1(ψ)). Note also
that φ(γ(ψ)) = φ (ψ).37

Applying Lemma 5 from the previous section38, it will therefore be shown that
the supportability constraint on the socially efficient initial path, given the use of the
generic optimal path to punish a deviation, is broken as θ −→ 1−. Whether or not the
optimal path is flat in a particular case, it is thus established that intermediate values
of the coefficient of altruism are best able to allow a socially efficient equilibrium to
be supported using globally optimal punishment paths. Proposition 6 will, as a result,
be crucial to establishing the general applicability of the key results from section 6,
which form the core contribution of this paper.

Lemma 6 below is an essential building block necessary for the proof of
Proposition 6. It establishes that for any generic punishment path looking forward
from any point k, the U-average, U−1(Uk(ψ)), must lie equal to or above the V-
average, V−1(Vk(ψ)). It should be noted that the result from Lemma 6 is based on the
assumption of risk neutral agents. Although mathematically analogous to differing
levels of risk aversion, the result is in fact generated by differing attitudes towards the
variability of benefit values under which punishment is inflicted. The sensitivity of a
“neutral observer” to the “wastefulness” of punishment when watching others being
punished is greater than the sensitivity of the punishee. This makes intuitive sense,
since, to take the example of a fine, the person being fined is mainly affected in social
utility terms by the fact that they are fined, whereas altruists who value the felicity
of the person fined and the recipient of the revenue equally will be more sensitive
to any deadweight loss from punishment. This result should therefore have wider
implications in other models involving altruism and punishment.

Lemma 6 For any punishment path, at any point, the U-average is weakly greater
than the V-average. (∀ψ∀k : U−1(Uk(ψ))≥V−1(Vk(ψ)).)

36 The co-operation conditions for point 3 and after are identical to those at point 2.
37 Note that γk(ψ) is shorthand for (γ(ψ))k - the kth trigger level in the path γ(ψ).
38 In Lemma 5, we impose only that the optimal path be semi-constrained, partly to simplify the proof

but, more importantly, because we are able to generate semi-constrained quasi-flat paths by “flattening-
out” generic paths.
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Proof This result follows from an application of the principle of stochastic domi-
nance, a key principle in the economics of risk (Rothschild and Stiglitz, 1970). First,
note from definition 3 that the per period average utility functions for the person being
punished and a neutral observer can be rewritten as Uk(ψ) = ∑

∞
i=1[piU(ψi+k)] and

Vk(ψ) = ∑
∞
i=1[piV (ψi+k)] where pi = (1−δ )δ i−1 and ∑

∞
i=1[pi] = 1. This means that

U(ψ) and V (ψ) can be thought of as “expected utility functions”, with the discount
factor for each point along the path taking the role of probabilities for different
outcomes of a lottery. The “expected value” of a particular path ψ looking forward
from point k can then be defined as Ek[ψ] =∑

∞
i=1[piψi+k]. Since this “expected value”

is equal for both the punishee and the neutral observer, the discounted expected utility
along a path is exactly analogous to the expected utility of a risky prospect. Therefore
if we can show that the “neutral observer” is more “risk averse” than the punishee,
the result of the lemma will follow.

The coefficient of absolute risk aversion Ra = −U ′′
U ′ measures the degree of

concavity of a utility function. If it is always higher for one function than another,
then the corresponding agent is the more risk averse (Diamond and Stiglitz, 1974).
For the two types of agent under consideration (with utility functions U(ψ) and V (ψ)
respectively), the CARA works out as the following.

RU
a =

θ

1−θψ
− g′(ψ)

g(ψ)
(31)

RV
a =

θ

θ −θψ
− g′(ψ)

g(ψ)
(32)

Since (32) is always unambiguously greater than (31), the neutral observer is more
“risk averse” than the punishee, and hence will always have a lower “certainty
equivalent” from a given path looking forward, which, from definition 3, is precisely
analogous to V−1(Vk(ψ)) (as opposed to U−1(Uk(ψ)) for the punishee).

The intuition for the result in Lemma 6 is also closely related to the “sacrifice
ratio” derived in expression (20). Punishing within a certain “bracket” of values of
π , with a fixed width, has a greater effect on U−1(Uk(ψ)) (increasing the “stick”)
relative to V−1(Vk(ψ)) (decreasing the “carrot”) the higher the bracket. Given a
particular value of U−1(Uk(ψ)), V−1(Vk(ψ)) is maximized when this is generated
by a flat path looking forwards.

Lemma 7 If a punishment path is optimal, then the quasi-flat path constructed by
“flattening it out” will be in the set of semi-constrained paths. (If a path ψ∗ is optimal
then ∀k : λk (γ (ψ

∗))≥ 0, therefore γ (ψ∗) ∈ Ψ̃sc.)

Proof Firstly, observe that, given the result from Lemma 6, U0(γ(ψ
∗)) =U0(ψ

∗) and
∀k : Vk(γ(ψ

∗))≥V1(ψ
∗). To see this, note the following:(

δ

1−δ

)
U0 (ψ) = δ

∫ 1

ψ1

(θπ−1)g(π)dπ +
δ 2

1−δ

∫ 1

U−1(U1(ψ))
(θπ−1)g(π)dπ

(
δ

1−δ

)
U0 (γ(ψ)) = δ

∫ 1

γ1(ψ)
(θπ−1)g(π)dπ +

δ 2

1−δ

∫ 1

γ2(ψ)
(θπ−1)g(π)dπ
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δ

1−δ

)
V1 (ψ) =

δ

1−δ

∫ 1

V−1(V1(ψ))
(θπ−θ)g(π)dπ

∀k :
(

δ

1−δ

)
Vk (γ (ψ)) =

δ

1−δ

∫ 1

γ2(ψ)
(θπ−θ)g(π)dπ

The claim is then straightforward to verify once it is noted that γ1(ψ) = ψ1 and
γ2(ψ) =U−1(U1(ψ)), since, by Lemma 6, U−1(U1(ψ))≥V−1(V1(ψ)).

Now we can proceed to note that:

λ1 (γ (ψ)) =

(
δ

1−δ

)
V1 (γ (ψ))−

(
δ

1−δ

)
U0 (γ (ψ))+ γ1 (ψ)−θ (33)

∀k≥2 : λk (γ (ψ)) =

(
δ

1−δ

)
Vk (γ (ψ))−

(
δ

1−δ

)
U0 (γ (ψ))+ γ2 (ψ)−θ (34)

Now take an optimal path ψ∗. By assumption, ψ∗ is sustainable, and so:

λ1 (ψ
∗) =

(
δ

1−δ

)
V1 (ψ

∗)−
(

δ

1−δ

)
U0 (ψ

∗)+ψ
∗
1 −θ ≥ 0 (35)

Given the result from Lemma 3 that ψ∗1 ≤ U−1(U1(ψ
∗)), along with all the

observations noted so far, condition (35) is sufficient for (33) and (34) to be weakly
positive for all relevant k.

Lemma 8 The optimal semi-constrained quasi-flat punishment path is at least as
severe as the optimal fully-constrained generic punishment path. (φ (ψ̃∗sc)≥ φ (ψ∗).)

Proof Consider the optimal generic path ψ∗ ∈ Ψf c. By Lemma 7, γ(ψ∗) ∈ Ψ̃sc.
Also, by definition, φ(γ(ψ∗)) = φ (ψ∗). Therefore the most severe path in Ψ̃sc,
supΨ̃sc must be at least as severe as the most severe path in Ψf c, supΨf c. Thus
φ(supΨ̃sc)≥ φ(supΨf c) and so φ (ψ̃∗sc)≥ φ (ψ∗).

Proposition 6 As altruism becomes perfect, the optimal generic punishment path
cannot support the socially efficient equilibrium, for any value of the discount factor.
(As θ −→ 1−, κ (ψ∗)< 0.)

Proof First, note, from expressions (7) and (8) that:

κ (ψ∗) = φ (ψ∗)+θ −1

By Lemma 8, this implies that:

κ (ψ∗)≤ φ (ψ̃∗sc)+θ −1 (36)

Proposition 2, combined with Lemma 5, has already established that the RHS of
expression (36) goes to 0− as θ −→ 1−. Therefore the LHS of (36) must be strictly
negative as θ −→ 1−.

Proposition 7 If the benefit distribution is sufficiently flat, then the optimal punish-
ment path is flat. (If ∀π : g(π)< 1

θ
then φ (ψ̄∗)≥ φ (ψ∗).)

Proof From Lemma 5, we know that, if ∀π : g(π) < 1
θ

, then ψ̃∗sc ∈ Ψ̄f c. Therefore,
φ (ψ̄∗)≥ φ (ψ̃∗sc). Applying Lemma 8, the result follows straightforwardly.
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9 Second-Best Equilibria

For any particular level of the coefficient of altruism θ , if the discount factor δ

is low enough, so that players are sufficiently impatient, then the first-best efficient
initial path will not be supportable. There will still, however, exist a second-best
optimal equilibrium, supported by the optimal flat punishment path, in the sense that
the associated initial path maximizes efficiency by minimizing the range of benefit
values for which harm opportunities are taken.

Along the second-best optimal initial path, the punishment path will be initiated
when an individual punishes for a value of the benefit below benefit level π∗.
(Intuitively, the most attractive punishment opportunities will be the most difficult to
deter along the initial path.) All players will then switch to a path where punishment
is carried out above trigger level ψ̄ , derived from the optimal flat punishment path
using equation (10). So, π∗ and its total derivative with respect to θ will be described
by the following equations:

π
∗(θ) = θ +

δ

1−δ

(∫ 1

ψ̄(θ)
(1−θπ)g(π)dπ

)
dπ∗
dθ

= 1︸︷︷︸ +

(
− δ

1−δ
(1−θψ̄)g(ψ̄)

dψ̄

dθ

)
︸ ︷︷ ︸

temptation willingness
effect effect

+

(
− δ

1−δ

∫ 1

ψ̄

πg(π)dπ

)
︸ ︷︷ ︸

severity
effect

(37)

Figure 17 shows the highest π∗ which is supportable along the initial path given
different values of θ (along the x-axis) and δ . It can be seen (and is proven in the final
Proposition 6 below, which characterises the properties of second-best equilibria) that
the curve always has a slope of 1 as θ −→ 1− and that the gradient is always positive
for all θ when δ is low but is sometimes negative when δ is high. Importantly, there
is always a level of θ high enough but lower than 1 where π∗ falls below one and
then back up to one as θ −→ 1. This corresponds to the black region in figure 9 and
derived analytically in Propositions 2 through 4. Finally, for high enough δ with a
low enough θ , π∗ goes above one (i.e. the graph gets “cut off”). This is corresponds
to the region where the first-best efficient equilibrium is supportable.

Lemma 9 In a second-best equilibrium, if dπ∗
dθ

> 0 then dW
dθ

> 0, if dπ∗
dθ

< 0 then
dW
dθ

< 0.

Proof Social welfare (simple sum of felicities) in any given time period on the initial
path is given by W =

∫ 1
π∗(θ)(π − 1)g(π)dπ . Differentiating with respect to θ yields

dW
dθ

= (1− π∗) dπ∗
dθ

. Since π∗ < 1 in a second-best equilibrium, the result follows
straightforwardly.
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π
*

Fig. 17 Second-best equilibria where g(π) = 1 for 0≤ π ≤ 1

Proposition 8 In a second-best equilibrium, social welfare is always rising in θ for
values of θ close enough to 1. In a second-best equilibrium, provided that δ < 1

1+π̄
,

social welfare is rising in θ for θ < δ . In a second-best equilibrium, provided that
δ < 1

1+π̄
and g(0) is sufficiently high, social welfare is falling in θ for intermediate

values of θ .
(As θ −→ 1, dW

dθ
> 0. If δ < 1

1+π̄
and θ < δ then dW

dθ
> 0. If θ = δ and g(0) >(

1−δ

δ

)(
1−δ (1+π̄)

1+(1−δ )(1−δ (1+π̄))

)
then dW

dθ
< 0. )

Proof For the first claim: From equation (37), as θ −→ 1−, ψ̄ −→ 1 (as can be seen
from (10)) and so dπ∗

dθ
−→ 1. By Lemma 9, the sign of the derivative of social welfare

is the same as dπ∗
dθ

.
For the second claim: By Lemma 1, if θ < δ then there is no willingness effect in

equation (37). Since in that case ψ̄ = 0, if δ < 1
1+π̄

(with π̄ =
∫ 1

0 πg(π)dπ) then the
temptation effect dominates the severity effect in equation (37) and so dπ∗

dθ
> 0. By

Lemma 9, the sign of the derivative of social welfare is the same as dπ∗
dθ

.

For the third claim: If θ = δ then ψ̄ = 0. Therefore, from equation (11), dψ̄

dθ
=

1
(1−δ )(1−δg(0)) . Substituting this into equation (37) yields:
dπ∗
dθ

= 1 − δ

1−δ

(
g(0)

(1−δ )(1−δg(0)) + π̄

)
. Assuming that δ < 1

1+π̄
, in order to have

dπ∗
dθ

< 0, we need: g(0) >
(

1−δ

δ

)(
1−δ (1+π̄)

1+(1−δ )(1−δ (1+π̄))

)
. By Lemma 9, the sign of

the derivative of social welfare is the same as dπ∗
dθ

.
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An important conclusion to draw from figure 17 is that the efficiency loss from
too high a level of altruism can be non-negligible. Although as θ −→ 1, π∗ −→ 1,
there will exist intermediate levels of altruism where an increase in the coefficient
of altruism to a higher intermediate level (which is still less than 1) could make the
efficiency of the optimal second-best outcome markedly lower. Altruism is in many
realistic cases a “double-edged sword” in the sequential punishment game, and too
high a level of altruism will in general be significantly socially detrimental.

Proposition 8 shows that there will exist in some (though not all) second-best
situations a local maximum of social welfare for a value of θ < 1 (i.e. where θ = δ

if g(0)>
(

1−δ

δ

)(
1−δ (1+π̄)

1+(1−δ )(1−δ (1+π̄))

)
though it is possible in other situations to have

θ > δ and dπ∗
dθ

= 0 at a second-best optimum39). However, the global second-best
optimum will always be where θ −→ 1−, showing that if a first-best outcome were
impossible, it would be second-best optimal to make the coefficient of altruism as
high as possible.

10 Conclusion

This paper has taken two areas of economic theory, the modelling of altruistic
preferences and the structure of optimal punishment in dynamic games, and shown
how they can interact to produce interesting results in a new model, the sequential
punishment game - a simple infinite-move sequential game with perfect information
and discounting, where players move by choosing whether or not to take opportuni-
ties to benefit themselves by inflicting harm upon others. The model is intended as
an abstract representation of a wide variety of different possible human interactions
occurring in many types of society with varying organizational principles. The central
implication of the analysis is that excessive altruism will interfere detrimentally with
punishment systems, “denting” them in such a manner that social welfare is reduced
compared to a situation with lower altruism.

The results of the theoretical analysis in this paper could be applied in a number
of contexts. Firstly, the temptation, willingness and severity effects generating these
results in the sequential punishment game should occur in other more specific policy
models, such as in applications to optimal taxation theory (the three effects might
be a useful way to understand how the income and substitution effects of different
types of taxes are determined under different forms of altruism) and the economics of
crime and punishment (in particular, it would be interesting to explore the interaction
between altruism, the severity effect and the optimality or otherwise of “wasteful”
punishments such as vengeance).

Secondly, some light is shed on the apparent historical connection between the
evolution of the state into increasingly sophisticated forms and the development of

39 In particular, this can occur when there is a non-uniform benefit distribution, as illustrated in figures
2 through 7.
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the moral norms of the market, in that extrinsic inventive mechanisms have been
shown to work better when agents are at least partly intrinsically self-interested.40

Thirdly, if one recognises that altruism is at least partly socially determined
and therefore malleable, the results of the sequential punishment game reinforce a
normative warning - echoing those in the existing literature (Stark, 1989) - against
a naive attempt to try to make society better by making individual people “nicer”.
Totalitarian and utopian ideologies that seek to remake human nature might well
cause grave harm by upsetting the delicate institutional balance between the intrinsic
and extrinsic incentives that sustain the existing social order.

Fourthly, broadening the interpretation of the players in the sequential punishment
game to include multi-individual organisations, the possibility is suggested that
an efficient international order (for instance in issues of conflict avoidance or in
international agreements such as those to limit climate change) might in fact (and
counter-intuitively) be more easily achievable if individual states are partly motivated
by self-interest rather than entirely by the global interest. On the other hand, co-
operation between firms in order to collude at the expense of the consumer is
suggested to be potentially made easier rather than harder by the fact that the firms
are (at least to some degree) motivated by individual profit rather than purely by joint
profits. This might have implications for competition policy, in that moderate and
imperfect levels of inter-firm “altruism” (e.g. family or kinship connections) might be
even more conducive to collusion than more extreme cases of inter-firm “altruism”
such as horizontal mergers (Malueg, 1992).41

Finally, we should briefly consider the generality of the modelling assumptions
that have been made and the game theoretic solution concepts employed. The non-flat
punishment paths analyzed in sections 7 and 8 of this paper are arguably fairly rich
in that they capture the idea that those who are required to punish and are sufficiently
altruistic will be “squeamish” about doing so and so must be incentivized to do so,
whilst also requiring optimal inter-temporal distribution of punishment in order to
achieve this. However, it would be desirable to further generalize the key results
to allow for malevolent individuals (θ < 0) and martyrs (θ > 1), apply different
criteria for credibility of punishment (e.g. renegotiation-proofness) as well as to allow
for heterogeneity of coefficients of altruism between individuals. All of these issues
would provide profitable avenues for further research.
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40 For an extended analysis using evolutionary game theory of how such social costs to altruism can help
to explain why societies with particular structures have evolved with particular complementary forms of
imperfect altruism, see Povey (2014).

41 Whether the sequential punishment game provides useful additional insights beyond the standard
infinitely-repeated Bertrand and Cournot collusion models would depend on whether competition could
be thought of as having additional dimensions beyond price, quantity or product design that could be
meaningfully modelled as harm opportunities of the form analysed in this paper. Arguably the sequential
punishment game would be most useful in modelling economies where firms are fused together with other
political or social units so that competition is not purely market-based, such as in developing, feudal or
command economies.
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