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It is an important fact of human life that individuals can often greatly increase (reward)
or decrease (punish) the fitness of others at trivial costs to themselves...Secondary
behaviours evolve more easily by group selection than primary behaviours because they
are less strongly opposed by within-group selection, but they still evolve by group
selection. The package of primary and secondary behaviours therefore remains a group-
level adaptation.

(Sober & Wilson, 1999)

The indirect evolutionary approach is based on the assumption that players behave
rationally for given preferences but that their preferences change through an evolutionary
process...While preferences might be inherited literally in a genetical sense, one could also
think of it in terms of social evolution since preferences and value judgements of children
are shaped by taking parents or peers as role models.

(Huck & Oechssler, 1999)

1.1 Overview

It is a well-established result in evolutionary theory that altruism can in principle be sustained by a

process of group selection if a population is split into groups whose members interact disproportionately

with one another, provided that there is migration between groups. The level of altruism which can

be sustained depends upon the relative strength of the evolutionary forces benefiting the more selfish

individuals at the expense of altruists within groups, and that favouring the more altruistic groups

over the less altruistic ones. There is an evolutionary “tug-of-war” between individual-level selection

and group-level selection (Sober & Wilson, 1999).
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This paper embeds a simple model of a punishment system within an indirect cultural evolution

framework. The result is that the availability of punishment as a device for social control is shown

to drastically reduce the potency of the group selection mechanism, and thus the average equilibrium

level of altruism. A normative analysis of the outcome shows that the use of the punishment system

can sometimes increase social welfare at the evolutionary equilibrium, by inducing selfish individuals

to behave better. However, by weakening the group selection mechanism, it can also under some

conditions cause a reduction in social welfare at the equilibrium, by causing less altruism to evolve.

The idea of group selection originates with Darwin, but the contemporary formulation was

developed in the twentieth century literature on evolutionary biology, most famously in the work

of W. D. Hamilton (Hamilton, 1963) (Hamilton, 1972). The mathematical framework was originally

devised by Price (Price, 1970). Still controversial among some biologists (but more widely accepted as

a useful practical theory in social science fields), the multilevel selection paradigm has recently been

popularised within and beyond the biological field by Sober and Wilson. They have provided a survey

article (Sober & Wilson, 1994) and a book-length treatment of the subject (Sober & Wilson, 1999).

Group selection has also become a popular framework in theoretical anthropology, from which

the fruitful suggestion that we may see cultural as well as genetic characteristics as evolving through

natural selection has been developed and employed (Boyd & Richerson, 1982) (Soltis et al., 1995)

(Blackmore, 1999). This idea has a pedigree going back to Darwin in biology, but arguably he was

heavily influenced (Hirshleifer, 1977) (Hayek, 1988) by the application of the same principle to social

institutions by the philosophers of the Scottish Enlightenment, most famously Adam Smith (Smith,

1976). Economists have also made important contributions to the modern theory of group selection,

particularly in clarifying issues regarding the mathematical analysis of the different types of group

structure that can enable this phenomenon to arise (Bergstrom, 2002) (Cooper & Wallace, 2004).

There is also an existing literature on the role that punishment, such as in the form of informal

sanctions or a legal system, can play as an “altruism amplification device” that allows selfish individuals

to be induced to behave more like altruistic ones. It has been shown that, because punishing others is

often “cheaper” in terms of cost to onesself than benefiting them, the emergence of the ability to carry

out altruistic punishment (which Sober and Wilson refer to as secondary behaviours) can explain how

the evolution of primary altruism is made possible in a much wider variety of cases. This hypothesis fits
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the empirically-observed phenomenon that the ability to punish transgressors in simple experimental

games such as the public goods game results in more co-operation being sustained (usually in models

where the standard Nash equilibrium with self-interested individuals leads to a complete break-down

of co-operation) (Fehr & Gachter, 2000b) (Fehr & Gachter, 2000a) (Fehr & Gachter, 2002a) (Fehr

& Fischbacher, 2003) (Fehr & Gachter, 2002b). There are two dimensions to this impact. Firstly,

altruistic punishment improves “static” outcomes by making selfish individuals behave better, because

they are afraid of being punished. Secondly, the evolution of altruistic punishment can also make it

easier for altruism to evolve as a primary behaviour, by reducing the gain in fitness by selfish individuals

relative to the altruists in the group (Sober & Wilson, 1999) (Boyd et al., 2003).

This paper aims to make a contribution to the theoretical understanding of the connection between

group selection and punishment by applying a third conceptual strand; that of indirect evolution. Most

models of the cultural evolution of altruism model cultural norms in a “mechanical” way in the sense

that individuals blindly carry out their “programmed” behaviour, whereas economic theory seeks to

explain phenomena from a wide variety of cultural scenarios as caused by the same underlying human

rationality. The alternative is to assume that it is the weightings that individuals place on the felicity

of others that form the evolving phenotype, rather than specific altruistic behaviours directly. In other

words, preferences evolve but behaviour within the games being played is rational and forward looking,

and therefore modelled in the standard manner in which game theory is applied in economic theory.

The indirect evolution approach was first proposed by Güth and Yaari (Guth & Yaari, 1992)

following a suggestion originally made by Becker (Becker, 1976). It has been profitably applied to

explaining the evolution of preferences for fairness in the ultimatum game (Huck & Oechssler, 1999),

in which context it has been shown that “vengeful” individuals who gain utility from reducing the

payoffs of others even at cost to themselves can survive and spread in an evolutionary context because,

provided the damage they inflict by punishing is high enough relative to the loss to the punisher, they

will still have a relatively higher fitness than the “non-vengeful” types.

The application of the indirect evolution methodology to modelling the relationship between

punishment and group selection enables an original contribution to be made to an already vast

literature. In the standard direct evolution group selection models, there is no distinction between

“altruistic preferences” and “altruistic behaviour”; both are modelled as a simple “programmed”
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phenotype. The presence of altruistic punishers in the population can only lead to more altruistic

behaviour in the evolutionary equilibrium by causing the evolved proportion of selfish types to reduce,

by weakening the fitness differential between selfish and altruistic individuals (see section 1.2). By

contrast, an indirect evolution approach allows an analysis of punishment mechanisms that can alter

the static equilibrium in the game being played at each stage of the evolutionary process. Since the

use of punishment improves the static outcome for selfish phenotypes by making them behave better

towards one another, it can, paradoxically, potentially result in more selfish individuals evolving.

The sequential punishment model which forms the workhorse model in this paper has the property

that only the outcome for the selfish phenotypes is improved, because the altruistic phenotypes are

unwilling to carry out punishment. Thus the result is unambiguous that fewer altruists are able to

survive. The normative consequences are, however, ambiguous, because it may be that despite having

more selfish individuals, the gain in static efficiency for any given proportion of selfish individuals

outweighs this. The balance of normative effects can also, however, go in the opposite direction.

Although the result that the evolution of altruism is unambiguously weakened is a strong one, and

dependent on the specific form of model used, the phenomenon described is arguably quite general.

The analysis of the sequential punishment model uses standard conceptual tools from economics

such as social welfare, subgame-perfect Nash equilibria and utility functions for individuals which are

weighted sums of the felicities of other individuals (a common way to model altruism). This enables

normative analysis to be carried out in the usual way. The unconventional aspect of the model is the

fact that the level of altruism exhibited by the players (the weighting they place upon the consumption

of others in their utility function) is, instead of being exogenously determined, endogenously evolving.

The key result that punishment reduces the potency of group selection is demonstrated analytically

for any population structure, but specific simulations are also carried out for illustrative purposes.

Evolutionary game theory provides the theoretical tools we can use to analyse the selection

pressures that will lead to the pattern of behavioural phenotypes at an evolutionarily stable equilibrium.

In general, the level of altruism which would evolve would not be expected to be that which is socially

optimal, because selection at the individual level creates pressure upon individual phenotypes in the

direction of those which are economically non-altruistic. With a population structure split into groups,

however, there can be selection pressure at the group-level as well as the individual level. The resulting
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phenotype pattern then represents a kind of “compromise” between the two. This is the essential

conceptual scheme provided by multilevel selection theory (Sober & Wilson, 1999).

1.2 The Standard Direct Evolution Model

There are many ways to set up an evolutionary model where the evolution of a phenotype which

engages in altruistic punishment makes it easier for primary altruism to evolve. A common set-up

is a two-stage prisoners’ dilemma, where individuals have a chance to punish their opponent at cost

to themselves if they cheat in the first phase or, in the context of a group public goods game, where

individuals have a chance, after having observed the contribution of other individuals, to carry out

costly punishment on under-contributors. In general these models have the property that altruistic

punishers do equally well against each other as against pure altruists, and that, although, in a static

sense, they do worse relative to selfish individuals than pure altruists (because they carry out costly

punishment), the long-run dynamic evolutionary impact of their presence is to make it much harder

for selfish individuals to survive.

The intuition for this result is that the fitness reduction for the selfish types is the dominant effect

on relative fitness. It is therefore possible, in a group with a sufficient number of altruistic punishers

(which can be maintained by “genetic drift” through mutations), for the selfish types to be rapidly

driven out of the population. It has been generally found that a three-phenotype model (selfish types,

altruists, altruistic punishers) enables the population to be dominated by a mixture of altruists and

altruistic punishers in a much wider variety of cases than the two-phenotype model (Boyd et al., 2003).

An indirect evolution approach, however, can provide a radically different perspective on this

issue, because it can recognise the distinction between altruistic preferences and altruistic behaviour.

Punishment is not carried out “blindly” but when the evolved preferences of the punisher make it

rational for them to carry out the punishment. This means that there is no longer a simple connection

between altruistic preferences and altruistic behaviour. More individuals with altruistic preferences

in a population will not necessarily lead to more altruistic behaviour, because altruistic individuals

who care about others may not be willing to go through with punishment. On the other hand, more

altruistic behaviour may occur without an increase in altruistic preferences, because selfish individuals

may be incentivized to behave better by the credible threat of punishment.
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The results of this approach support the existing view that pure altruism is unlikely to survive

evolutionarily. However, punishment is modelled not as a phenotype but as a potential equilibrium in

the game being played in an evolutionary context. This means that punishment, although improving

static outcomes, may worsen the dynamic outcome by helping more selfish individuals to evolve. Even

if punishment is dynamically beneficial, this approach can also help explain why only imperfect forms

of altruism appear to evolve in the real world. (See “The Limits to Altruism - A Survey” (Chapter 1)

for a summary of the empirical results in this area.)

1.3 The Sequential Punishment Model

This paper uses a simplified two-move three-player version of the sequential punishment model

which has been analysed extensively it its infinite-player form in “The Socially Optimal Level of

Altruism” (Chapter 2). The analysis of the sequential punishment model there shows that there

is a complex relationship between the altruism embodied in individual preferences and the social

efficiency of the resulting outcomes. Sometimes these interactions can perversely result in too much

altruism making it harder to support a socially efficient outcome. More frequently, the use of a

self-supporting system of punishment means that, beyond a certain level, greater altruism is not

necessary, as a socially efficient outcome can already be supported. These results were driven by

the combination of the temptation effect (more altruistic individuals are less tempted to do harm to

others), the willingness effect (more altruistic individuals are less willing to inflict punishment), and

the severity effect (punishments, such as a fine where the revenue is redistributed, are less severe for

more altruistic individuals, because they value the contribution of the revenue to the welfare of others).

In the version of the sequential punishment model analysed here, there are three players. Players

1 and 2 each get a opportunity in sequence to inflict harm upon1 another individual. If they take the

opportunity, they gain a benefit π̂ (where 0 < π̂ < 1) and the individual they harm suffers a felicity

loss of 1. Player 1 first chooses whether or not to harm player 2. Player 2, observing player 1’s action,

can either choose not to inflict harm, to harm player 3, or to harm player 1. Player 2 is assumed to be

indifferent as to whom they harm.2 Player 2’s ability to focus harm onto player 1 if they inflict harm

1Throughout the paper, we will use “harm” to refer to the infliction of a negative externality and “punish”
to refer to the specific use of such harm opportunities to construct punishment equilibria.

2If individuals are indifferent between inflicting harm and not inflicting harm, they are assumed not to
inflict harm.
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creates the potential for a simple punishment scheme to be used to support a subgame perfect Nash

equilibrium where a selfish player 1 is deterred from inflicting harm.

Imagine there is a large population of individuals, who differ in their level of altruism. This is

designated by the coefficient of altruism, θi, which is the weighting placed on the felicity of other

individuals in individual i’s utility function. Since the benefit from inflicting harm always takes the

value π̂, we only need two distinct phenotypes, H and L, which correspond to π̂ ≤ θH < 1 and θL < π̂

respectively.3 Suppose that the proportion of individuals in the population with phenotype H is q, so

that (1− q) have phenotype L.

Each period, individuals are randomly chosen to play the sequential punishment game. Individuals

are formed into triplets, where two of the individuals are able to actually make a move whilst a third

individual is randomly selected to be player 3. This third individual does not play any role except to

act as a passive receptacle for the harm inflicted by player 2 if player 1 co-operates by not inflicting

harm. Nature randomly determines, with equal probability, which individuals will receive their harm

opportunity first and second. All individuals are assumed to have full knowledge of the coefficient of

altruism of the others with whom they interact. We will begin by assuming that the most socially

efficient available equilibrium is played, and consider the consequences of dropping it later on.

1.4 Derivation of Payoff Matrices

We can think of the sequential punishment game as a sub-game nested within a supergame in which

the coefficients of altruism chosen by individuals A and B4 are a simultaneous move made before the

sequential punishment game is played. The choice of the coefficients of altruism by the players then

determines the payoffs, and therefore the outcome, of the sequential punishment game nested within.5

It is, of course, not really appropriate to think of the coefficient of altruism as a strategy chosen, but

rather as a phenotype which can be altered via mutations.6 Also, whereas it is the social utility payoff

that determines each player’s behaviour in the nested game, it is the felicity payoff that determines

3We assume that individuals are always only “partially altruistic”.
4We refer to the two individuals who are chosen to be players 1 and 2 as A and B before they know who

will go first. Player A and player B both have a probability of 0.5 of being in each position.
5Additional assumptions about the properties of the equilibrium that will be played in the sequential

punishment game are also required to make the outcome determinate. Initially we are assuming that it will be
the most socially efficient one, where player 2 harms player 1 only if player 1 harms player 2 (otherwise player
2 either harms player 3, or does not inflict harm).

6In the context of cultural selection theory, mutations are not genetic but represent a kind of cultural
random drift as behaviours are imperfectly mimicked or new ways of doing things are tried out.
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the evolutionary stable equilibrium in the supergame, and the more complex evolutionarily dynamics

involved in group selection that we analyse later.

Since there are two possible phenotypes for each individual, there are four possibilities when three

individuals meet and interact.7 Firstly, if both individuals have high altruism8 then they both behave

efficiently by never inflicting harm. Therefore whichever individual goes first, the felicity payoff to each

individual is zero. The value of the social welfare function is also zero because no harm is inflicted, and

therefore all three individuals get a felicity payoff of 0.9 This can be seen in the upper payoff matrix in

figure 1.1 in which the top left square shows the zero payoffs of individuals 1 and 2, and the resulting

zero social welfare in the box in the middle of the square. Similarly, the corresponding square in the

lower matrix10 looks identical, because the payoffs are still zero for each player regardless of who gets

to move first.

Suppose instead that player 2 has phenotype L and player 1 has phenotype H. Since there is no

future in which they can be punished, player 2 will inefficiently inflict harm. Player 1 will still not

inflict harm because he is sufficiently altruistic not to do this in a single-move game anyway. Therefore

player 2 will get a felicity payoff of π̂ and player 1 will get a felicity payoff of 0, because he co-operates

and so player 2 follows her default behaviour and harms player 3. Total social welfare is therefore

π̂ − 1.

On the other hand, supposing that player 1 has phenotype L and player 2 has phenotype H, player

2 will not inflict harm, and so there is then no credible threat to punish player 1 for inflicting harm,

and so player 1 will do so. In this case, player 1 gets a felicity payoff of π̂ and player 2 gets -1 because

she is punished by player 1. Again, social welfare is π̂ − 1.

In the lower matrix, the payoffs for individuals A and B in the bottom left and top right squares

are found by averaging the payoffs in the corresponding squares from the first matrix to produce a new

symmetric matrix, because players A and B have an equal chance of being player 1 or 2.

7The phenotype of the individual selected to be player 3 is unimportant because they do not have any
opportunity to act.

8Meaning that they both “play” strategy H in the supergame.
9The per-period social welfare function sums the felicity of the two individuals who get a harm opportunity

along with the felicity of the third individual who acts as a “passive receptacle”.
10Which shows the felicity payoffs for players A and B, once the chance of being player 1 or 2 has been

randomized, and is therefore symmetric.
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Figure 1.1: Sequential-move game

Finally, we have the case where both individuals have phenotype L. Here, player 2 will definitely

inflict harm because there is no future. However, this allows a credible threat to be made to player 1

that if he harms socially inefficiently, the harm inflicted by player 2 will be switched from player 3 onto

him. If this occurs, player 1 loses social utility of 1− θ1.11 However, the gain in social utility he gets

by inflicting harm is only π̂ − θ1. Player 1 will therefore be effectively deterred from inflicting harm.

Player 1’s felicity payoff is therefore 0 and player 2’s is π̂. Social welfare will be π̂ − 1. The payoffs

for the second matrix are again found by averaging, in order to take into account the equal chance of

players A and B being player 1 or 2 in the first matrix.

11This is assuming, for simplicity, no discounting. Permitting discounting would be problematic because we
would then have to decide whether or not to discount felicity payoffs as well as social utility payoffs. It would
also not really add anything insightful to the analysis of a finite-move sequential game.



10 PUNISHMENT AND THE POTENCY OF GROUP SELECTION

Here we see an example of the interplay between the willingness effect and the temptation effect.

If we examine the social impact of changing person 2 from a low altruism individual to a high

altruism individual (with person 1 remaining a low altruism individual), we see that although the

temptation effect leads person 2 not to inflict harm when she would have done so before, the willingness

effect completely counteracts this by leading person 1 to defect, because he no longer faces the threat

of being punished by person 2. The overall impact upon social welfare is therefore neutral.

The best response payoffs in the second matrix are underlined, and the pure strategy Nash

equilibrium12 is for both individuals A and B to have phenotype L. Since each player is always better

off in felicity terms by having low altruism, regardless of whether the other individual has high or

low altruism, the individual level selection pressure in this simple model leads to a socially inefficient

evolutionarily stable equilibrium, in a similar manner to the standard prisoners’ dilemma. This comes

about because individuals with low altruism receive higher felicity payoffs and therefore reproduce

faster than high altruism individuals, thus coming to dominate the population.

Before further analysing the properties of this evolutionary equilibrium, it is instructive to compare

it to that of an identical model, except that rather than having a two-move sequential punishment

model nested within the supergame, there is instead a game where each individual chooses whether or

not to inflict harm in a single-move game simultaneously.13 So, person A inflicts harm if and only if

θA < π̂ and person B if and only if θB < π̂. (We continue to assume that person 1 will harm person 2

by default and that person 2 will harm person 3 by default. Thus individuals A and B only take the

felicity loss of -1 if they turn out to be person 2, with probability 1
2 .) The payoff matrix for this model

is shown in figure 1.2. Although the evolutionarily stable equilibrium is again for all individuals to

have phenotype L, the important difference compared to the case where the nested game is sequential

is that in the evolutionary equilibrium for this model, both individuals will inflict harm, whereas in the

case of the two-move sequential game, although all individuals have low altruism in the evolutionary

equilibrium, the individual who has a chance to inflict harm first does not inflict harm, due to the

threat of having the harm inflicted by player 2 focused on to him if he defects by inflicting harm. This

difference between the two models will turn out to be of crucial importance in determining the nature

of their evolutionarily stable equilibria when group selection effects can occur.

12Which is also a dominant strategy equilibrium and therefore the unique Nash equilibrium.
13When we analyse this model is more detail later on, we will see that in terms of the evolutionary pressures,

this model is essentially the same as the standard prisoners’ dilemma set-up.
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Figure 1.2: Simultaneous-move game

The relevant difference between the sequential-move and simultaneous-move versions of the model

can be brought out if we consider the effect on social welfare of a marginal increase in the proportion of

the population with high altruism (phenotype H) from the evolutionarily stable equilibrium in a single

homogeneous population. The expected value of the social welfare function, E(W ), depends upon the

proportion of each phenotype in the population. In the case of the nested sequential-move punishment

model, in a finite population of size n, this will be given by:

E (W ) =
q (nq − 1) 0

n− 1
+ 2

q (1− q)n (π̂ − 1)

n− 1
+

(1− q) (n (1− q)− 1) (π̂ − 1)

n− 1

In the case of the nested simultaneous-move punishment model, this will be:

E (W ) =
q (nq − 1) 0

n− 1
+ 2

q (1− q)n (π̂ − 1)

n− 1
+

(1− q) (n (1− q)− 1) (2 π̂ − 2)

n− 1

If we now differentiate these expressions with respect to q, we can find an expression for the gains

in social welfare from a marginal increase in the proportion of altruists. For the nested sequential

punishment model, we get:

d

dq
E (W ) (q) =

(1− π̂) (2nq − 1)

n− 1
(1.1)

For the simultaneous-move model, we get:

d

dq
E (W ) (q) = 2 (1− π̂) (1.2)

As n −→∞, (1.1) goes to:

d

dq
E (W ) (q) = 2 (1− π̂) q (1.3)
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The diagram below shows social welfare as a function of q for both types of nested model, letting

π̂ = 1
2 and taking the limit as n −→∞. We see that at the evolutionary equilibrium where q = 0, the

marginal increase in social welfare when q increases is positive for the simultaneous-move model but 0

for the sequential-move model. This is because introducing a small number of high altruism individuals

into a population of low altruism individuals means that they are almost certain to interact with low

altruism individuals. In the nested sequential move game, however, this means that if the new high

altruism individual inflicts harm first, they do not change their behaviour, whereas if they go second,

although they do not inflict harm, this causes the low altruism individual to defect and inflict harm,

whereas they would not do so if the second individual had low altruism instead of high altruism.

So, altruism is only socially beneficial in the sequential punishment model when altruists encounter

each other rather than low altruism individuals. In the simultaneous-move game, by contrast, the

presence of even a small number of high altruism individuals is socially beneficial because even if they

do interact with a low altruism individual, their behaviour is changed because they now do not inflict

harm, and this increases social efficiency, even though the low altruism individual they interact with

still defects and inflicts harm.

q

E[W]

Simultaneous-move
Sequential-move

Figure 1.3: Comparison of evolutionary models
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What this analysis shows us is that by introducing a change in the way social interactions are

modelled so that there are sequential moves enabling conditional punishment, the properties of the

evolved equilibrium pattern of individual altruism are altered in the sense that marginal injections of

additional altruism into the population are not as socially beneficial. This gives us the intuition for

the result that the group selection mechanism is weaker in the sequential-move model.

1.5 Price Equations

The conditions under which group-level selection pressures will dominate, and altruism will evolve,

can be described using Price equations. Price was an evolutionary biologist and the first person to

outline the mathematical conditions required for altruism to evolve by group selection (Price, 1970).

It is clear that altruists will always be wiped out in the long run in a single isolated group because

the selfish individuals always get better felicity payoffs from their interactions on average, and thus

breed more rapidly. However, if altruists are sufficiently concentrated together in sub-groups within the

population, whose members interact only (or mainly) with one another, then altruists can get better

average payoffs in the population as a whole, and thus outbreed selfish types, because the benefits of

altruism will be focused (mainly) upon other altruists. For this to work in the long run, there must

be a dispersal mechanism which has the property that it allows altruists to migrate between groups

whilst maintaining sufficient inter-group variance of the altruistic phenotype relative to the intra-group

variance that altruists are fitter on average than selfish types. The dispersal mechanism determines

the manner in which migration of individuals between groups occurs.14 The Price Equation for a

particular model establishes the minimum variance ratio required to enable altruism to survive.

In this section, we will show that the sequential-move game described above leads to a more

stringent requirement on the variance ratio achieved by the dispersal mechanism than the simultaneous-

move game. This means that altruism will, under general conditions, evolve to a higher degree if the

social control mechanism provided by person 2’s threat to punish person 1 is removed. Although the

presence of this threat prevents person 1 from inflicting harm, and therefore causes a social welfare gain,

ceteris paribus, the potential for the use of punishment also weakens the group selection mechanism,

and thus the ability to achieve a socially efficient high altruism equilibrium “anarchically”. Potentially,

14There must always be some migration of altruists in order for altruism to survive, since otherwise they
would always be extinguished within each isolated group.
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H L

H
b− c

b− c

b

−c

L
−c

b

0

0

Figure 1.4: Standard prisoners’ dilemma

therefore, removing the social control mechanism might improve social welfare by giving a boost to

altruism sufficient to cause a net rise in social welfare. After deriving analytic results regarding the

Price equation which apply to any dispersal mechanism, we will proceed to show, using some simple

specific simulations, that this can indeed be the case.

We will proceed by first showing that the simultaneous-move version of the punishment game has

essentially the same Price equation as the standard prisoners’ dilemma, which is the classic example

of a Price equation in the literature. We will then derive the Price equation for the sequential-move

punishment game, and proceed to prove that it always involves a more stringent requirement upon the

inter-group variance. Finally, we will illustrate the analysis using a computer simulation of a specific

dispersal mechanism.

1.6 The Standard Prisoners’ Dilemma

The standard model involves a population split into m groups with average size n, so that

n = 1
m

∑m
i=1 ni, where ni is the number of individuals in group i. Individuals in each group only

interact with members of their own group, and do so by playing a 2-person prisoners’ dilemma game

with the payoff matrix shown below (where b > c). Now, since the only Nash equilibrium is the

dominant strategy equilibrium where both individuals play L (low altruism, equivalent to “defect” in

the usual parlance), the only evolutionarily stable equilibrium if all individuals are in a single group is

for all individuals to have phenotype L.15

15If there are random mutations, there may be some type Hs but they are always evolutionarily less fit than
the type Ls and so are always in the process of dying out.
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When there is more than one group, however, we can show that conditions exist under which the

altruistic phenotype can spread through the population. We do this by deriving the change which will

occur in the number of high altruism individuals and the total population, thus enabling the derivation

of the condition for the proportion of high altruism individuals to increase, assuming that the number

of offspring is equal to the felicity payoff. The payoffs for a member of a particular group depend upon

the proportion in the group of each type, qi being the proportion of high altruism types in group i and

q = 1
mn

∑m
i=1 niqi being the proportion of altruists in the population.

The payoffs of high and low altruism individuals in group i will be:16

Ui
H = f +

(qini − 1) b

ni − 1
− c (1.4)

Ui
L = f +

qinib

ni − 1
(1.5)

From the above, we can see that, once interactions have occurred and breeding has taken place,

the new proportion of altruists in the overall population after one phase of interactions will be given

by the following expression, derived by dividing the new number of high altruism individuals in the

population by the new total population:

q′ =

∑m
i=1

((
f + (qini−1)b

ni−1 − c
)
qini

)
∑m
i=1

((
f + (qini−1)b

ni−1 − c
)
qini +

(
f + qinib

ni−1

)
(1− qi)ni

) (1.6)

Dividing the numerator and denominator through by n and collecting like terms gives us:

q′ =

(∑m
i=1

qinif
n +

∑m
i=1

qi
2ni

2b
n(ni−1) −

∑m
i=1

qinib
n(ni−1) −

∑m
i=1

qinic
n

)
(∑m

i=1
fni
n −

∑m
i=1

qinib
n(ni−1) −

∑m
i=1

qinic
n +

∑m
i=1

qini2b
n(ni−1)

) (1.7)

The following expressions are used now to simplify the above expression, and also subsequently for

the same purpose later in this section:

∑m
i=1

qini
2

ni−1 = mCov
(
qini
ni−1 , ni

)
+
∑m
i=1

qini
ni−1n∑m

i=1
qi

2ni
2

ni−1 = mCov
(
qini
ni−1 , qini

)
+
∑m
i=1

qini
ni−1nq∑m

i=1
ni

2

ni−1 = mCov
(

ni
ni−1 , ni

)
+ n

∑m
i=1

ni
ni−1

(1.8)

∑m
i=1

qini
ni−1 = mE

(
qini
ni−1

) ∑m
i=1 qini = qnm∑m

i=1 ni = mn
∑m
i=1

ni
ni−1 = mE

(
ni
ni−1

) (1.9)

16UH
i and UL

i are the expected felicity payoffs in group i. Note also the introduction of a fixed payoff f .
This is the same for both phenotypes and thus has no effect on relative fitness, but is needed to ensure that
both types always gain a strictly positive payoff. It will be set to a fixed value in the simulations later on.
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In order for the proportion of high altruism individuals to grow in the population, we require that

q′ − q > 0, where q′ − q can be derived to be the following:

q′ − q =

(
−qbCov

(
qini
ni−1 , ni

)
+ bCov

(
qini
ni−1 , qini

)
− b (1− q)E

(
qini
ni−1

)
− qcn (1− q)

)
(
fn+ bCov

(
qini
ni−1 , ni

)
+ b (n− 1)E

(
qini
ni−1

)
− cqn

) (1.10)

Provided f is set high enough to ensure a positive payoff for both phenotypes, the denominator

of (1.10) will be positive. Therefore the sign of the numerator will determine whether q′ − q > 0 is

positive or negative. It will therefore be the case that q′− q > 0 if and only if the following is fulfilled:

c

b
<

Cov
(
qini
ni−1 , qini

)
qn (1− q)

−
Cov

(
qini
ni−1 , ni

)
n (1− q)

−
E
(
qini
ni−1

)
nq

(1.11)

This result can be most easily interpreted in the situation where all groups are of equal size, so that

E
(
qini
ni−1

)
= qn

n−1 , Cov
(
qini
ni−1 , qini

)
= n2

n−1V ar(qi) and Cov
(
qini
ni−1 , ni

)
= 0. In this case, expressions

(1.10) and (1.11) simplify respectively to give:

q′ − q =
(nVar (qi)− q(1− q)) b− q (n− 1) (1− q) c

(n− 1) (f + q(b− c))
(1.12)

c

b
<

nVar (qi)

(n− 1) q (1− q)
− 1

(n− 1)
(1.13)

The intuition for this result is that altruism is able to survive if altruists are sufficiently concentrated

together that they have a higher average fitness level than the selfish types. Within a particular group,

selfish individuals still do better than altruistic individuals, but across the population, altruists are able

to do better than selfish individuals because the altruistic groups spread more rapidly. The V ar(qi)

part of the above condition is the inter-group variance of the level of altruism. The q(1− q) part is the

intra-group variance: the variance of the random variable formed by taking a single individual from

the population and assigning a value of 1 if they have phenotype H and 0 if they have phenotype L.

As n −→∞, (1.13) simplifies even further to give c
b <

Var(qi)
q(1−q) ; the variance ratio must be greater than

the ratio of the cost of co-operating to the benefit bestowed upon the other individual by doing so. The

lower the cost relative to the benefit, the easier it is for altruism to evolve, because the individual-level

selection pressure in favour of the selfish types is weakened relative to group-level selection.

If we now take the example of the simultaneous-move punishment game, we can see that a high

altruism individual refraining from inflicting harm and imposing the cost of 1 on the other individual

at benefit π̂ to herself is logically equivalent to bestowing a benefit of 1 upon the other individual at
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a cost of π̂ to herself. The simultaneous-move punishment game therefore has almost the same payoff

matrix as the standard prisoners’ dilemma, with b = 1 and c = π̂, except that person 2, if she has

phenotype L, inflicts harm upon person 3 rather than person 1. We will see when we come to derive

the Price equation that this is an insignificant difference. We will also see that the simultaneous-

move game can be analysed as an instance of the sequential-move game but with player 2’s strategy

being not to condition her actions upon those of player 1. In this context, therefore, the standard

prisoners’ dilemma situation can essentially be viewed as one of the possible equilibrium outcomes of

the sequential punishment model, and thus as a subcase of this more general model.

1.7 The Sequential-Move Game

Before deriving the Price equation for the sequential-move game, we need to further consider the

possible subgame-perfect equilibria in this game, and justify why we pay particular attention to certain

of these. Player 1’s moves are restricted to either inflicting harm upon player 2 or not inflicting harm

at all.17 This means that player 1 has only 2 available strategies. If player 2 has the high altruism

phenotype then she only has one credible strategy available, which is not to inflict harm. If player 2

has low altruism then, after the elimination of strictly dominated strategies, she has only 4 possible

strategies that could be played in a subgame-perfect Nash equilibrium.18 These restrictions enable us

to fully characterize all of the equilibria of the embedded subgame. The discussion and payoff matrices

below describe the subgame-perfect Nash equilibria for the four combinations of phenotype: (H,H),

(L,H), (H,L) and (L,L)19, where L corresponds to θ < π̂ and H corresponds to θ ≥ π̂.

Taking first the two cases when player 2 has high altruism, it is clear that here player 2 will choose

not to harm either player 1 or player 3. This is turn means that player 1 will face no future punishment

when deciding whether or not to harm player 2, and so will do so if he has low altruism, but not if

he has high altruism. Taking instead the two cases where player 2 has low altruism, it is clear that

player 2 will choose to inflict harm, but she will be indifferent between inflicting harm upon player 1

and player 3. This makes the strategic possibilities more interesting.

17We could justify this by assuming that individuals can only harm those adjacent to them.
18This is because player 2 can either harm player 1 or harm player 3 in response to each of player 1’s possible

moves. She cannot credibly threaten to refrain from inflicting harm, or to harm herself.
19(H,L) and (L,H) are distinct because players 1 and 2 do not have symmetric moves or information sets.



18 PUNISHMENT AND THE POTENCY OF GROUP SELECTION

Punish (A) Don’t Punish (B)

A→ 1 B→ 1

π̂ − θ1 + θ1π̂ − 1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − 1

π̂ − θ2

A→ 1 B→ 3

π̂ − θ1 + θ1π̂ − 1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − θ1

π̂ − θ2

A→ 3 B→ 1

π̂ − θ1 + θ1π̂ − θ1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − 1

π̂ − θ2

A→ 3 B→ 3

π̂ − θ1 + θ1π̂ − θ1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − θ1

π̂ − θ2

Figure 1.5: Player 1 has phenotype L and player 2 has phenotype L

The first payoff matrix in figure 1.5 illustrates the case where both individuals have low altruism.

The underlined payoffs indicate potential best responses for each player,20 so that squares with

both payoffs underlined represent subgame-perfect Nash equilibria.21 In three such equilibria, both

individuals inflict harm, but there is also one where player 2 (the row player) makes a credible threat

to switch harm onto player 1 (the column player) if he chooses to inflict harm, thus resulting in player

1’s best response being not to inflict harm. This is a reasonably plausible equilibrium because player

2 can gain by making the threat (if it is credible), but is indifferent as to who she inflicts harm upon

and so never incurs a cost from carrying out the threat, thus rendering it credible.

The second payoff matrix, in figure 1.6, illustrates the case where player 1 has phenotype H and

player 2 has phenotype L. Provided θ1 >
1+π̂
2 , all the sub-game perfect Nash equilibria involve player 1

20When a player is indifferent between payoffs, all of the equally preferred payoffs are underlined.
21Note that although, in general, a best response to a best response is a necessary, but not sufficient condition

for a subgame-perfect Nash equilibrium, in this simple game all Nash equilibria are subgame-perfect.
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Punish (A) Don’t Punish (B)

A→ 1 B→ 1

π̂ − θ1 + θ1π̂ − 1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − 1

π̂ − θ2

A→ 1 B→ 3

π̂ − θ1 + θ1π̂ − 1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − θ1

π̂ − θ2

A→ 3 B→ 1

π̂ − θ1 + θ1π̂ − θ1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − 1

π̂ − θ2

A→ 3 B→ 3

π̂ − θ1 + θ1π̂ − θ1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − θ1

π̂ − θ2

Figure 1.6: Player 1 has phenotype H and player 2 has phenotype L, assuming θ1 >
1+π̂
2

.

not inflicting harm and player 2 inflicting harm. If 1+π̂
2 ≥ θ1 ≥ π̂ then there can be a Nash equilibrium

where player 2 threatens to harm player 1 unless he inflicts harm, and so player 1 does indeed inflict

harm even though he loses utility from doing so as a standalone act. However, this equilibrium is not

very believable as it involves player 2 making a threat which it is not in her interest to make. She

would prefer player 1 not to inflict harm, and so it is not intuitively plausible that she would make

such a threat.

Although it is not likely that player 2 would make a threat which influences player 1’s behaviour

in a manner which is against her own interest, it is more plausible that for some reason player 2 might

not be able to effectively make the threat to induce player 1 not to inflict harm when he has low

altruism. If player 1 does not believe that player 2 will carry out the threat, then, once it comes to

enforcing it, player 2 is indifferent as to whether she does in fact do so, since “bygones are bygones”. If
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the punishment equilibrium breaks down, then the sequential-move game essentially collapses into the

simultaneous-move game. This can occur if the subgame-perfect equilibrium that is played involves

player 2 playing either the strategy A→ 1, B → 1 or the strategy A→ 3, B → 3. So, in this sense, the

sequential-move move model contains the simultaneous-move model as a special case.

1.8 Deriving the Price Equations

We can now derive the expected payoffs of high altruism and low altruism types in the sequential-

move game. We assume that each individual has a 1
3 chance of being player 1, 2 or 3 respectively in

each interaction. We will first assume that player 2 plays either strategy A → 1, B → 1 or strategy

A→ 3, B → 3. In both cases, we will see that the resultant Price equation is basically the same as the

standard prisoners’ dilemma. We will then move on to the subgame-perfect equilibrium where strategy

A → 1, B → 3 is played, and where the resultant Price equation places a more stringent condition

upon the variance ratio, thus reducing the potency of the group selection mechanism.

Suppose first of all that a selfish player 2 (a player 2 with a low altruism phenotype, L) chooses to

play the strategy A→ 1, B → 1, so that she always inflicts harm upon player 1 regardless of whether

player 1 inflicts harm upon her or not22. A selfish player 1 will therefore definitely choose to harm

player 2, because he will be punished anyway and so will optimally wish to take his opportunity to

inflict harm for a gain in his social utility. This is a subgame-perfect Nash equilibrium because once

player 1 has made his choice, player 2 will be indifferent over whether she inflicts harm upon player 1

or player 3.

1.8.1 Selfish player 2 plays strategy A→ 1, B → 1

We derive the Price equation condition by finding the expected felicity payoff of an altruistic

individual with phenotype H and a selfish individual with phenotype L. Altruistic individuals have a

1
3 chance of being player 1, 2 or 3 respectively. If they are player 1, then if player 2 is selfish (with

probability (1−qi)ni
ni−1 ), they will receive a felicity payoff of −1. Otherwise they will receive a felicity

payoff of 0. If they are player 2, they also will receive a felicity payoff of −1, if player 1 is selfish

(probability (1−qi)ni
ni−1 ), and 0 otherwise. If they are player 3, they will always receive a felicity payoff

22As we have already seen, since there is no future an altruistic player 2 with phenotype L will never inflict
harm.
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of 0, because they are never punished. The expected felicity payoff for an altruist will thus be:

Ui
H = f − 2

3

(1− qi)ni
ni − 1

(1.14)

If players are selfish, then if they turn out to be player 1, they will definitely choose to harm player

2, who will harm them in turn if they too are selfish. The expected payoff if they are player 1 would

therefore be π̂− (1−qi)ni−1
ni−1 . If they turn out to be player 2, they will again definitely inflict harm, and

player 1 will harm them if they are selfish. Again, the expected payoff would be π̂ − (1−qi)ni−1
ni−1 . As

before, if they turn out to be player 3, their expected payoff is definitely 0. So:

Ui
L = f +

2

3
π̂ − 2

3

(1− qi)ni − 1

ni − 1
(1.15)

The new proportion of altruists in the population after one stage of interaction will therefore be:

q′ =

∑m
i=1

(
f − 2

3
(1−qi)ni
ni−1

)
qini∑m

i=1

((
f − 2

3
(1−qi)ni
ni−1

)
qini +

(
f + 2

3 π̂ −
2
3

(1−qi)ni−1
ni−1

)
(1− qi)ni

) (1.16)

Multiplying out, dividing the numerator and denominator by n and collecting like terms gives us:

q′ = (∑m
i=1

3
2

qinif

n −
∑m
i=1

qini
2

n(ni−1)
+
∑m
i=1

qi
2ni

2

n(ni−1)

)
(∑m

i=1
3
2

fni
n +

∑m
i=1

qini
2

n(ni−1)
+
∑m
i=1

π̂ ni
n −

∑m
i=1

π̂ niqi
n −

∑m
i=1

ni
2

n(ni−1)
+
∑m
i=1

ni
n(ni−1)

−
∑m
i=1

qini
n(ni−1)

) (1.17)

We can now apply (1.8) and (1.9) to derive the following expression for the change in the proportion

of altruists in the overall population:

q′ − q =

2
(
−(1+q)Cov

(
qini
ni−1 ,ni

)
+Cov

(
qini
ni−1 ,qini

)
−(n−q)E

(
qini
ni−1

)
+q(n−1)E

(
ni
ni−1

)
+q
(
Cov

(
ni
ni−1 ,ni

)
−π̂ n(1−q)

))
(
3 fn+2Cov

(
qini
ni−1 ,ni

)
+2(n−1)

(
E
(
qini
ni−1

)
−E
(

ni
ni−1

))
−2Cov

(
ni
ni−1 ,ni

)
+2 π̂ n(1−q)

)
(1.18)

Provided f is high enough so that both types always get a positive payoff, the denominator of

(1.18) will be positive, and q′ − q > 0 if and only if the following condition is fulfilled:

π̂ < −
(1+q)Cov

(
qini
ni−1 ,ni

)
qn(1−q) +

Cov
(
qini
ni−1 ,qini

)
qn(1−q) −

(n−q)E
(
qini
ni−1

)
qn(1−q) +

(n−1)E
(

ni
ni−1

)
n(1−q) +

Cov
(

ni
ni−1 ,ni

)
n(1−q) (1.19)

If all groups are of equal size, the conditions (1.18) and (1.19) become, respectively:

q′ − q =
2 (nVar (qi)− q (n− 1) (1− q) π̂ − q(1− q))

(n− 1) (3 f − 2(1− q)(1− π̂))
(1.20)

π̂ <
nVar (qi)

q (n− 1) (1− q)
− 1

(n− 1)
(1.21)

If all groups are the same size, the condition on the variance ratio is therefore identical to the

prisoners’ dilemma, since (1.21) is identical to (1.13) with c
b = π̂.23

23There is a slight difference between the two models when groups are of different sizes, due to the differing
position of player 3 in different sized groups.
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1.8.2 Selfish player 2 plays strategy A→ 3, B → 3

This case will be very similar to the previous one, except that it is player 3 rather than player 1

who always receives the harm inflicted by a selfish player 2. The expected utility payoffs will therefore

be the same as above, as will the Price equation.

1.8.3 Selfish player 2 plays strategy A→ 1, B → 3

We will now assume that player 2 always plays strategy A→ 1, B → 3, so that player 1 is always

induced not to inflict harm if player 2 is of type L. Our first step will be to derive the expected felicity

payoff for individuals with high and low altruism.

Taking first the expected felicity payoff of an altruistic individual, they have a 1
3 chance of being

player 1 in their interaction. In this case, whether or not player 2 is altruistic, the individual will

not inflict harm, and so will receive a payoff of 0. If, on the other hand, they turn out to be player 2

(probability 1
3 ), they will be punished by player 1 if player 1 is selfish (probability (1−qi)ni

ni−1 and suffering

a loss of 1), because they can make no credible threat to punish a selfish player 1 for doing this. The

third possibility is that they will be player 3, in which case they will be punished by player 2 if player

2 turns out to be selfish (probability (1−qi)ni
ni−1 and suffering a loss of 1). This is because even if player

1 turns out to be selfish, he will never choose to harm player 2 due to his fear of being punished by

having the harm inflicted by player 2 focused onto him. Hence, a selfish player 2 will always harm

player 3. So, the expected felicity payoff of an altruistic individual in this model is:

Ui
H = f − 2

3

(1− qi)ni
ni − 1

(1.22)

Now we take the case of selfish individuals. If they turn out to be player 1, they will choose to

harm player 2 if and only if player 2 is altruistic (the unconditional probability of this scenario is 1
3
qini
ni−1

and the felicity payoff would be π̂).24 If selfish individuals turn out to be player 2 (probability 1
3 ),

then they will definitely harm either player 1 or player 3, gaining a felicity payoff of π̂. If they turn

out to be player 3, they are in the same situation as they would be if they were altruistic, except that

the probability that player 2 is selfish and inflicts harm upon them is now (1−qi)ni−1
ni−1 . The expected

utility payoff of an altruistic individual will therefore be:

Ui
L = f +

1

3

π̂ qini
ni − 1

+
1

3
π̂ − 1

3

(1− qi)ni − 1

ni − 1
(1.23)

24The benefit received by inflicting harm inefficiently is equivalent to the cost that must be incurred in order
to behave efficiently in the prisoners’ dilemma model.
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From the above, we can see that, once interactions have occurred and breeding has taken place,

the new proportion of high altruism individuals in the population will be given by:

q′ =

∑m
i=1

(
f − 2

3
(1−qi)ni
ni−1

)
qini∑m

i=1

((
f − 2

3
(1−qi)ni
ni−1

)
qini +

(
f + 1

3
π̂ niqi
ni−1 + 1

3 π̂ −
1
3

(1−qi)ni−1
ni−1

)
(1− qi)ni

) (1.24)

Multiplying out, dividing the numerator and denominator by n and collecting like terms yields:

q′ = (∑m
i=1

3
2
qinif
n

−
∑m
i=1

qini
2

n(ni−1)
+
∑m
i=1

qi
2ni

2

n(ni−1)

)
1
2

(
3
∑m
i=1

fni
n

+
∑m
i=1

qi
2ni

2(1−π̂)

n(ni−1)
+
∑m
i=1

π̂ qini
2

n(ni−1)
+
∑m
i=1

π̂ ni
n

−
∑m
i=1

π̂ niqi
n

−
∑m
i=1

ni
2

n(ni−1)
+
∑m
i=1

ni
n(ni−1)

−
∑m
i=1

qini
n(ni−1)

)

(1.25)

Expressions (1.8) and (1.9) can now be applied to derive the following expression for the change

in the proportion of altruists in the overall population:

q′ − q =

(2−q(1−π̂))Cov( qinini−1
,qini)−(2+π̂ q)Cov( qinini−1

,ni)−(((1−q)(qπ̂+2)+q2)n−q)E( qinini−1 )+(n−1)qE( ni
ni−1 )−q(1−q)π̂ n+qCov( ni

ni−1
,ni)

(3 fn+π̂ Cov( qinini−1
,ni)+(1−π̂)Cov( qinini−1

,qini)−(1−((1−q)π̂+q)n)E( qinini−1 )−(n−1)E( ni
ni−1 )+(1−q)π̂ n−Cov( ni

ni−1
,ni))

(1.26)

Assuming f is high enough to make the denominator of the RHS of (1.26) positive, q′ − q will be

positive if and only if the following condition holds:

π̂ <
(2−q)Cov

(
qini
ni−1 ,qini

)
−2Cov

(
qini
ni−1 ,ni

)
−(n(1−q)2+n−q)E

(
qini
ni−1

)
+q(n−1)E

(
ni
ni−1

)
+qCov

(
ni
ni−1 ,ni

)
q
(
Cov

(
qini
ni−1 ,ni

)
−Cov

(
qini
ni−1 ,qini

)
+n(1−q)

(
E
(
qini
ni−1

)
+1
)) (1.27)

When all groups are of equal size, the relevant conditions become:

q′ − q =
(qnπ̂ + n (2− q))Var (qi)− q (1− q) (n(q + 1)− 1) π̂ − q (1− q) (n+ 1− nq)

3 (n− 1) f + n (1− π̂)Var (qi)− (1− q) (nq + n− 1) (1− π̂)
(1.28)

π̂ <
q (1− q) (n+ 1− nq)− n (2− q)Var (qi)

q (Var (qi)n− (1− q) (nq + n− 1))
(1.29)

Condition (1.27) will be shown in Theorem 1.I to be more stringent than the equivalent condition

(1.19) for the simultaneous-move game. This means that it is unambiguously more difficult for group

selection to operate in the sequential-move model. The proof works by making a number of simplifying

substitutions so that the RHS of (1.27) can be directly compared to the RHS of (1.19). It can then be

shown that, if the RHS of (1.27) is positive then the RHS of (1.19) must also be positive and strictly

greater. In other words, if group selection can survive given some values of π̂ in the sequential-move

model, it must be able to survive for a wider range of π̂ values in the simultaneous-move model.
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Theorem 1.I

If π̂′seq > 0, then π̂′sim > π̂′seq.

Proof: Let π̂′sim be the RHS of (1.19) and π̂′seq be the RHS of (1.27). The following substitutions can be

used to rewrite (1.19) and (1.27) in a more easily comparable form:

αi = Cov

(
ni

ni − 1
, ni

)
+ nE

(
ni

ni − 1

)
− Cov

(
qini
ni − 1

, ni

)
− nE

(
qini
ni − 1

)
(1.30)

βi = E

(
ni

ni − 1

)
− E

(
qini
ni − 1

)
(1.31)

γi = Cov

(
qini
ni − 1

, ni

)
+ nE

(
qini
ni − 1

)
− Cov

(
qini
ni − 1

, qini

)
− qnE

(
qini
ni − 1

)
(1.32)

Note that αi > βi > 0 and that αi > γi > 0. Using these substitutions, (1.19) and (1.27) become:

π̂′sim =
(αi − βi) q − γi
qn (1− q)

(1.33)

π̂′seq =
(αi − βi) q − (2− q) γi

(γi + n (1− q)) q
(1.34)

It can now be seen clearly by observation that if π̂′seq > 0, then π̂′sim > π̂′seq.

1.9 Illustration - “Haystacks” Model

The “Haystacks” model is a well-known scenario in evolutionary biology which provides one

possible population structure which could produce sufficient inter-group variance to allow altruism to

survive via group selection. The original analogy was a population of mice which splits into haystacks,

following which interaction takes place entirely within each haystack for a period of time. Periodically,

however, the hay is taken away and the mice are forced out, so that the meta-population once again

intermingles. If altruistic mice are sufficiently concentrated within the haystacks, they will breed more

rapidly on average than selfish mice.

We are not seeking here to demonstrate the conditions under which such a population structure will

enable group selection to take place. There has been controversy about the nature of the mechanism

by which the haystacks are formed required to enable group selection to operate effectively. It has

been shown that there must either be assortative group formation or more than one period of isolation

in order for altruism to survive (Bergstrom, 2002). A thorough investigation has now been undertaken
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(Cooper & Wallace, 2004). Cooper and Wallace have shown that altruism can indeed evolve by

group selection, even with finite groups and when the assortment mechanism is completely random,

provided the ratio of benefit to cost is high enough and the number of periods of isolation is within an

intermediate “Goldilocks” band.

We will use different lengths of the isolation period to illustrate the phenomenon that the sequential-

move model makes it more difficult for altruism to survive by, as we have already seen analytically,

making the Price equation condition more stringent. The haystacks structure acts as a kind of

amplification device for the inter-group variance. The longer groups are isolated, the longer the

altruists have to benefit one another. However, counteracting this is the fact that the longer the

groups are isolated, the better the selfish individuals are doing at the expense of the altruists within

each haystack. This means that there is an optimal amount of time for the haystacks isolation, in

terms of maximizing the success of the altruists. Isolating the haystacks for a longer or shorter period

than this results in a lower average proportion of altruists evolving.

The haystacks model can only operate if there is some initial inter-group variance to be amplified.

This is usually achieved by introducing randomness into the assortment process by which groups are

formed. In the simulations that follow, we assume that individuals in the overall population are sorted

into groups of size 6. We use the hypergeometric distribution to approximate this process. Simulations

are “smoothed”, in the sense that the fraction of altruists is treated as a continuous variable, even

though the Price equations are based on finite group sizes. This has been found to deliver a reasonably

close approximation to the discrete model, and allows for much faster simulations, and thus better

quality data (Cooper & Wallace, 2004). The haystacks idea is not here being used primarily to justify

the possibility of group selection working, but to provide a variable, in the number of periods of

isolation g, that can be used to adjust the inter-group variance and illustrate the differences between

the sequential-move model and the simultaneous-move model.

Group selection can, of course, occur by other methods aside from a Haystacks population

structure. An example commonly used in the social sciences is assortative interaction, where altruists

are able to disproportionately interact with one another by forming groups and excluding selfish types.

It is commonly argued that group selection is likely to be stronger in human cultural evolution than in

human biological evolution not only because cultural phenotypes can be transmitted more rapidly (e.g.
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by imitation) than biological ones (which must be passed on genetically via biological reproduction)

but also because the concentration of particular cultural traits in groups of humans does not have to

rely on randomness as it does in biological models of group selection. For example, groups can expel

or reject interaction with non-altruists, or bring extra pressures to bear to enforce conformity. One

empirical study (Soltis et al., 1995) found sufficient empirical evidence from anthropological studies of

group formation and interaction to conclude that cultural group selection may occur in this manner

over a long time scale in human society.

The simulations proceed as follows. The population begins at size 100, with 1
3 of the individuals

having high altruism. This is split into groups of 6, approximated by a hypergeometric distribution for

the proportion of groups with each different possible composition, then multiplied by 100
6 to give the

number of each type of group.25 Each group then evolves in isolation for g periods. The members of

the group are formed each period into triplets to play the sequential punishment game, assuming that

its simultaneous-move and sequential-move equilibria are played respectively for the simulations with

and without the use of punishment. At the end of each period, mutations occur where a fraction ε of

each type change into the other type. The new population composition is then generated as a weighted

average of the different group types after g periods. The number of individuals in the overall population

is then normalised back to 100, but preserving the new proportion of altruists q′. (This is done in

order to prevent the population from exploding to infinity, to aid the running of the simulations.)

Figures 1.7 through 1.11 overleaf illustrate the outcomes from the simulation over 500 generations,

with π = 0.075 and ε = 1
500 (time being measured along the x-axis), in the two models, with isolation

times of g = 3, g = 6, g = 52, g = 117 and g = 204 periods respectively.26 The black line illustrates

the simultaneous-move model and the grey line the sequential-move model. The top graph shows the

proportion of altruists, and the bottom graph shows the average value of the social welfare function.27

In figure 1.7, g = 3 is not high enough for altruism to survive in the long run in either model.

Since the sequential-move model results in a socially superior static outcome, social welfare can be

seen to be higher with the sequential move model (the grey line in the bottom diagram) than with the

simultaneous-move model (the black line in the bottom diagram).

25Recall that the simulations are smoothed, so there is no reason why the population size need be an integer
multiple of the group size.

26The simulations were written in Ox. Source code is provided in the appendix.
27Calculated as the expected felicity payoff for each individual, and normalized so that both individuals

choosing to inflict harm results in a felicity of 0.
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In figure 1.8, g = 6 is high enough for altruism to survive in the simultaneous move model, but

not the sequential-move model. Once sufficient time has elapsed for the proportion of altruists in the

population to become high enough, social welfare in the simultaneous model ends up higher than social

welfare in the sequential model.

Figure 1.9 shows a situation where g = 52 is in the range necessary for altruism to survive in

both types of model. However, the analytic result from Theorem 1.I still results in the proportion of

altruists oscillating around a lower average in the sequential model. This can be seen to lead to lower

average social welfare in the sequential model.

Figure 1.10 shows a situation where g = 117 is too high for altruism to survive in the sequential

model. It is still able to survive in the simultaneous model, where average social welfare is higher. In

figure 1.11, however, g = 204 is sufficiently high that although altruism still survives in the simultaneous

model, it oscillates so much that social welfare is actually higher on average in the sequential model.

Figures 1.12 and 1.13 show the average values of the proportion of altruists, q and the social welfare

function over 5000 generations for different values of g on the x-axis, given two different possible values

for π̂. The dashed grey line in the top diagram in each figure shows the initial proportion of altruists

q = 1
3 . The important features to note are, firstly, that there is a wider range where altruism survives in

the simultaneous model than in the sequential model and, secondly, that there is a range of values of g

where altruism survives in the simultaneous model and not in the sequential model, but average social

welfare is nonetheless higher in the sequential model. This shows that the normative consequences of

the weakening of group selection are ambiguous, despite the unambiguous result that it is harder for

altruism to evolve in the sequential model.

Figures 1.14 and 1.15 show, for two different values of ε, the region in (g, π) space where the

simultaneous model results in a higher average value of the social welfare function in black and the

region where the sequential model results in a higher average value in white. This shows most clearly

the result that the use of the social control mechanism of person 2’s ability to conditionally punish

person 1 is a mixed blessing. In some circumstances, in which the group selection mechanism would

have been too weak to operate, it will improve the social efficiency of the evolutionary outcome.

However, in other circumstances, where the group selection mechanism would have been strong enough

(corresponding to the black area of the diagram), the use of conditional punishment can weaken
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the group selection mechanism and thus, by reducing the number of altruists in the evolutionary

equilibrium, actually result in society being worse off than in the “anarchic” equilibrium, where

punishment is not used.

1.10 Conclusion

This paper has shown that the use of punishment is a “double-edged sword” for the evolution of

altruism in that it may help selfish types to do better evolutionarily, because they are more willing

to make use of opportunities to harm others at benefit to themselves. In the traditional literature on

altruistic punishment, altruistic punishers are modelled as a specific behavioural phenotype. This is

unsatisfactory from the viewpoint of economic theory because it begs the question of how different

available punishment technologies might interact with such evolved preferences. The indirect evolution

methodology provides a useful way to approach this question, because it allows a separation between

altruistic preferences and altruistic behaviour. The central message is that the ability of humans

to punish one another may weaken the selection pressure in favour of altruistic preferences, with

potentially negative dynamic welfare implications.

t

tŪ

q

Figure 1.7: 3 periods of isolation, π = 0.075
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t

tŪ

q

Figure 1.8: 6 periods of isolation, π = 0.075

t

tŪ

q

Figure 1.9: 52 periods of isolation, π = 0.075
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t

tŪ

q

Figure 1.10: 117 periods of isolation, π = 0.075

t

tŪ

q

Figure 1.11: 204 periods of isolation, π = 0.075
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g

gŪ

q̄

Figure 1.12: Average level of altruism and social welfare, π = 0.075

g

gŪ

q̄

Figure 1.13: Average level of altruism and social welfare, π = 0.05
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g

π

Figure 1.14: Comparison of simultaneous-move and sequential-move game, ε = 1
500

g

π

Figure 1.15: Comparison of simultaneous-move and sequential-move game, ε = 1
100
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Appendix

This is the source code to generate figure 1.13:

#inc lude <oxstd . h>

#inc lude <oxdraw . h>

#inc lude <oxprob . h>

dec l f =2;

dec l p i =0.05;

de c l qs =1/3;

dec l g l =250;

dec l totgen =5000;

dec l n=6;

dec l m=100;

dec l e =1/500;

hypergeom (N, p , n , x )

{

re turn binomial (N∗p , x )∗ binomial (N∗(1−p ) , n−x )/ binomial (N, n ) ;

}

c l a s s Group

{

dec l n ;

de c l nh ;

dec l nq ;

dec l swf ;

Group ( ) ;

r e s e t (nn , nnh , nnq ) ;

nextgen ( ) ;

nextgenseq ( ) ;

NH( ) ;

N( ) ;

SWF( ) ;

}

Group : : Group ( )

{

}
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Group : : r e s e t (nn , nnh , nnq )

{

n=nn ;

nh=nnh ;

nq=nnq ;

}

Group : : nextgen ( )

{

dec l nn , nnh ;

nnh=nh∗( f −2/3∗(n−nh )/( n−1)) ;

nn=n∗ f−2/3∗nh∗(n−nh )/( n−1)+2/3∗(n−nh )∗ ( pi−(n−nh−1)/(n−1)) ;

swf=nn−f ∗n+n ;

dec l q=nnh/nn ;

q=(1−e )∗q+e∗(1−q ) ;

n=nn ;

nh=q∗nn ;

}

Group : : nextgenseq ( )

{

dec l nn , nnh ;

nnh=nh∗( f −2/3∗(n−nh )/( n−1)) ;

nn=n∗ f−2/3∗nh∗(n−nh )/( n−1)+1/3∗(n−nh )∗ ( p i ∗nh/(n−1)+pi−(n−nh−1)/(n−1)) ;

swf=nn−f ∗n+n ;

dec l q=nnh/nn ;

q=(1−e )∗q+e∗(1−q ) ;

n=nn ;

nh=q∗nn ;

}

Group : :NH( )

{

re turn nh∗nq ;

}

Group : : N( )

{



APPENDIX 35

re turn n∗nq ;

}

Group : :SWF( )

{

re turn swf∗nq ;

}

main ( )

{

SetDrawWindow( ” Simulat ion Output” ) ;

DrawAxis ( 0 , 0 , 0 , 0 , 1 , 0 . 1 , 0 . 1 , 0 . 0 1 , 0 ) ;

DrawAxis ( 1 , 0 , 0 , 0 , 1 , 0 . 1 , 0 . 1 , 0 . 0 1 , 0 ) ;

d e c l i ;

d e c l j ;

d e c l qa ;

de c l group=new array [ n+1] ;

d e c l gen ;

dec l mg;

f o r (mg=0;mg<n+1;mg++)

{

group [mg]=new Group ( ) ;

}

dec l g ;

d e c l q ;

d e c l NH;

dec l N;

dec l gb ;

dec l o ldx ;

dec l o ldy ;

dec l oldSWFx ;

dec l oldSWFy ;

dec l tSWF;

dec l pass ;

d e c l oldN ;

dec l SWF;

oldx =0;

oldy =0;
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oldSWFx=0;

oldSWFy=0;

f o r ( j =1; j<g l +1; j++)

{

gb=j ;

q=qs ;

qa=0;

tSWF=0;

f o r ( gen=0;gen∗gb<totgen ; gen++)

{

N=m∗n ;

f o r (mg=0;mg<n+1;mg++)

{

group [mg ] . r e s e t (n ,mg,N/n∗hypergeom (N, q , n ,mg ) ) ;

}

f o r ( g=0;g<gb ; g++)

{

oldN=N;

N=0;

NH=0;

SWF=0;

f o r (mg=0;mg<n+1;mg++)

{

group [mg ] . nextgen ( ) ;

N=N+group [mg ] . N( ) ;

NH=NH+group [mg ] .NH( ) ;

SWF=SWF+group [mg ] .SWF( ) ;

}

SWF=SWF/oldN ;

tSWF=tSWF+SWF;

q=NH/N;

qa=qa+q ;

}

}

qa=qa /( gen∗gb+g ) ;

tSWF=tSWF/( gen∗gb+g ) ;

i f ( o ldx==0&&oldy==0) { oldx=j ; oldy=qa ;}

DrawLine (0 , oldx , oldy , j , qa , 1 ) ;

o ldx=j ;
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oldy=qa ;

i f (oldSWFx==0&&oldSWFy==0)

{oldSWFx=j ; oldSWFy=tSWF; DrawLine (1 , oldSWFx , oldSWFy , j , tSWF, 1 ) ; }

e l s e

{DrawLine (1 , oldSWFx , oldSWFy , j , tSWF, 1 ) ; oldSWFx=j ; oldSWFy=tSWF;}

}

oldx =0;

oldy =0;

oldSWFx=0;

oldSWFy=0;

f o r ( j =1; j<g l +1; j=j +1)

{

gb=j ;

q=qs ;

qa=0;

tSWF=0;

f o r ( gen=0;gen∗gb<totgen ; gen++)

{

N=m∗n ;

f o r (mg=0;mg<n+1;mg++)

{

group [mg ] . r e s e t (n ,mg,N/n∗hypergeom (N, q , n ,mg ) ) ;

}

f o r ( g=0;g<gb ; g++)

{

oldN=N;

N=0;

NH=0;

SWF=0;

f o r ( mg=0;mg<n+1;mg++)

{

group [mg ] . nextgenseq ( ) ;

N=N+group [mg ] . N( ) ;

NH=NH+group [mg ] .NH( ) ;

SWF=SWF+group [mg ] .SWF( ) ;

}

SWF=SWF/oldN ;

tSWF=tSWF+SWF;

q=NH/N;
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qa=qa+q ;

}

}

qa=qa /( gen∗gb+g ) ;

tSWF=tSWF/( gen∗gb+g ) ;

i f ( o ldx==0&&oldy==0) { oldx=j ; oldy=qa ;}

DrawLine (0 , oldx , oldy , j , qa , 1 4 ) ;

o ldx=j ;

o ldy=qa ;

i f (oldSWFx==0&&oldSWFy==0)

{oldSWFx=j ; oldSWFy=tSWF; DrawLine (1 , oldSWFx , oldSWFy , j , tSWF, 1 4 ) ; }

e l s e

{DrawLine (1 , oldSWFx , oldSWFy , j , tSWF, 1 4 ) ; oldSWFx=j ; oldSWFy=tSWF;}

}

DrawLine (0 , 1 , qs , gl , qs , 1 0 ) ;

DrawText (0 , ” Per iods o f I s o l a t i o n ” , 0 , 0 , −1, −1, TEXT XLABEL) ;

DrawText (0 , ”Average Proport ion o f A l t r u i s t s ” , 0 , 0 , −1, −1, TEXT YLABEL) ;

DrawText (1 , ” Per iods o f I s o l a t i o n ” , 0 , 0 , −1, −1, TEXT XLABEL) ;

DrawText (1 , ”Average S o c i a l Welfare ” , 0 , 0 , −1, −1, TEXT YLABEL) ;

ShowDrawWindow ( ) ;

}
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