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Abstract

It is already recognized by some specific models in the existing literature that altruism
may have socially counterproductive effects. Economic theory also shows that self-
interest often produces efficient outcomes. This thesis explores the relationship between
altruistic preferences, punishment systems and the cultural evolution of morality. The
central argument is that altruism has detrimental effects on the efficacy of punishment
and the resultant incentives of agents to co-operate with socially efficient equilibria, and
that the use of punishment can have a negative effect on the evolution of altruism.

The sequential punishment model is presented – akin to an infinitely-repeated stage
game, but sufficiently simple to allow determinate optimal punishment paths to be
derived – and the impact of different levels of altruism fully analysed. It is shown that
high levels of altruistic motivation – close to but slightly less than full altruism – cause
the socially efficient equilibrium to break down.

Although the model is only a highly stylized representation of social interaction, the
key effects that drive these results should appear in many more specific examples. In
summary, these are the temptation effect (more altruistic individuals are less tempted
to do harm to others), the willingness effect (more altruistic individuals are less willing
to inflict punishment), and the severity effect (punishments, such as a fine where the
revenue is redistributed, are less severe for more altruistic individuals, because they
place a higher value on the contribution of the revenue to the welfare of others).

By embedding a simplified version of the sequential punishment model in a simulated
indirect evolution framework, it is also established that the use of punishment can
weaken the group selection mechanism, resulting in a lower level of altruism evolving.
The normative consequences of this are shown to be ambiguous.
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The Limits to Altruism - A Survey

There is much confusion of the ideal that a person ought to be allowed to pursue his own
aims with the belief that, if left free, he will or ought to pursue solely his selfish aims.

(Hayek, 1960)

In my view the ideal society would be one in which each citizen developed a real split
personality, acting selfishly in the market place and altruistically at the ballot box.

(Meade, 1973)

1.1 Overview

This survey is concerned with altruism, and its relationship to economic theory. The key tasks are

to summarise and marshal the evidence that altruism exists as a significant empirical phenomenon,

and to make a contribution to the normative analysis of altruism by bringing together a number of

theoretical strands from economics and other social sciences. The central questions to be considered are

why particular patterns of altruistic motivation and behaviour exist, and which conceivable patterns

would be most beneficial. The answers to these two questions are closely connected if there is a

theoretical presumption that cultural norms emerge at least partly due to their social functionality.

We clearly live in a world of imperfect altruism. The central question is why this should be the case.

Are individuals imperfectly altruistic because we live in an imperfect world, or could it be that these

imperfections are somehow functional for society?

The appropriate role of human altruism in social scientific theory and methodology is subtle and

controversial. Firstly, altruism can be defined in numerous incompatible ways, particularly when we
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compare the approaches of economists, anthropologists, sociologists, psychologists and biologists. A

central factor which commonly causes confusion here is the distinction between altruism as a concept

for classifying observed behaviour, and altruism as a theory of motivation. There are also important

distinctions between economic and psychological theories of altruistic motivation, due to their differing

criteria for what constitutes an explanation for a particular phenomenon.

A second key area of debate is the normative analysis of altruism. The temptation that some

approaches have fallen into is to assume that altruism on the part of individuals is always good for

the group, and thus that minimising individual selfishness is the most important role for the social

structure. Economics has, at least since Adam Smith, had a fairly clear understanding that a key

litmus test for the effectiveness of a social and economic system is its ability to correct for, and

harness, the limitations upon individual altruism (Smith, 1976). This is just as important as ensuring

that individual selfishness is kept constrained within certain boundaries. For example, the effective

rule of law is required for a well-functioning market economy, and this requires that individuals refrain

from harming others indiscriminately whenever they can gain selfishly by doing so. In other words,

selfishness must, in order to act as a force for social good, be constrained to operate within a broader

moral framework. However, the relationship between the positive assumption of rational self-interest

as a parsimonious explanatory framework, and the normative argument that self-interest is a force

that can be harnessed for the common good, has remained inadequate and blurred.

1.2 Altruism: A Road Map

If we wish to achieve clarity in an exploration of the past and future potential role of altruism

in economic theory specifically, we must have a clear conception of the distinctions and connections

between a normative concept of social efficiency (the common good), models of individual altruistic

motivation (which are explanatory rather than normative), and a way of classifying the degree of

altruism exhibited in various behaviours based upon observable criteria. The fact that apparently

altruistic behaviour does not necessarily imply altruistic motivation and that altruistic motivation

does not necessarily imply social efficiency suggests eight logical possibilities for the interpretation of

a particular behaviour:
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(1). Apparently altruistic behaviour which is altruistically motivated and is socially beneficial.

(2). Apparently altruistic behaviour which is not altruistically motivated and is socially beneficial.

(3). Apparently non-altruistic behaviour which is altruistically motivated and is socially beneficial.

(4). Apparently non-altruistic behaviour which is not altruistically motivated and is socially

beneficial.

(5). Apparently altruistic behaviour which is altruistically motivated and is socially detrimental.

(6). Apparently altruistic behaviour which is not altruistically motivated and is socially detrimental.

(7). Apparently non-altruistic behaviour which is altruistically motivated and is socially

detrimental.

(8). Apparently non-altruistic behaviour which is not altruistically motivated and is socially

detrimental.

This system of categorization is useful in maintaining a separation between the behavioural,

motivational and normative dimensions to altruistic phenomena. The different cases are illustrated

graphically in figure 1.1. The models examined later in the survey can be fitted into it. The way in

which the categories are applied, however, will vary depending on one’s theoretical perspective.

Welfare economic theory already has a well-defined set of tools for judging when changes in

behaviour are socially beneficial and socially detrimental, provided one is philosophically willing to

make inter-personal comparisons of utility from consuming different goods (Sen, 1974) (d’Aspremont

& Gevers, 1977) (Gevers, 1979) (Roberts, 1980). The concepts of a behaviour being “apparently

altruistic” and “altruistically motivated” are, however, more problematic. In asking whether a

behaviour appears to be altruistic, we must ask who or what appears to be paying the cost, and

who is benefiting. Dawkins’ selfish gene theory (Dawkins, 1976), for example, seeks to categorise all

cases of apparent altruism by individual organisms as the manifestation of the entirely selfish adaptive

“behaviour” of genes. In this case, there is strictly speaking no apparent or actual altruism at the gene

level. So, if we are taking the “gene’s eye view”, then cases (1), (2), (3), (5), (6) and (7) drop out.

The only question that remains to be answered in the analysis of a particular behavioural phenotype

is therefore whether the interaction of competition of selfish genes leads to a “socially beneficial” or

“socially detrimental” outcome.
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Altruistic Behaviour

Non-altruistic Behaviour

Motivation

Motivation

Altruistic

Altruistic

Non-altruistic

Non-altruistic

Socially Detrimental

Socially Detrimental

Socially Beneficial

Socially Beneficial

1 2

5 6

3 4

7 8

Figure 1.1: Road-map: cases of altruism

To give just one example from evolutionary biology, when animals of the same species fight for

territory and status they do not usually fight to the death. In fact, fights usually appear to the human

eye as something of a spectacle rather than a cut-throat struggle for survival. It was fashionable among

biologists in the earlier part of the twentieth century to interpret this as a social convention which

evolved for the good of group stability. However, evolutionary game theory shows that the evolution

of such “conventions” can be more cleanly explained as the result of the strategic interaction of selfish

animal organisms which are entirely concerned with their own survival. In a duel, the weaker animal

will usually give up long before the viciousness of the conflict escalates very much, once it becomes

reasonably clear what the outcome will be. It does this in its own self-interest, since there is no point

“throwing good money after bad” once it has enough evidence about the strength of its opponent to

“know” that it will lose. (Obviously, we are not necessarily talking about a conscious process but

about evolved “rules of thumb” hardwired into the animal brain.) Nonetheless, it remains the case

that these animal “social conventions” do contribute to the stability of hierarchical animal groups, and

therefore indirectly to the safety of all of their members.



1.2. ALTRUISM: A ROAD MAP 7

Gene selfishness is a distinct concept from that of the biological selfishness of the individual

organism. Looked at from this perspective, there is a clear definition that an altruistic action increases

the likelihood of other organisms to reproduce at the expense of the altruistic individual. This can be

compatible with the selfish gene theory, because it can be brought about via the selfish genes seeking

to aid copies of themselves in other animal bodies by damaging the narrower biological interests of the

particular body they currently inhabit. Note also that this biological definition is distinct from the

modelling of the psychological processes which lead to a particular behaviour. Evolutionarily altruistic

acts committed in order to avoid a feeling of guilt, for instance, are psychologically egoistic.

None of the above definitions of apparent altruism are adequate for the social sciences in general,

or economics in particular, because the connection between behaviours which economically benefit

others and fitness in the biological evolutionary sense is no longer present in contemporary societies.

Economically poor people on average breed more and thus have a higher evolutionary fitness in narrowly

biological terms (Simon, 1993). To give another example, economists would wish to model charitable

giving as altruistic, even though it may be performed for psychologically egoistic reasons.

A theoretical framework for distinguishing between economically altruistic and non-altruistic acts

must specify a number of different goods which enter into each individual’s utility function and

distinguish those which are directly beneficial to the individual’s economic well-being. This part of the

individual’s utility function is usually referred to as felicity. This is not the same as the biologist’s

definition of the fitness of either individual organisms or genes, because economic well-being occurs

within a human culture that evolves with a degree of autonomy from the biological sphere. Cultural

evolution, popularised in the idea of memes (Blackmore, 1999), is made possible because of the level

of complexity to which biological evolution has developed the human body, and particularly the brain

(Boyd & Richerson, 1982) (Soltis et al., 1995). However, memetic evolution occurs according to its

own set of rules. Memes such as suicide bombing can spread culturally even though they reduce the

biological fitness of the individuals and groups who adopt them.

The individual in economic theory is a socially constructed cultural and theoretical entity, and thus

distinct from the individual organism of biology. This is sometimes obvious such as when economists

treat firms or families as if they were rational individuals. However, even if the fundamental explanatory

unit in a particular theory is the modelling of individual people’s decisions, there is still not a simple
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overlap between “economic man” and “biological man”. To use the terminology of Thomas Kuhn

(Kuhn, 1970), the concepts used in the two disciplines are incommensurable. Both biologists and

economists talk of “individuals” but the meaning of these concepts depends holistically upon the web

of other concepts in the theoretical scheme, such as rationality or utility. To return to our practical

concern over which goods to consider “economically fundamental”, the ability of an individual to

prosper in a market society depends upon more goods than those which determine narrow biological

fitness. Therefore, although food and shelter should clearly enter into an individual’s economic felicity,

so also should biologically non-beneficial goods such as education.

Not all goods which an economically altruistic individual gains utility from can be counted in the

felicity function, however. For example, if we define “lack of guilty feeling” as a good entering the

individual’s felicity function, then we will define away acts that we would wish to consider economically

altruistic. Therefore, we instead model individuals as maximising weighted additive combinations of

their own felicity and the felicity of other individuals. We are not concerned with the psychological

motivations that lead individuals to behave in this way.1

An appealing analogy may exist between the distinction between economically fundamental goods

and those which are not included in individuals’ felicity functions and the Marxist concept of the

economic base and the superstructure.2 Ultimately the relative success of individuals is determined by

their consumption of economically fundamental resources. However, the production and distribution

of these resources within a particular group is shaped by individual preferences which can include

a concern for the felicity of other individuals. Whether the psychological mechanism for this is

guilt, concern for others, duty to God or whatever, these can be modelled as economically altruistic

preferences. The economic base is served to a greater or lesser extent by particular types of preferences

within the moral superstructure. The success of these morals in helping individuals and groups to

“get on” determines which will spread and propagate. Here, the Marxist view of social change has

been woefully inadequate, in that it fails to take proper account of the perennial tension between the

individual and the group. Modern cultural evolution theory, however, offers a way to overcome this

limitation. Ultimately, the “base” shapes the “superstructure”. However, the superstructure influences

the evolution of the base and has a degree of autonomy from it at any one time (Cohen, 1978).

1Henceforth, this particular concept of altruism shall be referred to simply as “altruism”, but the caveats
expressed so far about the differences compared to other definitions should be kept in mind.

2Note that this parallel with Marxist theory does not imply a commitment to Marxist political conclusions.
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1.2.1 Classifications

We will now consider examples which fit into the different cases enumerated earlier. These range

from true altruism, where there is no ambiguity about the social desirability or divergence between

appearance and motivation of an altruistic phenomenon, to true selfishness. In between, however, are

many cases where the water is muddier.

(1) Apparently altruistic behaviour which is altruistically motivated and is
socially beneficial

The classic case of an altruistic act is one which benefits others at a cost to the altruistic individual,

and where the total benefit conferred is greater than the cost. An individual with truly altruistic

preferences would carry out such an action because it would increase their utility (since this includes

the felicity of other individuals).

(2) Apparently altruistic behaviour which is not altruistically motivated and
is socially beneficial

This is the case of enlightened self-interest; individuals may commit an act in a situation which

at first glance appears identical to the pure altruism case. However, the act may in fact be in the

individual’s rational self-interest once the environment in which the decision is made is taken into

account. Peter Hammond has discussed the subtleties of distinguishing between enlightened self-

interest and true altruism in a game theoretic context, and suggests that the two may not be as

empirically distinct as it first appears, when a refinement to Nash equilibrium is considered which

enables efficient outcomes to be identified as unique non-cooperative equilibria (Hammond, 1975).

(3) Apparently non-altruistic behaviour which is altruistically motivated and
is socially beneficial.

This is not a situation which is normally explored by economists, but it is important to realise,

as argued by Hammond (Hammond, 1975), that observed behaviour will often be explicable both in

terms of rational self-interest and rational altruism. The evidence under-determines the theory. The

argument is usually made that self-interest is more parsimonious, and that therefore altruism should

not be introduced unless it adds explanatory power. However, this indeterminacy can “cut both ways”,

and one of the central arguments of this survey will be that the abstract modelling of bone fide altruism

should occupy a more comprehensive and secure position within economic theory.
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(4) Apparently non-altruistic behaviour which is not altruistically motivated
and is socially beneficial.

Here we have the classic case of some kind of “invisible hand” mechanism leading rational self-

interested individuals to act in a socially beneficial manner. The most famous original proponents of

this idea were Bernard Mandeville (Mandeville, 1732) and Adam Smith (Smith, 1976). Neoclassical

economics has enabled this concept to be fleshed out and formalised in the framework of general

equilibrium theory (Arrow & Debreu, 1954).

(5) Apparently altruistic behaviour which is altruistically motivated and is
socially detrimental.

This is an important case which will be fleshed out in this survey, based on new research into

the consequences of altruistic preferences using an abstract model of sequential punishment. More

genuinely altruistic behaviour does not necessarily lead to a more socially efficient outcome. In fact,

too high a level of altruism will be socially detrimental for generally applicable reasons.

(6) Apparently altruistic behaviour which is not altruistically motivated and
is socially detrimental.

Perhaps the most common example of this category of phenomenon is imperfect altruism, such

as localised altruism within a nation, trade union or business lobby, enabling them to overcome a

collective action problem and increase group welfare at the expense of broader social efficiency. This

can appear altruistic if ones’ theoretical perspective fails to take into account all of the costs imposed.

(7) Apparently non-altruistic behaviour which is altruistically motivated and
is socially detrimental.

This is another important case which will be explored in this survey. Altruistic motivations may

lead to social outcomes which are indistinguishable from those generated in a less altruistic world, and

therefore no more socially efficient.

(8) Apparently non-altruistic behaviour which is not altruistically motivated
and is socially detrimental.

Into this category would fit standard cases of market failure where rational self-interested

individuals are, for whatever reason, not led to behave socially efficiently by the economic environment

in which they make their decisions.
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1.3 Altruism and Social Structure

Section 1.10 surveys the empirical research which has been carried out regarding altruistic

motivation in order to establish a series of “stylised facts”. These can be summarised as: (A) Altruism

towards other individuals is highly prevalent as a motivation for human social behaviour. (B) Real

world altruism suffers from imperfections; meaning that real world individuals do not appear to act

in a way which is consistent with putting an equal weight upon the welfare of all individuals.

Before we examine the empirical research, it is helpful to begin with some anecdotal evidence for

the nature of altruism described above. Statement (A) will be denied by some, and it is undoubtedly

true that methodological individualism as an approach in the social and biological sciences has greatly

enhanced our understanding of Adam Smith’s proposition that behaviour which serves the common

good can emerge from the interactions of entirely selfish individuals. It is therefore illegitimate to

assume that any example of socially functional individual behaviour must be motivated by altruism.

Nonetheless, modern industrial market societies exhibit an enormous level of complex functional

integration. Although economists’ models of the market show why we need only enforce certain abstract

rules (e.g. property rights, prevention of fraud, minimum welfare safety net) in order to achieve an

efficient social order, they do not explain how the set of rules itself can be created, sustained and

adapted to new situations. In other words, the provision of the legal and moral framework for a

market economy is itself a public good, and subject to the free rider problem (Heckathorn, 1990).

The analysis of the repeated prisoners’ dilemma has shown us that although co-operation can

emerge and be sustained in small groups, it is much more difficult with a large number of individuals

playing the game because of the problems of monitoring and the less credible threat of Nash-reversion

or other strategies to punish the individual defector. This is why competition works, but it is also

why some externalities cannot be negotiated away via Coasian bargaining. It is commonly accepted

that public goods games involving a large number of interacting individuals (the global reduction of

carbon dioxide emissions being a perfect case) can only be solved by compulsion or altruism. The

moral and legal framework which is a prerequisite for a functioning market would seem to be a similar

case. It is in each of our self-interest that everyone else respect property rights and refrain from fraud,

but we each can break the rules at great gain to ourselves. Reputation formation may be able to

explain some of the spontaneous formation of a market order, but the problems of underdeveloped
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countries developing proper functioning market economies surely underlines the fact that some kind

of effectively-run co-ordinated unit with power of compulsion (i.e. a benevolent state) is vital.

If we accept theoretically that public goods exist which can only be provided by compulsion or

altruism, and that benevolently-run compulsive institutions fall into that category, the attempt to use

only compulsion to explain their provision leads to an infinite regress. This is because the provision of

the compulsive institution is itself a public goods problem, which can either be solved by compulsion

or altruism. Sooner or later, we must postulate altruistic motivation on the part of some individuals.

This does not of course settle how far back the regress goes. For example, it could be that there is

only one single powerful altruistic individual in the world, who is manipulating the environment of all

the others, who are entirely selfish. This, however, is not very plausible, and it seems more likely that

individuals differ in their degree of altruism, with those more altruistic ones contributing to sustaining

a social structure which can harness the limited altruism of the less altruistic ones (the market economy

being an example of an institutional structure which achieves this).

We now come to statement (B). From the above discussion, the fact that society requires private

markets, a legal system and prisons is itself powerful anecdotal evidence that individuals have greater

or lesser imperfections in their altruistic perceptions and motivations. If this were not the case, we

could have a society more along the lines of a democratic anarchistic society, where all individuals, due

to their perfect altruism, were able to discuss, agree upon the common good and then act in concert.

(Some people might see this as a real political possibility, but the key point is to be clear about the

rationale concerning the type and degree of altruism that would be required of the individuals in society

in order for such alternative political structures to operate efficiently.)

The institutions of a liberal democratic market society, such as markets, legislatures (and

the corresponding rules to facilitate organised discussion), legal systems and law enforcement

agencies can all be seen as altruism amplification devices; they attempt to get the best

possible social outcome from the imperfect altruists who form the “human material” of the polity

(Sober & Wilson, 1999). In “The Socially Optimal Level of Altruism” (Chapter 2), a simplified

abstract model of this process is presented, and it is shown that altruistic preferences are ambiguous

in their effect on social welfare, once they are permitted to interact with a system of social incentives,

implemented via schemes of punishment.
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1.4 The Self-Interest Assumption

The assumption of rational self-interested behaviour has been a highly fruitful one in economic

theory. It has a simplicity and elegance that has allowed economics to live up to its founders’ project of

showing how a socially desirable spontaneous order can arise in market society which encompasses the

knowledge and aims of many individuals (Hayek, 1960). Despite this, in recent years there has been a

growth in the desire to move beyond the self-interest assumption. As we will see in section 1.10, some

of this has taken the form of empirical work demonstrating convincingly that many specific cases of

individual behaviour can be explained more adequately once the self-interest assumption is dropped.

What remains unsatisfactory is the degree to which the standard paradigm of welfare economic

analysis continues to assume that whilst social institutions may ideally be designed by a benevolent

utilitarian social planner, the ordinary individuals who act within them usually remain highly rational

but at the same time highly selfish. The issue of whether this approach is adequate for normative

analysis in economics takes us right to the heart of key issues in the philosophy of the social sciences.

Much of the initial attraction and success of the self-interest assumption, as well as the apparent

explicit basis for the more recent work which has questioned or modified it, is based on a narrowly

“positivistic” view of economics. This label is intended not to refer to a specific detailed position on

the ontology and epistemology of social sciences, but rather to the view, most famously espoused by

Karl Popper, that the value of the social sciences over and above mere superstition is their ability to

make testable predictions (Popper, 1959).

In this light, the attractiveness of the self-interest assumption is clear; it provides a good basis

point for a research programme in the social sciences. This concept was introduced by one of Popper’s

followers Lakatos. He distinguished (Lakatos, 1970) between the core of a research programme, a set of

firm theoretical principles which are not questioned, and the peripheral ideas that are brought into a

theory as it is tested against reality and modified. As time goes on and the possibilities of adaptation

of the core principles become exhausted, it will become clear which areas of reality are difficult to

explain by a particular research programme. Eventually, “progressive” research programmes become

“degenerative” ones, with the peripheral assumptions becoming increasingly incoherent. With this

approach, Lakatos sought to explain the discontinuities in scientific progress which Popper’s theory

found more difficult to explain.
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The core of the standard research programme in economics could therefore be thought of

as individual rationality and self interest, whereas asymmetric information or different equilibrium

concepts would be peripheral components introduced and altered more freely in order to improve the

fit between theory and reality. The recent increase in interest in dropping the self-interest assumption

in empirical applications could be seen as a sign that this research programme has begun to exhaust

the possibilities, so that in certain empirical areas it is time to consider a different research programme.

There are problems, however, with making this the philosophical justification for taking economics

into the arena of altruistic motivation. Firstly, as a predictive framework, the self-interest framework

is still highly productive. It would seem that if altruism is to be introduced into the body of the

economic theory on this pretext, it will remain fairly ad hoc, in the sense that it will only be used

when the self-interest assumption evidently fails empirically. Secondly, one senses that the attraction

of altruism is not merely that it provides an alternative predictive research programme. It can be

argued that economics has neglected a large area of human potential, and left the consideration of

human morality and socialization largely in the hands of sociologists, when there is nothing inherent

in the economist’s arsenal of rigorous tools and techniques which prevents them from being applied in

this area. This kind of thinking, however, requires a more subtle view of the role and potential of the

social sciences in the body of human intellectual endeavour.

Kuhn took a more radical view of progress in the natural sciences than Popper and Lakatos.

He argued (Kuhn, 1977) that the decision between what Lakatos would have called “progressive”

and “degenerative” research programmes (the process which Kuhn referred to as “paradigm shift”)

could never be nailed down to evidence in such a simple way that all scientists could agree which

programme provided the best potential for future development. Whenever paradigm shifts occur,

there are competing considerations or scientific values which must be balanced. Ultimately, only the

conscience of the individual scientist can decide.

A good example of this is Kuhn’s account of the paradigm shift from eighteenth century Phlogiston

theory to the modern paradigm in chemistry. When Phlogiston theory was abandoned in favour of

the theory based on elements in the early nineteenth century, many older members of the chemistry

profession resisted because they remained attracted by the wide degree of physical properties which

Phlogiston theory was apparently able to explain. In contrast, the main attraction of the new theory
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was that despite its limited explanatory scope, it was able to make predictions of mathematically

precise proportions of ingredients in chemical reactions. Eventually, the attraction of the value of

mathematical precision won the day, but it took more than another 150 years for developments in

quantum mechanics to allow the new mathematical chemistry to explain the same breadth of physical

features as the old Phlogiston theory.

The relevance of this analogy for the philosophy of economics is that the decision between different

research programmes or paradigms in economics must also ultimately rest on values such as aesthetic

appeal as well as sheer “number of facts explained” (which is of course a concept incapable of precise

and rigorous operationalization anyway). Another factor which must be considered is the ethical

dimension to the social sciences. Although there is an attractiveness to the view, espoused by both

Kuhn and Popper, that there is nothing inherent in the social sciences which precludes them from

having similar aims and status to those of the natural sciences, it should be admitted that if this view

on the ultimately value-based nature of scientific discovery is correct, then the ethical image that the

social sciences uphold for humanity must also be part of this value judgement. This links in with

the indictment that interpretivist sociologists have made against economics that, to put it crudely, by

developing its intellectual appeal, it helps to create a society of selfish egoists in its own image.

One does not need to accept the radical thesis that there exists no social reality independent of our

theoretical constructs (whether through language, customs or social science) to accept that there is a

great deal of validity in the idea that there is a feedback process between social reality and the concepts

that social scientists use to explain and describe it. Economics has played an ethical role in promoting

market societies, because of the view of many economists that individualistic societies produce greater

economic efficiency and thus a better way of life than societies where people’s economic behaviour is

more closely controlled. From this perspective, the “core” assumptions of economics are not merely

useful components of a predictive framework. They are, rather, central to the ethical vision of human

nature, and its potential when permitted to develop freely, at the heart of economics. The view that

economics should aim to be value free is thus self-defeating and self-deceiving. Pattanaik, for instance,

has argued that value judgements have a necessary place in economic theory, and that, by elaborating

the consequences of normative assumptions, progress can be made in normative theory in a rational

manner, in a similar way to positive economics (Pattanaik, 1971).



16 THE LIMITS TO ALTRUISM - A SURVEY

Consider, for example, the assumption of rationality. In the normative sense that the preferences of

the individual should be sovereign, this is not the kind of proposition that can be proved or disproved.

The fact that people act as if they know what they want does not imply anything about the moral

status of these “desires”. The assumption of rational behaviour at the heart of many models in welfare

economics is therefore much more than just a predictive modelling technique; it is the embodiment in

economic theory of the moral value of a society based on respect for individual autonomy.

Despite its empirical usefulness, the assumption of selfish preferences does not, on the face of it,

share the same positive ethical basis. This, arguably, provides a strong reason to bring the modelling of

altruism into the heart of welfare economic theory. It also changes the emphasis of the level of analysis

from that of empirical explanation of specific phenomena to that of assessing the economic efficiency,

and therefore the social desirability, of different levels and forms of altruism in human societies. If

we live in societies in which people exhibit partial altruism, or altruism in some contexts but not in

others, then this is something that welfare economics must seek to explain, and not be content merely

to assume. Indeed, it is probably the undesirability of making ad hoc assumptions about partial

altruism that has so far led to the cleaner solution of simple self-interest remaining the main workhorse

of abstract welfare economic analysis.

A model in welfare economics will require a number of properties if it is to satisfy the general

prescription laid out above. One of the most important methodological questions which arises concerns

the relationship between the social welfare function and the utility functions which the agents in the

model seek to maximise. If the level of altruism is to be treated as an endogenous variable which

can be altered (e.g. in different societies or via differential socialisation processes in the context of an

existing society) then the possibility must be left open that each individual could be directly acting so

as to maximise the social welfare function. Harsanyi has laid out the requirements for interpersonal

comparability of utility if this benchmark case of perfect utilitarian, or “impartial”, altruism is to be

coherent (Harsanyi, 1986). (See section 1.5.) If we are to justify any kind of arrangement as being

superior to this perfect utilitarian society, we need to introduce additional structure to the model

(corresponding to Lakatos’ peripheral assumptions). The opening quotation by Meade, for instance,

suggests that there might be differences between the political and economic “marketplace” which justify

a different level or kind of altruism as being socially optimal in different “scenarios” (Meade, 1973).
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An interesting analogy to the role of the altruism assumption being suggested here is that of

rational expectations in macroeconomics (Lucas, 1976). Just as there seems to be a kind of logical

inconsistency between the assumption of rational agents with perfect understanding of an accurate

model of the macro-economy and the use by these agents of adaptive expectations, there appears to

be a parallel inconsistency between the assumption of moral human beings who design their society

along the lines of utilitarianism but then act so as to selfishly maximise their own utility. Just as there

are “hidden costs” to processing information which can explain why adaptive expectations are often a

more plausible modelling technique in macroeconomics than rational expectations, there are “hidden

costs” to individual altruism which may explain why it is socially optimal, despite the possibility of a

society of utilitarian altruists within the structure of the model, for people to exhibit imperfections.

1.5 Modelling Altruism

Although altruism has become a somewhat peripheral issue in modern normative welfare economic

theory, it has been an integral and well-recognised part of neo-classical economics for almost as long as

the discipline has existed. Edgeworth and those who further extended his work quickly developed the

implications of altruistic preferences for competitive equilibria in an Edgeworth box (Collard, 1978).

The most important result from this body of work is what is known as the non-twisting theorem.

This states that provided altruistic preferences are non-paternalistic, the contract curve will be the

same as if individuals were fully selfish, except that it will be shrunken (the ends will be cut off) because

extremely unequal distributions will be undesirable for both rich and poor. What is essentially required

for this result to hold is that, in a precisely definable way, altruistic preferences should respect the

relative valuations placed on different goods by the other individuals towards whom the altruism is

directed. A formulation of social utility in terms of weighted sums of felicities will guarantee this. In

the limit where individuals value each other as much as themselves, the contract curve shrinks to a

single point. This is the bliss point for both individuals, since both individuals have the same utility

function. This corresponds to the society of perfect utilitarian altruists introduced above.

The normative analysis of altruism raises some interesting additional issues. Suppose we have a

society containing two individuals, each of whom cares about the other. As we have argued, it is

necessary to distinguish between felicity (represented by V1 (X1) and V2 (X2)), which is a measure of
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the satisfaction that each individual gets from consuming goods, and utility (denoted by U1 (X1, X2)

and U2 (X1, X2)), which is a representation of the overall preferences of the individual as they determine

his behaviour. Having made this distinction, we could take a number of directions in representing the

two individuals’ utility functions. If people care directly about each other’s utility, then it is possible

to get multiplier effects which can have perverse results. These will be discussed shortly. We could, on

the other hand, have each individual’s utility depend on a weighted sum of his felicity and the felicity

of the other. Letting θ be the coefficient of altruism, and X1 and X2 be the consumption bundles

of person 1 and person 2, this situation would be represented as:

U1(X1, X2) = V1(X1) + θV2(X2)

U2(X1, X2) = V2(X2) + θV1(X1)

The potential problem even with this formulation is that increasing the level of altruism

automatically increases the utilities of both individuals, regardless of any effect upon their behaviour.

The sequential punishment model presented in “The Socially Optimal Level of Altruism” (Chapter 2)

nonetheless uses this formulation, because the felicities of the individuals in the model, rather than

their utilities (which we shall call social utility, in order to be clear), form the basis of the normative

assessment of the outcome of the model via a utilitarian social welfare function. This approach,

however, does raise its own set of questions about whether it is legitimate to make a distinction

between felicity and the “moral preferences” embodied in the social utility function. The justification

is that we are seeking to assess moral preferences in terms of their contribution to economic efficiency.

It could, however, be objected that this is an overly narrow view about the benefits of altruism, since

compassion and empathy should be valued in and of themselves. The counter-argument, of course, is

that compassion and empathy can lead to misguided actions, in which case it is hard to see why they

should be automatically desirable.

Figure 1.2 shows a two person pure-exchange economy in an Edgeworth box where individuals are

partially altruistic, with utility functions as specified below, and with θ1 = θ2 = 3
4 . Points c and d are

the bliss points for the two individuals. Due to their partial altruism, and declining marginal felicity

from goods X1 and X2, both would choose not to consume the entire endowment even if they could

dictate the allocation (although, since they are only partially rather than fully altruistic, they would

each like to take more than half).
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Figure 1.2: The shrunken contract curve

Point a shows a possible Pareto-efficient allocation, where there is a tangency between the two

individuals’ indifference curves. Point b also shows a tangency point, but it is not Pareto efficient,

because moving closer to point d will make both players better off. The solid diagonal line represents

all the possible points of tangency between the two individuals’ indifference curves. However, the

contract curve only consists of the part of this line lying between points c and d, because the two

individuals would always bargain away from an allocation involving a level of inequality more extreme

than c and d. Figure 1.3 shows the derivative of the individuals’ marginal rates of substitution at

each X1 value along the tangency line. Only when these are both positive do we have Pareto-efficient

allocations, since only then will the indifference curves “curve away” from each other in the standard

textbook manner, where there is no altruism present.

This framework allows the introduction of one of the most commonly recognised problems with

the translation from altruistic preferences to social outcomes. If the two individuals are indeed single
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X1

MRS1
′ MRS2

′

Figure 1.3: Derivative of the MRS of individuals 1 and 2

individuals, then it is reasonable to suppose that they would bargain to a point on the shrunken

contract curve (i.e. to their unique shared bliss point if they are fully altruistic). However, if the two

individuals in the model are taken to represent groups of individuals then there is a “public goods”

problem in the sense that an individual in group A cannot redistribute to group B as a whole because

a distribution of X to group B only increases the average income of group B by X
NB

(where NB is the

number of members of group B). This implies that redistribution will not occur voluntarily. Hence a

point like b can be a competitive general equilibrium, even though it is not Pareto-efficient.

A degree of state enforced wealth redistribution can, in theory, make both rich and poor better

off in utility terms (essentially, greater equality is a state-provided public good). It should be noted,

however, that this interpretation of group redistribution has already moved away from the assumption

of perfect utilitarian altruism, since it has defined altruistic preferences as depending on the average

utility of other individuals, whereas in a society of fully utilitarian altruists each individual cares for

the marginal benefit of a gift to any individual just as much as that individual cares about himself. The

public goods problem discussed above therefore does not arise in the case of full utilitarian altruism.

Although the alternative modelling approaches mentioned above have not been taken in “The

Socially Optimal Level of Altruism” (Chapter 2), it is worth considering the consequences and issues

that arise with them in order to achieve greater clarity. One possibility is to have each individual’s

utility be a weighted average of the felicities of all individuals (including himself). This approach
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solves the problem which arose above of greater altruism automatically increasing the amount of

utility in the economy. However, from the perspective of the sequential punishment model, it is an

unnecessary complication. It would also be problematic because the model includes an infinite number

of individuals. Although empathy with an infinite number of individuals in the sequential punishment

model may seem unintuitive, it must be borne in mind that each individual need empathise with only

one individual at any one time.

Another, more interesting, alternative approach is to have each individual’s utility depend on his

or her own felicity and the utility of the other individual. This could be represented as follows:

U1(X1, X2) = (1− θ)V1(X1) + θU2(X1, X2)

U2(X1, X2) = (1− θ)V2(X2) + θU1(X1, X2)

When this system of simultaneous equations is solved, we get:

U1(X1, X2) =
1− θ
1− θ2

(
V1(X1) + θV2(X2)

)

U2(X1, X2) =
1− θ
1− θ2

(
V2(X2) + θV1(X1)

)
Even though the utilities of both individuals have been normalised so that they are an average of

their own felicity and the utility of the other individual, we still get a fairly complex multiplier term

at the beginning of each individual’s solved out utility function. This multiplier effect can produce

interesting results in some models. Note however, that as long as certain regularity conditions are

fulfilled (e.g. that θ 6= 1) we can still express each individual’s utility as being ultimately dependent

only on the felicities of all individuals (and, of course, the coefficients in the model). This suggests

that, if we want to abstract away from these multiplier effects caused by altruism, it would seem to be

sensible simply to base individuals’ social utilities directly upon felicities, as outlined above.

Bernheim and Stark have presented a model of marriage partnership which is a good example

of the multiplier phenomenon in action (Bernheim & Stark, 1988). They assume that “females” are

all equally altruistic, but that “males” vary in the degree of altruism towards their partner. Females

choose male partners so as to maximise their own utility. It turns out that under certain conditions,

females prefer a more selfish male partner because then there is less of a cost from the relatively low

utility of the female entering into the utility of the male and then feeding back into the utility of the
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female via the altruism of each partner for the other. Basically, women with difficulty getting utility

from their own felicity (i.e. a low coefficient on their own felicity in their utility function) will prefer

to be with a selfish male partner, who will not care that she is unhappy and whose happiness will

perk her up at least a little bit. This provides a possible justification in economic theory for why “nice

guys finish last” (although the coefficients in the model can sometimes lead the other way, with more

altruistic males being preferred by females who are better able to get utility from their own felicity,

due to the positive “spillover effect”).

The definition of social utility functions in terms of weighted averages of felicities, and the

assessment of outcomes using a social welfare function defined as the simple sum of felicities, requires

ratio-scale interpersonal comparability of felicities (Roberts, 1980). As argued by Harsanyi (Harsanyi,

1986), only once we permit such interpersonal comparisons does it make sense to view the utilitarian

social welfare function as requiring perfect, which he calls “impartial”, altruism (all individuals

weighted equally), and individuals’ social utility functions as falling short of this by exhibiting imperfect

altruism (lower weighting on some or all other individuals than upon onesself).

1.6 Altruistic Punishment

A major contemporary area of concern regarding the desirability of altruistic preferences is the role

of punishment of defectors as a mechanism to achieve socially desirable outcomes. Empirical research

by Fehr and his collaborators (Fehr & Gächter, 2000a) has shown that the ability of agents to punish,

even at a cost to themselves, is of vital importance to prevent more selfishly inclined individuals from

free riding. Fehr et al. have used small scale experimental prisoners’ dilemma style games with real

payoffs to demonstrate that people’s anger against defectors leads them to be willing to altruistically

punish, even when this comes at a cost to them so that it is individually irrational to do so.

The sequential punishment model presented in “The Socially Optimal Level of Altruism” (Chapter

2) examines the issue of punishment and the role it plays as an altruism amplification device from an

abstract perspective. It is similar in nature to an infinitely repeated non-zero-sum stage game, with

the added feature that the level of altruism is endogenous to the normative analysis of the model. The

model demonstrates that there are offsetting benefits and costs to increased altruism. Although more

altruistic individuals are less tempted to commit socially damaging acts, they are also less afraid of
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being punished, because they care about their own utility less relative to that of others. Less altruistic

individuals are also willing to punish the transgressions of others more frequently. It turns out that

for a wide range of parameters, the level of altruism is irrelevant to the conditions required to achieve

the socially optimal co-operative outcome. Under fairly general conditions, too high a level of altruism

will even be counterproductive, and make a socially efficient outcome harder to achieve.

1.7 The Evolution of Altruistic Preferences

Treating the coefficient of altruism as endogenous to the optimization procedure encapsulated in

the model obviously raises the question of how it is that a certain level or type of altruism comes

about, and by what dynamic process this can be changed. This is not an orthodox area for economic

modelling, which usually treats people’s preferences as an a priori assumption rather than something

which can be explained. There are, however, some precedents in the economics literature. There

is also a vast literature in biology and cultural theory on the use of evolutionary theory to explain

human altruistic behaviour. Usually, however, preferences are not explicitly modelled and instead

highly simplified behavioural phenotypes are used.

It has been argued by Oded Stark that family demographics can be better explained through the

passing of altruistic preferences from parents to children by example than by other forms of enlightened

self-interest (Stark, 1995). One of the most interesting of the models discussed is one which seeks to

explain why children’s altruism towards their parents increases once the children have children of

their own. Empirical evidence is cited to show that the presence of children increases the amount of

altruistic behaviour by parents towards grandparents. Stark argues that this occurs so that parents

can set the example to their children to look after them in a similar way when they become old. The

microeconomic basis of such a framework is that there is a certain probability that children will simply

copy the behaviour of their parents rather than do what is optimal for their self-interest.

The dynamic fragility of altruistic preferences has been reflected in models of the psychological

processes which lead to norms of co-operative altruistic behaviour and the potential for government

intervention to negatively impact upon them, resulting in possible welfare loss (Hollander, 1990). Work

has also been conducted on models of mutually reinforcing altruism among individuals in situations

of strategic complementarity such as the workplace (Rotemberg, 1994). Individuals whose preferences
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become genuinely more altruistic may do better if this leads others to be more altruistic towards them.

Other approaches to the dynamic survival of altruistic behaviour have emphasised the connection

between altruism and “docility” due to limited human cognitive abilities (Simon, 1993). The idea here

is that because individuals cannot distinguish between cultural norms which improve their own fitness

and those which require altruistic behaviour, altruism can “piggy-back” on the back of other norms

provided that the overall impact is to improve individual fitness.

1.8 The Multilevel Selection Paradigm

The sociobiological approach would perceive differing levels of altruism as the result of differing

levels of genetic relatedness. However, as we have seen, this does not seem to be adequate in explaining

the role of cultural factors in determining the altruistic interactions between genetically unrelated

individuals which is the vital glue that holds together a complex society, regardless of the degree to

which market forces are relied upon to achieve economic coordination. The functionalist approach in

sociology, most famously associated with the work of Robert Merton, would seek to explain the presence

of a particular level and pattern of altruism in terms of its functionality for the overall social system

(Merton, 1968). This approach, however, can be dangerous if it fails to use a modelling approach based

upon methodological individualism and if it neglects to provide a causal explanation to underpin the

functionalist one.

More recently, the social sciences have seen sophisticated and innovative attempts to use Darwinian

ideas to integrate the functionalist and individualist approaches to the study of human society (Sober &

Wilson, 1999). It has been argued that evolutionary progress has resulted in the functional integration

of smaller units into larger ones via the process of “group selection”. For example, competing strands

of DNA “work together” within cells, as do cells within the body. There seems to be no good reason

to assume that functional integration on the societal level should be impossible, and thus individual

human animals can be seen as working together cooperatively within society in an analogous way.

The multilevel selection approach, however, demands that the explanation for the emergence of

group-functional behaviour also takes into account the potential for conflict between the component

members of groups. For example, sometimes “selfish genes” will take actions that lower the fitness

of the other genes in order to benefit themselves. However, the structure of a DNA strand makes it
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fairly difficult for individual genes to do this. Dawkins uses the analogy that they are like “rowers in a

boat” who are unable to escape their dependence upon each other and so are forced to work together

in order to maximise their own survival chances (Dawkins, 1976). The situation is compatible with

an individualist explanation3 of the functional integration of individual animal bodies because genes

are better off, overall, as part of DNA strands protected within cells and bodies, than as separate

molecules in the outside world. Groups of genes whose “boat” does not tie them together sufficiently

firmly will not succeed in replicating themselves.

The analogy between genes and DNA strands works also between individual bodies and social

structures; social structures, like the organization of genes into DNA strands and cells, help individuals

to overcome their individual selfishness and work together to improve their overall fitness. In this sense,

human society as a totality acts as an altruism amplification device by providing a structure in which

the temptation towards socially harmful acts of individual selfishness is reduced. The existing types

of human social organization must be explained partly by the process of competition between groups

leading to the expansion of more efficient forms of organization and partly by the need for any social

system to contain destructive competition between members, which may require that certain features

be present, the punishment of wrongdoers being a particularly important example.

The “invisible hand” of the market, as rigorously encapsulated in the First and Second Theorems

of Welfare Economics (Arrow & Debreu, 1954), can also be understood within this context as showing

how, provided a complete set of markets is created with well-defined property rights, entirely selfishly

motivated economic activity within this system leads to a mutually beneficial outcome in which all

individuals are made better off than their original endowment. This suggests that social control of

all economic activity4 is not necessary to achieve efficient functional integration at the level of human

society. On the other hand, the temptation of individuals to break the law for their own gain will never

be fully removed due to the evolutionary pressure against functional integration at the individual level,

and so the idealised assumptions of the First and Second Theorems are unlikely to be fully achieved.

Economic theory has other important roles to play in this Darwinian framework because it provides

a set of tools to assess the efficiency of particular institutional arrangements through use of the “ideal

benchmark” of a social welfare function and paradigms for explaining theoretically the success or

3Individualist in the sense of starting from the selfish gene as the fundamental explanatory unit.
4This could be achieved through direct state control or by, for example, a very strict moral code.
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failure of decentralised social systems to achieve efficient outcomes. Normally, the preferences of

individuals are assumed to be fully selfish and other features of the model such as the presence of

asymmetric information or externalities are used to explain the differences in the performance of

market coordination of economic activities in various situations. No reason, however, seems to preclude

treatment of the level of altruism present in individual preferences as an alterable variable that may

have an impact upon social efficiency. The sequential punishment model presented in “The Socially

Optimal Level of Altruism” (Chapter 2) takes this approach.

1.9 The Limits to Altruism

There are three logically distinct facets to the concept of limits to altruism. Firstly, there are

limits to how much there is in society. We shall call these “positive limits”. We shall explore these in

sections 1.10 to 1.16. Secondly, there are limits to how socially beneficial altruism can be. As laid on

in the road-map in section 1.2, there is a key distinction to be made here between particular kinds of

altruistic action, and altruistic preferences themselves. We will focus on these “normative limits” in

section 1.17. Thirdly, there is the question of the broader consequences to the presence of these limits,

particularly for normative policy issues. We explore these in section 1.18

1.10 “Stylised Facts” About Altruistic Behaviour

The idea that human beings are motivated partly by altruistic and partly by selfish objectives, and

that individuals differ in the degree to which they exhibit these types of preference, is fairly intuitive

and non-controversial. Explaining why this pattern should emerge is more difficult. Thus far, we have

considered the overall role that economic theory can play in helping to explain the altruistic behaviour

we observe. We will now consider evidence from empirical economics for the “stylised facts” about the

imperfections of real world altruism that the models presented in sections 1.17 and 1.19 are needed to

help explain. These can be summarised as:

(1). Altruism is often present as a motivating factor in the economic realm.

(2). Altruism is frequently subject to imperfections.

(3). These imperfections differ between individuals.

(4). Malevolence is frequently evident.
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Our aim in the following sections will be to substantiate the above statements. Before considering

the empirical evidence in detail, it is helpful to quickly summarise the areas of empirical economics

where evidence of altruism can be found. Firstly, there are results of experiments where individuals

play games with small payoffs (usually, but not always, in cash form), some of which have already

been mentioned. Secondly, there is the evidence of individuals making charitable donations and

contributing voluntarily to the provision of public goods. Closely connected, there is thirdly the issue

of parental bequests to their offspring. A fourth body of evidence comes from responses to surveys

about willingness to pay for certain public goods, such as environmental protection. There is, finally,

evidence of limits to altruism from issues of international political economy.

1.11 Experimental Economics

One of the most obvious areas of empirical research in economics that provides evidence of the

failure of the assumption of rational self-interested behaviour involves the use of experimental games

with small (usually monetary) payoffs. The classes of game most commonly played are the ultimatum

game, the public goods game, the prisoners’ dilemma, the centipede game and the bargaining game. In

all these cases, it is well established that the observed behaviour conclusively violates the predictions

of the standard theoretical framework based on rational self-interest. However, since self-interest must

always be combined with other assumptions, such as full knowledge of common rationality, it is always

open (but with varying degrees of plausibility) to consider these peripheral assumptions as having been

falsified, rather than self-interest itself.

1.11.1 The ultimatum game

The “ultimatum game” is played between two individuals. The first individual proposes the division

of £1 between the two individuals and the second individual can either accept the offer or refuse, in

which case both get a payoff of 0. If both individuals are entirely rational and selfish, and there

is full common knowledge of rationality, non-co-operative game theory would predict that the first

individual will offer the smallest amount they can that is higher than 0 (i.e. 1p) and that the second

individual will accept. However, when the game is played in experimental situations with real people,

the predicted outcome occurs extremely rarely, and there is significant variation between cultures
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regarding the amount that the first individual offers to the second.5 It is clear, therefore, that in most

cases individuals are constrained from fully selfish behaviour by moral norms. Not only are people in

the position of individual 1 observed to offer more than the minimum to the second person, if the offer

is not generous enough, people in the position of individual 2 are observed to refuse the offer, even

though this is economically irrational for them.6

The research into the ultimatum game and some variants has revealed a number of other important

phenomena. Camerer and Thaler also cite experiments comparing the ultimatum game to the dictator

game, where the second individual is simply forced to accept the allocation proposed by the first

individual (Camerer & Thaler, 1995). In the dictator game, offers are usually lower than in the

ultimatum game, but not as low as predicted by pure self-interest. This shows that the offers in the

ultimatum game are being partly driven by a desire of the proposer to be fair and partly by fear that

the second individual will refuse. Other experimental results referenced in the same paper show that

changes in the framing of the question (which should be irrelevant to the strategies played if individuals

are self-interested), such as whether the proposer is chosen randomly by a lottery or arbitrarily by the

researcher, and whether or not the income is described to have been “earned” by the proposer, can

make a significant difference to the altruism exhibited by the proposer towards the second individual.7

Andreoni and his collaborators (Andreoni et al., 2003) have extended the ultimatum game to

convexify the strategy space of the second individual by allowing them to continuously shrink the “pie”

after the allocation is chosen by the proposer (the standard ultimatum game allows a discontinuous

choice only between 100% and 0% in terms of the possible moves by the second individual in this

convexified ultimatum game). This has the advantage that the experimental data becomes sufficiently

rich to allow the axioms of revealed preference to be tested. They find that the behaviour of

experimental subjects is compatible with the hypothesis of rational altruism.

Individuals have preferences not just over their own money payoff, but over the money payoff of

the other individual. These preferences can be both “benevolent” and “malevolent” in the sense that

if an individual has a high monetary payoff relative to others, then they gain utility when others get

a greater monetary payoff, but if the other individual is already better off in monetary terms then

5The empirical evidence has been summarised (Camerer & Thaler, 1995) as showing that offers are usually
between 30% and 40%, with the mode often being 50%.

6Very few offers are below 20%, and those which are this low are often rejected (Camerer & Thaler, 1995).
7Clark finds similar evidence for framing effects in a game where individuals can make costly votes to reduce

outcome inequality (Clark, 1998).
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the individual’s utility is decreasing in their opponent’s monetary payoff. These types of rational

inequality-aversion explain why it is rational for individuals to make more equal offers at their own

material expense and to “refuse” (in the sense of partially or fully shrinking the pie) unequal offers,

again at their own material expense. Andreoni finds a very similar result with experiments using the

dictator game (Andreoni & Miller, 2002).

1.11.2 The public goods game

The public goods game involves a situation where a number of individuals must choose whether

or not to contribute to a public good. Each unit of contribution produces more than 1 unit of the

public good. This is split over the N individuals, however, and so it does not pay each individual to

contribute if they are self-interested, because they are still able to free ride on the contributions of other

individuals. The evidence has been summarised (Dawes & Thaler, 1988) as showing that contributions

are usually in the region of 40%-60%.8 When the game is repeated with the same individuals playing,

the average level of contributions tends to drop over time. Fehr and Fischbacher argue that this can

be explained by a model in which the desired level of contributions depends upon the amount others

contribute9, but that desired contributions climb at less than a slope of one, either because there are

selfish individuals present or because altruistic individuals are not completely willing to match the

contributions of others (Fehr & Fischbacher, 2003). This causes the levels of contribution to the public

good to “unravel” over time.

Framing effects have also been found to be significant in public goods games. It has been found

(Andreoni, 1995b) that the level of contributions is significantly affected by whether the public good is

seen as the provision of a positive benefit or the avoidance of a bad externality, even though the payoff

structure is identical in both cases. Such results could only be explained if individuals have utility

functions which value the size and structure of changes to outcomes, as well as final outcomes. Other

research which shows that allowing group discussion before contributions are made greatly increases

the contribution level (Dawes & Thaler, 1988). This may be because people are induced to make

promises to contribute, which they then feel are binding, or because they get to know the members of

their group, and thus feel more altruistic towards them. Interestingly, when individuals are split into

8Andreoni considers whether this is due to imperfect rationality or altruism, and concludes that both play
a part (Andreoni, 1995a).

9This would require some kind of altruistic preference for reciprocity (“if others contribute then so should
I”).
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groups but the beneficial externality goes to another group, the result is reversed and free riding is

reinforced because the group agree together to act in their group self interest and refuse to contribute

to the intergroup public good. This is strong evidence for the narrow-group-based nature of human

co-operation which, as we shall see later, relates closely to explanations of the evolution of altruism

based on group selection.

1.11.3 The prisoners’ dilemma

The main empirical anomaly for the self-interest assumption that concerns the prisoners’ dilemma

is the observation that co-operation occurs in a finitely-repeated prisoners’ dilemma game when the

well-known backwards-induction argument should lead co-operation to unravel and defection to occur

from the first period onwards. Andreoni and Miller conclude on the basis of experimental evidence

that rational reputation-building on the part of most agents plus true altruistic behaviour on the part

of a minority offers the best explanation for this phenomenon (Andreoni & Miller, 1993).

1.11.4 The centipede game

The centipede game is a sequential-move game with finite length in which two players get chances in

sequence either to take the larger of two payoffs on the table, or to pass, in which case both payoffs are

multiplied by a factor. After N alternating moves (N2 for each player), the game ends. By backwards

induction, the last player to move will take the larger pile, since otherwise they get nothing. Since the

payoffs are set up so that the larger pile at the N − 1th move is bigger than the smaller pile at the N th

move, the penultimate player to move will take the larger pile. Therefore the player at the N − 2th

move will also take the larger pile. By backwards induction, this reasoning can continue to be applied

to show that the first player to move will take the larger pile, even though if the two players could

co-operate they could end up with massively higher payoffs.

McKelvey and Palfrey conduct experimental centipede games and find that typically players pass

for a number of periods before somebody takes the larger pile (McKelvey & Palfrey, 1992). They

explain this using the idea that a proportion of the population is altruistic, and that selfish individuals

can pretend to be altruistic in order to get their opponent to co-operate. By calibrating the model to

their data, they estimate that 5% of the population is believed to be altruistic.
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1.11.5 Bargaining games

Unlike the other games, bargaining games do not have sufficient structure to make unambiguous

equilibrium predictions. Assuming individuals are selfish, however, co-operative game theory does

unambiguously predict that no player will bargain to an outcome that is worse than their status quo

payoff. Hoffman and Spitzer have used experimental bargaining games to show that this prediction

is violated (Hoffman & Spitzer, 1985). Given a chance to work together in a co-operative endeavour,

individuals seem willing to share payoffs equally even when their outside options are unequal.

1.11.6 The nature of human altruism

Ernst Fehr and a number of collaborators have recently worked on a synthesis of the results of

experimental economics with evolutionary theory (Fehr & Fischbacher, 2003) (Fehr & Gächter, 2002a).

They argue that empirical results such as the ones outlined above can only be explained by the presence

of what they call strong reciprocity in human motivation (Fehr & Gächter, 2000b). Weak reciprocity is

the form of altruism that can be seen as enlightened self-interest10 – individuals do each other a good

turn because they rationally expect to be “paid back”. However, this limited form of altruism is not

sufficient to explain the complex functional integration of human societies consisting of insufficiently

genetically related members, and is also insufficient to explain the observed experimental regularities.

Strongly reciprocal altruism can take a positive and negative form, where individuals either help or

harm others at true material cost to themselves. This acts as the “glue” that holds social institutions

together, because the willingness on strong reciprocators to punish cheats even at cost to themselves

forces selfish individuals to also behave themselves. Fehr and Gachter find that the ability of players

to make costly punishments significantly increases the level of co-operation in the public goods game

(Fehr & Gächter, 2000a).

The importance of the willingness of individuals to engage in altruistic punishment has also been

reflected in recent work on cultural selection theory. Altruistic punishment is the main mechanism by

which social organization can act as an altruism amplification device, because it is usually less costly

to punish another individual (e.g. by ostracising them) than it is to make an altruistic sacrifice for

their benefit (Sober & Wilson, 1999).

10Category (2) in the road map.
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1.12 Voluntary Giving

The empirical result that the rational self-interest assumption does not correctly predict subjects’

behaviour in experimental public goods games, along with the casual observation that people do in

fact contribute en masse to public goods using both their time and their money, has led to attempts

to develop microeconomic models of charitable giving that fit real human behaviour.

Andreoni constructs a model of contributions to a public good, where individuals must choose how

much of their wealth to donate to the public good, with the rest being privately consumed (Andreoni,

1990). He shows that a pure altruism model, where individuals care only about their consumption

of the private good and the overall amount of the public good provided, fails to explain important

empirical phenomena. A pure altruism model predicts that forced donation to the public good (e.g.

through taxation) should be completely crowded out by reduced contributions, because the individual’s

budget constraint, given expected contributions by everyone else, will remain unchanged, and so the

optimally chosen combination of private and public goods consumption will also stay the same. The

evidence, however, shows that crowding out is much smaller than this.

A pure altruism model also predicts that, assuming everyone has identical wealth and preferences,

subsidising voluntary donations by a certain amount will be identical to taxation because the subsidy

per unit of donation will be removed from the representative individual’s wealth level, leaving the

opportunity cost of donating unchanged. This renders the policy of subsidising donations unjustified.

By replacing the pure altruism model with a model of impure altruism where individuals also care

about their specific donation, the empirical regularities can be more adequately explained, and the

subsidization of private giving can be shown to result in a greater increase in contributions than the

equivalent direct expenditure on the public good from taxation. Sugden similarly argues that pure

altruism cannot explain the observed behaviour of contribution to public goods (Sugden, 1982).

Frank et al. find evidence for the theory of warm glow as opposed to pure altruism in data on

charity care by private nonprofit hospitals in the US (Frank et al., 1996). McGranahan finds evidence

from 17th century wills which supports the existence of a combination of altruism and warm glow

motives for charitable bequests (McGranahan, 2000). Freeman studies volunteer labour supply and

finds results compatible with the warm glow hypothesis; individuals are discerning about the causes

they support and make rational decisions whether to donate time or money (Freeman, 1997).
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Sugden explicitly models reciprocal preferences by considering individuals who follow the moral

norm that “if everyone else provides at least their fair share in my eyes then so should I” (Sugden,

1984). This turns the public goods provision game from a prisoners’ dilemma into an assurance game,

where there will be multiple equilibria but only one of which will be Pareto efficient. This is an impure

form of altruism because people’s perception of a fair contribution depends upon their valuation of the

public good, whereas a pure altruist would value it at the sum of the valuations of all individuals.

1.13 The Economics of the Family

1.13.1 The “rotten kid” theorem

The application of economic methodology to the study of the family was pioneered by Gary Becker.

The most famous result to emerge from his work is the “Rotten Kid Theorem”

(Becker, 1974) (Becker, 1981). This could be thought of as a theory of how the family can act

as an altruism amplification device. The theorem states that all members of a family will behave

efficiently, even if they are completely selfish (or imperfectly altruistic) provided that the head of the

family is sufficiently altruistic to make an operative transfer. (The head of the family is defined as the

member who has sufficient private income to make positive transfers to all other family members due

to altruism.) The head of the family thus provides an “altruistic linkage” between all other members.

Suppose we examine the decision of a “rotten kid” (selfish family member) over whether to take

an action that increases or decreases their pre-transfer income at the expense or gain of another family

member. The head of household will take into account the decision made by the rotten kid when

deciding how big a transfer of resources to give him. In other words, the head of the family ensures,

through the alteration of the size of the transfer, that the rotten kid gets a share of the total family

wealth as determined by their need relative to other family members, as perceived by the family head.

Any action which increases the overall collective family wealth therefore makes the rotten kid better

off. The rotten kid thus behaves fully efficiently; the operative altruistic transfer from the family head

ensures that they fully internalise the costs and benefits their actions cause to other family members.

The technical conditions required for the Rotten Kid Theorem to hold were clarified by Bergstrom,

who concluded that, although not universally applicable, it is still valid in many situations (Bergstrom,

1989). The requirement is that the actions taken by the rotten kids must be of such a nature that they
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cause a shift rather than a change in the slope of the family’s utility possibilities frontier. This ensures

that the family head, provided she is non-paternalistic and benevolent towards all family members,

will definitely reallocate income so that the rotten kid is better off individually when he takes an action

which expands the family utility possibilities frontier.

When rotten kids can take actions that distort the slope of the utility possibilities frontier, the

rotten kid theorem no longer applies and they may take inefficient actions from the perspective of the

family. It has been pointed out (Bruce & Waldman, 1990) that one of the main situations in which

this condition does not apply is when there is a moral hazard problem between the head of the family

and the rotten kid due to certain goods in the rotten kid’s utility function not being under the direct

control of the head of household via the transfer process. This is also known as the “Samaritan’s

Dilemma”. Andreoni has described the problem as that when parents can be manipulated by children

into “spoiling” them then they do become “spoilt rotten” (Andreoni, 1989).

1.13.2 Evidence on transfers and “altruistic linkage”

The Rotten Kid Theorem emphasises the importance of transfers between family members. One

of its main empirical predictions is that redistribution of income between family members should

not affect the distribution of consumption. This prediction has been tested on data on the US

extended family (Altonji et al., 1992) and the Japanese extended family (Hayashi, 1995). Both studies

found conclusively against the hypothesis that extended families are “altruistically linked” by a single

head. Although this does not necessarily show imperfect altruism on the part of individuals within

an extended family, since there are other factors such as asymmetric information and non-operative

transfers in play, it is at least suggestive.

Empirical evidence (Altonji et al., 1997) also shows that the theory of pure altruistic linkage cannot

explain other phenomena such as the responsiveness of inter-vivos transfers to changes in parental and

child income. Altonji et al. argue that introduction of a “warm glow” factor into the model could

allow this to be better explained. Bernheim and Bagwell have argued that the central flaw with the

traditional model of the altruistically-linked dynastic family is the single-linkage assumption, because,

once multiple linkages are recognized as part of “dynastic networks”, such a framework has absurd

implications which are clearly empirically false (Bernheim & Bagwell, 1988).
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The altruism-based model of transfers within the family has also been challenged by the “exchange”

approach, which sees the family as an institution enabling insurance contracts to be made between

self-interested members. It is difficult to settle the issue empirically due to the similarities in the

predictions of both frameworks (Kotlikoff & Spivak, 1981). Some studies have found that exchange is

a more important explanatory factor than altruism (Cox, 1987) (Cox & Rank, 1992). Altruism has

still often been found to improve the explanatory power of models which explicitly take into account

such possibilities, however (Tcha, 1996) (Sloan et al., 2002). It has been argued that the altruism,

exchange and warm glow models should not be seen as mutually exclusive and should be integrated

together in a pragmatic manner (Stark & Falk, 1998).

1.13.3 Bargaining models of the family

The empirical failure of models based upon the notion that decisions within the family can

essentially be modelled as being made by a single head has led to a body of work applying bargaining

theory to decisions within the family. The most commonly used framework is that in which a husband

and wife with differing interests bargain over the allocation of resources within the family. It has been

found that although the empirical evidence rejects the hypothesis of decisions being made in accordance

with a single household utility function, it does fit the hypothesis of efficient bargaining between

members with differing, even if partially altruistic, utility functions (Chiappori, 1992) (Browning &

Chiappori, 1998). This therefore constitutes strong evidence for imperfections to altruism even within

the nuclear family. Research on divorce has found evidence that such efficient bargaining breaks down,

resulting in a reduction in child welfare (Weiss & Willis, 1993) and the idea of bargaining between men

and women has also been used to explain out-of-wedlock childbearing (Willis, 1999).

1.13.4 Biased altruism

Some of the most interesting evidence on the imperfections to altruistic motivation within the

family comes from the study of unequal treatment of children on the basis of gender, birth order and

biological relatedness. Researchers into differentials in wages and human capital investment between

males and females in the US (Behrman et al., 1986) have attempted to determine whether or not this

is driven by greater weight upon the success of male children in parents’ altruistic utility functions.

The conclusion of this study was that existing wage differentials reinforce inequalities in human capital
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investment, but that parents do not, at root favour boys (in fact, if anything, the raw weighting

on the welfare of girls is slightly higher). A similar study of the Phillipines (Davies & Zhang, 1995),

however, found evidence for pure gender bias in parental preferences, underlining the fact that altruistic

imperfections are culturally relative.

Research has also been conducted into why first-born children tend to do better in terms of

measures of life success than children born subsequently to the same parents (Behrman & Taubman,

1986). The conclusion is that this is due to natural endowment effects rather than parental favouritism

(as with gender bias, it may again be the case that parents compensate by weighting later-born children

slightly more). Evidence on the treatment of step children in the US (Case et al., 1999), on the other

hand, suggests that they do receive a smaller proportion of family income on food if they live with a

stepmother, after controlling for income.

1.13.5 Discount rates

Research into the discount rates parents are revealed to apply to their children’s welfare in

making costly decisions related to children’s health, as measured by lead contamination, has shown

them to be similar to market interest rates for wealthier parents and higher for poorer parents, but

nowhere near as high as the discount rates of 20% - 50% found to be applied to consumer durables

(Agee & Crocker, 1996). This suggests a strong degree of parental altruism towards children.

1.14 Bequests

One of the most important topics concerning altruism in economic theory is that of bequests, most

often from parents to children. There are two dimensions to this issue. The first is the microeconomic

question of what motivates people to leave bequests. The second is the macroeconomic question of the

implications of bequests for the role of government debt, income inequality, savings and investment and

economic growth. Evidence in both these areas is potentially relevant to the existence of altruism, and

its imperfections, because the answers to questions in the dimension of motivation have macroeconomic

implications, and vice versa. There is a massive body of empirical research in this area, so we will only

be able to take a cursory look at the main issues and findings.

Bequests have been estimated to account for about 80% of net private wealth in the US

(Kotlikoff, 1988). A number of potential explanations have been offered for why parents leave bequests.
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It may be due to a genuine altruistic concern for children’s well-being. Such altruism may be of the

“pure” or “warm glow” kind, as we will discuss in further detail below. Bequests may, on the other

hand, be accidental, as a result of the parents dying earlier than they expected, and thus being unable

to consume their entire wealth. A more sophisticated variation on this theme, which can potentially

explain a greater role for bequests, is the theory that children and parents enter into a contract that

parents will leave positive net wealth in return for children supporting them if they live longer than

expected.

The microeconomic evidence for the importance of altruism in determining bequests is mixed.

However, a reasonable conclusion would seem to be that there is genuine but imperfect and

heterogeneous parental altruism towards children. Studies have found that inter-generational altruism

is a plausible explanation for observed bequest behaviour (Adams, 1980), that individuals value

bequests as highly as their own consumption11 (Kuehlwein, 1993), that bequest behaviour reflects a

high degree of heterogeneity, arguably driven by differences in preferences, even among a high income

US sample (Laitner & Juster, 1996), and that there are statistically significant differences in bequest

behaviour due to differences in income level, race and head of household gender (Kurz, 1984).

A pure altruism model of parental bequests is problematic. If parents are directly concerned with

child utility, they should give different bequests to different children based on the children’s income.

Empirical evidence, however, does not support this prediction (Wilhelm, 1996). Parents tend to give

equal bequests regardless of their children’s differing situations. This suggests that some kind of impure

“joy-of-giving” model where it is the size of bequest that enters directly into the parental utility function

would be more realistic. It has been shown (Abel & Warshawsky, 1988), however, that in terms of the

overall macroeconomic implications, the two theories are interchangeable in that empirically observed

joy-of-giving parameters imply imputed coefficients of altruistic preference for children’s welfare that

are not implausibly high.

The resistance to accepting the primacy of parental altruism as the cause of bequests comes

primarily from its macroeconomic implications rather than from the microeconomic sphere. In a

seminal paper (Barro, 1974), Robert Barro showed that if parent and children are altruistically linked

into a “dynasty” by a planned positive transfer of wealth (an operative transfer) either from parent

11Interestingly, this was even found to apply to individuals without direct heirs, providing evidence for more
generalised altruism also.
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to child or from child to parent, then cutting taxes and issuing government debt will have no effect

on consumption expenditure because it does not alter the dynastic budget constraint out of which the

altruistic parent (or child in the less frequent case of a child making the operative transfer to a parent)

distributes income. This is the famous Ricardian Equivalence Theorem, which implies that government

debt does not either crowd out private investment or cause a trade deficit. The traditional Keynesian

view, however, is that government debt does crowd out investment and net exports. Although more

recent attempts to weight the evidence have questioned the empirical rejection of Ricardian equivalence

(Seater, 1993), other strong neutrality results not borne out by empirical evidence can also be shown

to hold if the altruistically linked dynastic model is true, such as the invariance of inter-temporal

consumption to inter-generational redistributions of income. (Kotlikoff, 1988).

It is thus probable that not all families are dynastically linked, because they do not have sufficiently

strong altruism towards their children to make the transfer operative. (Note that, as argued by

Bernheim and Bagwell, the observation that some people do not have children is not a good basis for

an argument against Ricardian Equivalence because, going back far enough, all human individuals are

related (Bernheim & Bagwell, 1988).) These are, of course, only a few among many reasons why these

neutrality results are unlikely to hold fully in the real world. The use of the altruistic bequest motive

in overlapping generations policy simulation models has now become commonplace (see, for example,

(Altig, David et al., 2001)) and the consensus view would seem to be that it provides the best fit for

building realistic models (Rangazas, 1996) compared to alternative theories.

1.15 Environmental Goods

Environmental goods are one of the most commonly examined types of public good for which there

is evidence that individual valuations depend to some degree upon altruistic preferences. Much of this

evidence comes from the use of the contingent valuation methodology, which asks survey respondents

to give a valuation of a particular environmental good in a particular context. This method can be

justified (Hanemann, 1994) on the grounds that its results have been found to match up reasonably

well in specific cases with the findings of the traditional revealed preference approach. Hanemann

concludes that although contingent valuation is subject to potential biases and inaccuracies, so also is

revealed preference.
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A study of voting behaviour in a Californian referendum on tightening water quality regulation

(Holmes, 1990) found evidence for altruistic as well as selfish motivation for voting behaviour. A proxy

was constructed for an environmental altruism variable using the residuals from regressing the results

of an earlier Senate race, fought between a Democrat with a strong environmental voting record and a

business Republican, on variables to proxy partisanship and a vector of self-interest variables. It was

found that this proxy variable had a statistically significant impact upon voting in the referendum.

This suggests an independent role for altruistic preference in contingent valuation as evidenced in

voting behaviour, although the effect would be reduced and possibly eliminated if some variables were

missing from the vector of self-interest variables.

Research on the relationship between environmental valuations reported in survey data and life

expectancy (Popp, 2001) has also found evidence of a role for partial altruism. If people are fully

altruistic, their life expectancy should not affect their contingent valuation of environmental goods.

On the other hand, if they are fully selfish, the valuation should be, on average, zero as life expectancy

goes to zero. The evidence, however, rejects both these hypotheses, suggesting the presence of partial

altruism. The central estimate is of an equal weighting between individual welfare and the average

welfare of future generations, but this estimate is very sensitive to the assumed discount rate.

Weak evidence has also been found (Weaver, 1996) of a role for altruistic valuation of environmental

goods in production as well as consumption decisions. The decisions of Pennsylvania farmers to invest

in particular technologies were found to depend upon the valuation of environmental goods as well as

narrow profit motives.

The precise manner in which additional factors over and above self-interest drive the contingent

valuation of environmental goods remains unclear. Some evidence indicates that the altruism here is

connected with the desire of individuals to make a “fair” contribution rather than being driven by pure

altruism (Stevens et al., 1994).

1.16 International Comparisons

Some of the most striking evidence for imperfections to altruism comes from the realm of

international political economy. A 1998 study which sought to estimate the marginal cost of additional

life expectancy in different countries found that the implicit valuation of a life year in the richest
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countries was 300 times that in the poorest countries. Once difference in average life expectancy are

taken into account, the cost of saving an entire lifespan in the richest countries came to 1000 times

that of the poorest countries (Dowrick et al., 1998).

One of the most documented phenomena in comparative political sociology is the difference in

the extent of the welfare state between the US and the EU countries.12 It has been argued (Alesina

et al., 2001) that the most convincing explanation of these differences lies in differing attitudes to the

poor, with Americans being more likely to view the less well off as lazy and responsible for their own

situation.13 This was demonstrated by regressing responses to an attitude survey on various possible

causal variables. It was found that the dummy variable on the US remained statistically significant,

demonstrating “American exceptionalism”. The authors of this study tentatively suggested that racial

fragmentation may be the causal factor, since the inclusion of a racial fragmentation index resulted in

the dummy variable on the US becoming statistically insignificant.

1.17 Normative Limits

The volume of mainstream economics literature provides a number of powerfully suggestive reasons

why altruism (of the fully utilitarian rather than “average utility” form) will have costs as well as

benefits to society. These come about through the abandonment of the stringent assumptions of the

non-twisting theorem (essentially also those of the perfect competition general equilibrium model).

One area that has been given extensive consideration is the compatibility of profit-making

behaviour with altruistic motivation. Is an altruistic society necessarily a non-market one, and is

it necessary for individuals to be selfish for a market society to operate efficiently? Becker has made

the point that if owners of firms are altruistic towards other individuals, it is more efficient to give

money away to the poorest than to subsidise the price of goods below marginal cost (Becker, 1981).

This of course assumes that the market in which the altruistic firm operates does not in the first

place suffer from market failures such as externalities, which would require self-imposed “subsidies” or

“taxes” of a fully altruistic firm in order to internalise the externality.

12General government spending makes up 36% of GDP in the US, but an average of 48% in the European
Union. Subsidies and transfers make up 11% of GDP in the US and 20% in the EU, thus accounting for
three-quarters of this difference. The primary difference would seem, therefore, to be in the redistributive role
of the state.

13A similar study (Freeman, 1984) found that differences in “personality type” in different countries helped
to explain the size of the welfare state.
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Even in the presence of market failure, the desirability of acts of “corporate social responsibility”

also depends heavily upon informational considerations. Altruistically motivated behaviour requires

that agents know the preferences of others, so that they are able to act so at to make them happier. A

number of economists (Baumol, 1975) (McKean, 1975) have argued that whilst moral systems based

on altruistic motivations work well in the case of maxims like “Do not be rude to people”, they are

unlikely to work in the case of rules such as “Do not produce too much pollution” because the issue of

how much pollution is socially optimal depends on information which simply is not available in such

a form as to elicit a social consensus, even among a society of perfect altruists. Thus some issues

should be left to regulation through the democratic system rather than unilateral attempts to act in

an “ethical” manner by firms. The democratic system will be better able to predict, and thus regulate,

firm behaviour if it can expect that they will act in a clear profit-maximising manner.

Limitations to the potential for altruistic socially responsible behaviour also apply to individual

consumers as well as firms. For example, take the issue of the choice to buy organic foods. Assume

firstly that these are more expensive than the non-organic versions and secondly that the felicity from

consuming the two alternative products is the same. Assume also that both markets are competitive

and operate in the same regulatory system so that there are no issues of monopoly or exploitation of

labour. Compare two individual policy options. (1) Buy the more expensive organic product. (2) Buy

the cheaper normal version and donate the relative saving to the poor. If the organic product is more

expensive because it reduces a harmful externality with value in excess of the price difference, then

there is a trade-off between the more efficient option (1) and the more equitable option (2). If, on the

other hand, the organic option simply uses more resources (e.g. land, labour time) then option (2) is

superior on both efficiency and equity grounds. It may be very difficult for a consumer to have the

necessary information to make the optimal decision.

There are normative limitations not just to particular manifestations of altruistic behaviour, but

to altruistic preferences themselves. A major possible drawback from altruistic motivation is that it

may serve an antisocial purpose by helping specific groups to achieve rents via collective action (e.g.

business lobbies, labour unions, cartels). As the application of the economic theory of public goods

to political collective action shows (Olson, 1965), groups whose members feel more altruistic towards

other members of the same group will be more successful at overcoming the free rider problem in their
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political collective action, and will be able to extract rents from the rest of the population in a socially

inefficient manner. If it is very difficult to achieve generalised other-regarding preferences (as seems

likely) then it may be better for people to be fully selfish rather than partially and selectively altruistic.

A specific application of the nonmonotonicity of altruism due to collective action effects is in the

structure of collective wage bargaining institutions (Calmfors & Driffill, 1988). If unions are able to

overcome the collective action problem at the industry level, this can result in higher wages and higher

unemployment than a competitive labour market, or where collective bargaining occurs at the firm

level. This is because the labour demand curve faced by a union is less elastic at the industry level,

because consumers cannot go elsewhere for substitutes. If bargaining occurs at an economy-wide level

through an incomes policy, on the other hand, the central union knows that it will only push up prices

if it pushes up all wages, and so will exercise more restraint in nominal wage demands.

Moral hazard between altruist and beneficiary is another cause of normative limitation to altruism.

This kind of effect relies upon some existing asymmetry in the altruism level of individuals, since if all

individuals were fully altruistic they would not be tempted to do anything harmful to others. Stark

and Bernheim present a version of the Samaritan’s Dilemma (Bernheim & Stark, 1988). Take a three-

stage game. Agents A and B each start off with a certain level of resources. First agent A decides

how much to consume in period 1. Agent B then chooses his period 1 consumption. Agent A then

chooses her period 2 consumption, transferring her residual resources to agent B. Suppose also that

agent A is partially altruistic towards B whereas agent B is fully selfish. Agent B will have an incentive

to consume an inefficiently high amount of his resources at stage 2, since he knows that agent A will

compensate him for this at stage 3. In order to reduce agent B’s incentive to do this, agent A will then

consume an inefficiently large amount of her wealth at stage 1. This can lead to an outcome where

higher altruism on the part of agent A results in a less efficient outcome.

1.18 Consequences

A central argument of this survey is that it would be desirable for variations in the level of altruism

exhibited by agents to be a standard feature in analytic modelling, in a similar manner to imperfect

information. This may potentially have far-reaching implications. Firstly, the impact of the presence of

altruism has been analysed in the context of the theory of cost-benefit analysis. It has been shown that
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in the presence of non-paternalistic altruism, household willingness to pay for a public good exceeds

the sum of individuals’ willingness to pay (Quiggin, 1998). An attempt to estimate the results of the

presence of paternalistic altruism on the value of statistical life by calibrating to 2.5 individuals per

altruistic family predicted that this value is 10%-40% higher than the individual value (Jones-Lee,

1992).

A number of overlapping generations models of environmental degradation have shown that the

presence of partial altruism does not guarantee an efficient internalization of these externalities (Jouvet

et al., 2000) (Turner, 1997). It has also been found that co-operation between nations to internalise

current environmental externalities may lead to a deterioration of future environment relative to non-

co-operation because improved environmental technology frees up more resources for consumption

(John & Pecchenino, 1997). The first-best solution requires internalization of the inter- as well as

intra-generational externalities via a specific optimal form of altruism.

The final area where the normative impact of altruism has been considered is in the literature on

optimal taxation. It has been shown that altruism can either increase or decrease optimal Pigovian

taxation depending on its precise form (Johansson, 1997). The optimal subsidy for voluntary giving

has also been found to depend in a dramatic way upon the motivation for giving, particularly whether

it is of the warm-glow or pure altruism kind (Kaplow, 1998).

Altruism has interesting consequences for many areas of economic theory. It should have a regular

status alongside the self-interest assumption. However, the prevalence of altruism in human behaviour,

along with its manifest imperfections, raises the much more fundamental question of whether the level

of altruism in human society as a whole is suboptimal or superoptimal.

1.19 The Sequential Punishment Model

[I]n comparison with a situation wherein altruism is absent altogether, the prevalence of
just some altruism could result in Pareto inferior outcomes. Hence, if the formation of
altruism may not only fail to do any good but may actually make things worse whereas the
formation of sufficiently high levels of altruism is almost always beneficial,...a troubling
discontinuity arises: to the extent that the formation of altruism is like the rising of bread
dough (i.e. it has to be gradual) groups yearning to build up their social stock of altruism
may have to endure Paretial deterioration before experiencing Paretial gains. Perhaps
one reason why a great many societies consist of self-interested economic men and women
rather than altruistic economic men and women has to do with this nonmonotonicity.

(Stark, 1989)
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These are stimulating conjectures from Stark and Bernheim. “The Socially Optimal Level of

Altruism” (Chapter 2) corroborates many of them. It makes a contribution to the existing literature

on the “limits to altruism” by using an appealingly abstract and general model of social interaction

to illustrate that altruistic preferences on the part of individuals can often be unnecessary, and even

counterproductive, from a social welfare perspective. More altruism is not always better for society.

The most valuable additional insights offered are, on the one hand, that even the very high levels of

altruism exhibited by individuals who care almost as much about others as themselves can sometimes

be insufficient to “get the dough to rise” but that, on the other, it can be the case that even malevolent

individuals who wish to harm one another could be induced to behave socially beneficially with the

appropriate system of social control, and that this need not be more difficult than with altruistic

individuals. Central to this result is the fact that altruism has multiple opposing effects upon incentives.

In the sequential punishment model, individuals receive opportunities to harm one another, one

after another. If they inflict harm, they gain a random amount of felicity (whose value is known in

advance), and the person they choose to hurt loses one unit of felicity. Individuals have free choice, and

are indifferent, as to whom they punish. In a single-move game, individuals clearly must be sufficiently

altruistic in order to prevent them from giving in to the temptation to harm others for their own benefit;

altruism is always a good thing, because it reduces the temptation of individuals to misbehave (this

is therefore referred to as the “temptation effect”). When there are a number of sequential moves,

however, individuals can, contingent upon earlier observed misbehaviour, punish selfish miscreants.

This creates the possibility of counterproductive altruism, both because more altruistic individuals are

less willing to punish (the “willingness effect”) and also because they are harder to hurt by threatening

them in place of others (the “severity effect”).

The sequential punishment model has relevance to issues which have arisen in recent empirical

work on altruistic behaviour. The use of altruistic punishment has come to be seen by a number

of empirical economists, influenced by a cultural evolution perspective, as the key to explaining how

imperfect individual altruism can be “magnified” to achieve socially efficient outcomes (Fehr & Gächter,

2002a). Altruistic punishment is thus central to the operation of the social structure as an altruism

amplification device. The presence of some individuals who are willing to punish others, even at harm

to themselves, is at least as vital to achieving social efficiency as the presence of “traditional” altruists.
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Players are assumed to be indifferent as to which other player they punish. This may seem an

objectionably strong assumption, but it is a reasonable simplifying one since it is tantamount to

assuming that preferences over who is punished are sufficiently small to enable punishment schemes

to be incentivized. The idea that society may have punitive actions which can be cheaply directed

onto miscreants is also an important one in experimental economics and cultural evolution theory. For

example, Fehr et al. (Fehr & Gächter, 2002b) argue that altruistic punishment, the willingness to harm

others at cost to oneself, is vital in making altruism work as the glue of human society, because it is

usually less costly to harm others than to help them, and this enables cheaters to be credibly threatened

with punishment. Sober and Wilson (Sober & Wilson, 1999) similarly argue that an important reason

why human societies exhibit complex functional integration is the low cost of punishing transgressors

against social norms (for example, by simply refusing to interact with them).

The complete solution to the model uses optimal punishment paths, as developed by Abreu for

infinitely-repeated stage games (Abreu, 1986) (Abreu, 1988) (Lambson, 1987). The analysis of the

sequential punishment model succeeds in showing that the severity and willingness effects sometimes

outweigh the temptation effect; greater altruism can make it more difficult to achieve a socially efficient

outcome. As the coefficient of altruism θ approaches 1 from below (i.e. as individuals become perfectly

altruistic), the socially efficient equilibrium will always break down. Hence, to put the central point in

a “nutshell”, too much altruism is bad for society.

The introduction of some degree of preference by individuals over who they punish, via

heterogeneous weightings applied to each other individual in the utility function, would greatly

complicate the results of the model in that the conditions for co-operation with ongoing punishment

would be different depending on the punisher and punishee. This would not, however, qualitatively

change the property that punishment can be imposed to incentivize co-operation with a socially efficient

initial path provided players are sufficiently patient. Equally importantly, although the precise result of

the interaction between the temptation, willingness and severity effects would become more complex,

their key role in driving the model would remain, and the result that too much altruism can sometimes

be socially damaging would not be overturned.

Stark and Bernheim (Bernheim & Stark, 1988) have also considered this issue, and have established

a theorem which shows that as altruism becomes perfect (by which we mean that equal weighting is
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placed on the welfare of others relative to oneself), the Nash equilibrium outcome in a repeated game

becomes arbitrarily close to the socially efficient outcome. Although it is strictly speaking a sequential

rather than a repeated game, the sequential punishment model exhibits this property. However, it also

exhibits the property that intermediate levels of altruism enable full social efficiency to be achieved,

and that high enough levels of altruism which are still less than perfect cause the socially efficient

equilibrium to break down, with a non-negligible negative effect on the efficiency of the equilibrium.

The sequential punishment model treats altruism in a general and abstract way, and provides good

reasons to conclude that intermediate rather than high levels are the most socially desirable. Stark

and Bernheim show an awareness of these possibilities in the following passage:

While high levels of altruism are generally beneficial, this should provide little comfort
to those who subscribe to the traditional views...The effects of altruism on economic
interaction are complex, and must be assessed on a case-by-case basis.

(Bernheim & Stark, 1988)

Stark and Bernheim discuss one of the factors which is of central concern in the sequential

punishment model, in the form of the willingness effect. This they describe as the possibility that

a more altruistic individual will be perceived as a “softy”. Stark and Bernheim show, using a simple

infinitely-repeated co-operation game, that altruism can, for this reason, make an efficient co-operative

outcome harder to achieve. They also hint that a full analysis of optimal punishment could provide

richer results in this area:

In analysis of repeated games, it is standard practice to enforce co-operative outcomes
through “Nash reversion”...While more severe punishments are frequently available...,
Nash reversion is by far the simplest and most widely discussed method of enforcing
co-operation. We employ it here.

(Bernheim & Stark, 1988)

The sequential punishment model, although not a true repeated game, turns out both to be simple

enough, and to share enough features with repeated games, to enable a satisfyingly full characterization

of the optimal punishment paths, and thus a complete analysis of the effect of altruism on the

sustainability of socially efficient equilibria. The most important general result from the model is

that high levels of altruism close to, but not quite reaching, perfect utilitarian altruism unambiguously

break the supportability constraint on the socially efficient outcome.
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The sequential punishment model is intended to capture a general feature of the economic world

in a simple but abstract manner. Other models with a similar idiom include Samuelson’s “pension

game” (Samuelson, 1958) and Diamond’s model of fiat money in a “coconut economy” (Diamond,

1984). In Samuelson’s model, an infinite series of individuals, each of whom lives for two periods, must

decide whether to make a gift to the individual who is old when they are young. Young individuals

have an endowment of one “chocolate”, but the old have no endowment. Multiple subgame-perfect

Nash equilibria exist, some where chocolate pensions are voluntarily given (because it is believed that

receiving a pension from the next generation will be conditioned on having donated to the previous

generation) and some where the pension system never “gets off the ground”. This model captures,

in a simple and elegant manner, the key features that make pension systems (either state or private)

fragile, since they depend on the belief that the next generation will provide.

Diamond’s model captures an essential point of economic life relevant to the microfoundations of

macroeconomics. Production is only profitable when trading partners can be found. This creates the

potential for multiple equilibria, with high and low levels of economic activity. The economy becomes a

giant co-ordination game. The “parable” for the Diamond model involves a society of individuals who

live on an island consisting of palm trees of varying height, each with a coconut at the top. Climbing

trees is costly. Individuals can only gain utility from consuming their coconut by finding another

individual to “swap” with. Each individual can only carry one coconut at a time. Whether or not it

is worth climbing a particular tree therefore depends upon how many potential trading partners there

are “out there”. This simple abstract framework, and neat intuitive back-story, captures perfectly the

existence of multiple search equilibria in a macroeconomic system which uses fiat money.

1.19.1 The evolutionary sequential punishment model

In a second paper, “Punishment and the Potency of Group Selection” (Chapter 3), a different

aspect of the relationship between altruistic preferences and punishment systems is explored, and a

new twist to the story offered. A simplified three-player two-move finite version of the sequential

punishment model is used, but the preferences of the individuals playing the game are now permitted

to evolve over time. It is shown that the use of punishment equilibria weakens the potency of the group

selection mechanism, making it harder for altruistic preferences to evolve.
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The intuition for this result is that group selection depends upon more altruistic groups doing better

on average than more selfish groups. However, by making selfish individuals behave better, the use

of a punishment system weakens this performance differential, thus weakening group-level selection

pressures. The normative consequences of this phenomenon are ambiguous because there are two

counteracting effects. The static effect improves social welfare, because, given a certain population

composition, the use of punishment makes people behave better. The dynamic effect, that fewer

altruists are able to evolve, can sometimes, however, outweigh the static gain, so that society is

actually worse off in the long run when using a punishment system.

1.20 Conclusion

We have examined disparate evidence from a number of areas of economics in order to establish

the pervasive presence of altruism in human motivation, but also the prevalence of imperfections. This

survey has explored a number of positive and normative theoretical reasons for this phenomenon. In

particular, it has presented a broader context for the innovations in the fields of economic and cultural

evolution theory offered respectively in “The Socially Optimal Level of Altruism” (Chapter 2) and

“Punishment and the Potency of Group Selection” (Chapter 3). The first of these papers shows that

too high a level of altruism has a detrimental impact on the effectiveness of punishment systems to

act as an “altruism amplification device”. The second paper explores the reverse phenomenon - the

use of a punishment system may weaken the ability of altruistic preferences to survive in a dynamic

environment of cultural evolution.
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The Socially Optimal Level of
Altruism

[W]hen altruism improves static non-cooperative outcomes, it lessens the severity of
credible punishments. An altruist may well be perceived as a “softy” and his threats
may not be taken seriously.

(Bernheim & Stark, 1988)

[T]he most efficient way to provide low payoffs, in terms of incentives to cheat, is to
combine a grim present with a credibly rosy future.

(Abreu, 1986)

2.1 Introduction - A Parable

The central problem of economic and social policy, indeed the essential prerequisite of the social

order itself, is that of bestowing upon the individual agent the incentive to act in a manner which

is beneficial for society as a whole. Such incentives can be intrinsic to the individual (altruistic

preferences) or extrinsic (threats of punishment if the individual agent does not comply with the socially

prescribed action). This paper analyses the interaction between these two alternative “technologies”.

We see that the two methods of achieving social order cannot be freely mixed at will, and that, in

order for extrinsic incentives to work most effectively, it is necessary to limit the operation of intrinsic

incentives, so as to avoid counterproductive interference between the two. An important implication

is that the heavy (perhaps predominant) reliance upon extrinsic incentives in sophisticated human

societies may in fact be the result of a socially optimal “policy mix”, rather than a mere second-best

correction for the inadequate intrinsic motivation to “do the right thing”.
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Altruistic behaviour has been fruitfully modelled in economic theory using infinitely-repeated

stage games (Fudenberg & Maskin, 1986) (Abreu, 1986), and infinite dynamic sequential games such

as models with overlapping generations (Samuelson, 1958) (Hammond, 1975) (Cremer, 1986). The

traditional view is that apparent altruistic co-operation can occur in such models with self-interested

agents through the use of punishment equilibria which can deter actions which would be individually

optimal but socially sub-optimal in a non-repeated or non-sequential game. This paper provides a

general workhorse model in which the results of such models can be extended in order to accommodate

bona fide altruistic motivation. In common with the infinitely-repeated stage game model, agents are

infinitely-lived and discount the future. In common with overlapping generations models, on the other

hand, players move sequentially, and each player only gets to move once during the entire game.1

The sequential punishment model presented in this paper is intended to capture an abstract

essential feature of the social and economic world in a simple but general manner. Other models

with a similar idiom include the “Robinson Crusoe” economy (Ruffin, 1972), Samuelson’s “pension

game” (Samuelson, 1958) and Diamond’s model of fiat money in a “coconut economy” (Diamond,

1984). Each of these models can be illustrated intuitively with the help of a simple “parable”, as can

the sequential punishment model.

Consider a desert island where individuals are sufficiently settled to have established their own

“back gardens”. Each individual is sitting in their garden drinking a cold beer. One by one, at regular

discrete intervals, one inhabitant finishes their drink, and must decide whether or not to walk to the

bin, or to throw their bottle into one of their neighbour’s gardens. All gardens are adjacent, and

each person’s bin is a variable distance away (imagine a giant pie-shaped island, each garden being

a “wedge” - everyone is sitting at the middle of the island). It is possible for each inhabitant to be

threatened that, if they throw their bottle, everyone who subsequently finishes their beer will throw

a bottle into the malefactor’s garden. Sometimes this threat will be enough to make every inhabitant

walk to the bin every time, leading to a socially efficient litter-free island. Sometimes the threat will

not be enough, and some or all of the bottles will be thrown, leading to a socially inefficient outcome.

The central feature encapsulated in this model is the fundamental vicariousness of human social

interaction. In any society, individuals are able to impose negative externalities upon one another for

1This may seem an unrealistic assumption, but it can be argued that we only need split a finite number of
players into an infinite number of “egos” (Hammond, 1975).
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personal gain, in myriad ways. However, the very existence of this problem also offers a potential

solution, in that it creates the possibility of punishing miscreants who take such opportunities, by

threatening them with harm in the future.2 Another potential solution to the problem, however, is

altruism; if people care about others, they will refrain from harming them.

This paper aims to show that these two alternative incentive technologies can interact with one

another in a perverse manner. The question we will set out to answer is whether greater altruism on

the part of the inhabitants of the island will always make it easier to achieve a litter-free island. The

answer is a resounding and conclusive “no”. In particular, it is shown that too high a level of altruism

will in general lead to a worsening of the societal outcome. Altruism “dents” social incentive systems

based upon extrinsic rewards or punishments.

2.2 Overview

It is commonly recognised that the repetition of stage games such as the prisoners’ dilemma, or

the Cournot and Bertrand oligopoly games, allows apparently altruistic behaviour to be incentivized,

resulting in a Pareto superior outcome for the players.3 However, such apparent altruism only reflects

“enlightened self-interest”. This paper introduces genuine altruistic motivation, exploring its effect on

the achievability of a socially efficient equilibrium.

The well-known “Folk Theorem” establishes that, if players are sufficiently patient, any equilibrium

which Pareto dominates the min-max payoff in the stage game can be supported as a subgame perfect

equilibrium in the infinitely repeated game (Aumann & Shapley, 1992) (Rubinstein, 1979) (Fudenberg

& Maskin, 1986). The key implication is that, with imperfect altruism leading to a Pareto-inefficient

equilibrium in the stage game, if there is sufficiently low discounting of the future then a Pareto efficient

outcome in the infinitely-repeated game can be achieved. This paper asks the reverse question: Given a

certain positive level of impatience, how high or low can the level of altruism be in order for a first-best

socially efficient (and therefore Pareto-efficient) outcome to be attained? It is shown that, in general,

there must be a “Goldilocks” level of altruism, which is neither too high or too low.

2Throughout the paper, we will use “harm” to refer to the infliction of a negative externality and “punish”
to refer to the specific use of such harm opportunities to construct punishment equilibria.

3This framework has important implications for such varied theoretical areas as environmental economics
(international co-operation in pollution abatement can be seen as a repeated game) (Barrett, 1994) and
competition policy (firms are sometimes able to collude in a repeated oligopoly game, to the detriment of
overall social welfare) (Rees, 1993).
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In a game in which individuals make sequential moves (or in a repeated simultaneous-move game

structure), they are able to punish one another based upon their previously observed behaviour.

Individuals who are less altruistic are more willing to harm others because they place a lower value

on the cost to the person being harmed. We shall therefore call this the willingness effect. Agents

are also more afraid of being harmed because they value their own welfare more relative to that of

others. For example, if a criminal is fined a certain amount and the revenue spent on other individuals,

this is a more severe punishment for a less altruistic criminal because the fact that the fine revenue is

spent on others mitigates the effect of the fine on the criminal’s utility by a smaller amount than if the

criminal were more altruistic.4 We shall therefore refer to this as the severity effect. Together, these

two effects create a potential social benefit from individuals not being too altruistic. However, this

must be balanced against the greater temptation towards wrongdoing by a less altruistic individual.

Hence there is also a temptation effect from greater altruism.

Stark and Bernheim have observed that altruism can reduce the credibility of punishment if the

potential punisher is perceived as a “softy” (Bernheim & Stark, 1988). They observe that this can

lead greater altruism to have a negative impact5 but argue that this must be analysed on a case-by-

case basis. We establish a canonical framework in which to study the interaction of this willingness

effect with the severity and temptation effects. This enables us to establish the stronger result that a

high level of altruism will in general be socially detrimental. The central result of this paper is that,

under certain fairly non-restrictive assumptions, the three effects conspire to render a socially efficient

outcome impossible if the level of altruism becomes high enough.6

2.3 The Model

Suppose there are an infinite number of players and that distinct players, referenced by the period

in which they move, each get a chance in sequence to impose damage upon another player. In period t,

player t receives a harm opportunity, and must decide whether to accept or reject it, and a “target”

for the harm opportunity, player At. If player t rejects the opportunity, then there are no changes

4The revenue from the fine could, of course, be “thrown away” in order to avoid this adverse effect, but this
would be wasteful in that it would create a deadweight loss to punishment.

5This is precisely the phenomenon we term the willingness effect.
6In terms of the island parable, the assumptions we must make are that the cost of having a bottle land

is weakly greater than the cost of walking to a bin at the edge of the island, that players move in sequence,
with perfect information about past play, and that all individuals share the same coefficient of altruism θ (the
weighting they place on the welfare of others relative to their own welfare) and discount the future by factor δ.
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in felicity.7 If player t chooses to accept their harm opportunity, then player At suffers a cost in

felicity of 1 unit. If player t accepts, then he gains felicity equal to the benefit, πt,8 which is drawn

randomly and independently from a distribution defined by the density function g(π), with support

[π̂, 1], where 0 ≤ π̂ < 1.9 Therefore,
∫ 1

π̂
g(π)dπ = 1. (The expected value of π,

∫ 1

π̂
πg(π)dπ, is denoted

π̄.) All players publicly observe the value of πt before player t moves.

The move made by player t in period t can be conceived to consist of choosing a trigger level,

Tt, for the realized value of the benefit above which they will accept the harm opportunity10, and

the individual whom they harm, At. A player’s strategy maps the observed past history at period t

(including the observed value of πt) to the move they make.

We will derive results assuming a continuous distribution of the benefit with bounded support. We

assume throughout that g(π) is twice continuously differentiable. We will frequently use as an exemplar

the case where the benefit has a continuous uniform distribution. Here the probability density function

for the distribution of πt will take the value 1
1−π̂ between π̂ and 1. Most straightforwardly, with π̂ = 0,

g(π) = 1 between 0 and 1.

2.4 Players’ Preferences

Players do not act to maximise their “private utility”, or felicity. Instead, players act to maximise

their social utility function11, which is a weighted sum of the felicities of all players.12 We assume

all players are risk-neutral and share the same discount factor δ. We let the coefficient of altruism

θ represent the weighting placed upon the felicities of others in each player’s social utility function.

We assume that θ is identical for all players and is always strictly less than 1.13

7See section 2.4 for a formal definition of this concept.
8π is used indicate the vector of random benefit values.
9Intuitively, this assumption is sufficient to ensure that no partially altruistic individual ever wants to be

harmed. In terms of the parable from section 2.1, the cost of having a bottle land in one’s garden is equal to
the cost of walking to a bin at the edge of the island. Although this might seem a restrictive assumption, we

can always, by taking the limit as the expected value of π, π̄ =
R 1

π̂
πg(π)dπ, goes either to π̂ or 1, examine

the cases where the cost of a bottle landing is almost identical to the cost of walking to the bin (π̄ −→ 1), or
almost always greater than the cost of walking to the bin (π̄ −→ π̂). (See subsection 2.8.1.)

10Note that they do so after they observe the benefit value, so this is tantamount to choosing whether or not
to punish for any given benefit value. It nonetheless proves useful later on to think in terms of trigger levels.

11We will frequently use the term “social utility” in order to emphasise the inclusion of altruistic preferences.
However, the modelling role of the social utility function is similar to any standard utility function.

12Effectively, every individual’s social utility function is a social welfare functional which aggregates the
orderings represented by all players’ felicities, and which satisfies the Pareto principle, independence of irrelevant
alternatives and unrestricted domain. Ratio scale comparability (Roberts, 1980) must be assumed, with all
individuals gaining 0 felicity in the state of the world where no harm opportunities at all are taken.

13We exclude from the outset “super-altruism”, where players are “matryrs” who care about others more
than themselves. Note, however, that we do allow for potentially infinite “malevolence” throughout the paper.
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Definition 2.1: Let fi,t be the felicity of player i in period t:

fi,t =



−1 if Tt < πt and t 6= i and At = i

πt if Tt < πt and t = i and At 6= i

πt − 1 if Tt < πt and t = i and At = i

0 otherwise


(2.1)

Let δ be the discount factor14 and let θ be the coefficient of altruism:

0 ≤ δ < 1 (2.2)

θ < 1 (2.3)

In period t, player t moves so as to maximize his expected social utility ut, discounted looking forward:15

Eπ [ut] |π1...πt = Eπ

 ∞∑
j=t+1

δj−t
ft,j + θ

∞∑
k 6=t

fk,j

 ∣∣∣∣∣
π1...πt

(2.4)

2.5 The Single-Move Game

Consider first a single-move sequential punishment game in which a single individual (individual 1)

has an opportunity to harm another (this can be thought of as a special case of the infinite-move game

in which δ = 0 so that there is no future). The individual’s coefficient of altruism must be sufficiently

high in order to prevent him from yielding to the temptation to inflict harm socially inefficiently, and

so here the deleterious willingness and severity effects of greater altruism do not apply. In this simple

case there is therefore no sense in which too much altruism is bad for society. It is socially efficient for

a harm opportunity to be taken if and only if π1 > 1. The individual receiving the harm opportunity

(individual 1), meanwhile, will choose to inflict harm if and only π1 > θ, since he values 1 unit of

harm done to another individual at θ.16 The outcome can therefore only be socially efficient, meaning

socially efficient for all possible revealed benefit values, if θ = 1.

14The role of the assumption of discrete time periods with discounting of the future can be justified as the
simplest way of capturing the idea that the technology used to detect deviation is imperfect and thus takes
time (Cremer, 1986).

15The assumption that players are infinitely lived may appear restrictive, but its primary role is to simplify
the model. Versions of the Folk Theorem have been proved for games with finitely-lived players and overlapping
generations (Kotlikoff et al., 1988) (Kandori, 1992) (Messner & Polborn, 2003), and the general result is that
having finitely-lived agents reduces, but does not eliminate, the possibility of supporting mutually beneficial
equilibria in an infinitely-repeated stage game framework. It therefore seems reasonable to focus on the role of
altruism by assuming away the issue of finite lifespans.

16We can assume that the individual receiving the harm opportunity will definitely harm another individual
rather than himself because θ < 1. We assume that if he is indifferent, he will not inflict harm.
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2.6 The Infinite-Move Game

Once we introduce an infinite series of sequential moves, where different individuals are given

an opportunity to inflict harm one after the other, the effect that altruism has on the willingness

to punish and on the severity of punishment becomes important. The socially efficient outcome can

now be achieved when individuals are less altruistic than the level required in the single-move game,

through the use of punishment equilibria.

A socially efficient outcome can be achieved in the infinite-move game by using the information

available, and the fact that players are able to choose whom they harm, to enforce credible threats of

future punishment upon players who are tempted to socially inefficiently inflict harm in the current

period. The ability of a player to inflict harm then plays the dual role of a temptation to impose

a deadweight loss upon society at benefit to oneself, but also the opportunity for society to credibly

threaten to punish those who do so. This means that there can then be some advantages to players

being less than fully altruistic, since the threat of punishment is more severe the less altruistic players

are, both because less altruistic players are willing to inflict harm more often (the willingness effect),

but also because the loss of social utility from being harmed in place of another is greater for a less

altruistic player (the severity effect).

It turns out that, provided there is sufficiently low discounting, the severity effect dominates and

the lower constraint on the required level of altruism drops away because decreasing the level of altruism

beyond a certain point always increases the severity of punishment more than enough to outweigh the

increased temptation to deviate from the socially efficient equilibrium by inflicting harm (see Theorem

2.III). Most significantly, however, it transpires that too high a level of altruism will, for all values of

the discount factor, prevent the socially efficient outcome from being achieved (see Theorem 2.II).

The possibility of achieving this kind of socially efficient subgame perfect Nash equilibrium begs

the question, however, of how it is that the players are to be co-ordinated upon playing it. We might

think of a social planner declaring the equilibrium that will be played, and then each player behaving

unilaterally with no ability to communicate with the others. On the other hand, we could imagine a

kind of “original position” (Rawls, 1999), where the players together agree to the planned equilibrium

that will maximise their collective expected social utility. This is relevant since generally speaking

although the equilibrium outcome will be socially efficient, the off-equilibrium behaviour prescribed
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by the punishment strategies will not be, and so there would be the temptation for a social planner to

intervene in order to achieve a socially efficient outcome in the subgame beginning once someone has

actually deviated. The social planner could, if able to alter the expectations of all players about the

strategies being played by all the others, improve social welfare once someone has actually deviated by

“letting bygones be bygones” and re-coordinating all players upon a new socially efficient equilibrium

in the subgame starting in the current period.

The most stringent requirement we could put on punishment equilibria is that they be renegotiation-

proof. This equilibrium concept refinement has been applied to other repeated games (Farrell

& Maskin, 1989) (Benoit & Krishna, 1993), and shown to reduce the number of supportable

equilibria. Sometimes, depending on the context, efficient subgame-perfect equilibria can be rendered

unsupportable. The reason is that often the most severe punishments are not renegotiation proof

because everyone would prefer to “let bygones be bygones” and renegotiate to a Pareto-superior path.

In this paper, however, we stick with the requirement that punishment equilibria be subgame-perfect

rather than renegotiation-proof. Intuitively, we assume that the social planner (or the community’s

decision-making process) is able to avoid the temptation to let malefactors “off the hook”.

Figure 2.1 provides a preliminary schematic for the possible subgame-perfect socially efficient

equilibria which are supportable for different values of θ and δ in the sequential punishment model.

The most lightly shaded area A shows values of (θ, δ) where, by using “Nash reversion” (which requires

each individual along an equilibrium path where a previous deviator is being punished to take their

harm opportunity whenever πt > θ, as they would in a single-move game) a socially efficient equilibrium

can be constructed. Individuals are incentivized to co-operate with the equilibrium due to the threat

of focusing future punishment onto any deviator from the initial path.

The darker grey area B shows those values of (θ, δ) for which social efficiency can only be supported

by using a punishment path more severe than Nash reversion. This requires that the individuals doing

the punishing be required to go “beyond their comfort zone” by inflicting harm for values of πt ≤ θ for

which they would not do so in a single-move game, due to their partial altruism. The main analytic

task of this paper is to characterize the nature of the socially efficient equilibria that can be supported

using the most severe available path. The black region shows those values of (θ, δ) for which social

efficiency is not supportable, even with the use of such an optimal path. The central results of this
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Figure 2.1: Socially efficient equilibria and the socially optimal level of altruism

paper are firstly that this region will be entered as θ −→ 1− for all values of δ (see Theorem 2.II).

Secondly, this region is “thinnest” at a socially optimal level of altruism, θ∗, and it will be shown

that, under the fairly general assumptions made regarding the distribution of the benefit and the

shared value of θ and δ, it is always the case that 0 < θ∗ < 1 (see Theorem 2.IV).

2.7 Punishment Paths

The sequential punishment model has close parallels with the traditional framework of infinitely-

repeated games with discounting. Seminal results for the nature of the optimal penal codes in these

types of game were provided by Abreu17 (Abreu, 1988), who showed that optimal punishment can

be exhaustively described using punishment paths. These will in general have a carrot-and-stick

17Abreu also foresaw that his method would have far-reaching applications in other models:

Analogues to the theorems established here ought to appear in any model with discounting and
a “repeated” structure. Finally, the conceptualization of punishment in terms of paths and
deviations from prescribed paths should prove useful in other contexts.

(Abreu, 1988)

The sequential punishment model analysed here is one such context. Although the sequential punishment
model is not strictly speaking a repeated stage game, the ability of individuals to condition their behaviour on
the past, with deviations immediately observable next period, gives it an essentially analogous structure.
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structure, with players incentivized to co-operate with the more unpleasant early stages of the path

by the “carrot” offered by the return to more pleasant co-operative behaviour in the later part of the

path. The introduction of non-stationary carrot-and-stick punishments is particularly interesting in the

sequential punishment model because partially altruistic individuals must themselves be threatened

with harm if they refuse to co-operate with the punishment of others. This feature of the model

generates a rich interaction between the altruistic preferences of the players and the structure of

optimal punishment paths.

Strategy profiles and the corresponding equilibria in the sequential punishment model can be

described in terms of an initial path and a punishment path. Along the initial path, no harm

opportunities are permitted to be taken. If a player deviates from the initial path, then a punishment

path tailored for that player is initiated. If a player deviates from an ongoing punishment path, then

a new punishment path tailored for the most recent deviator is initiated.

A punishment path, denoted by ψ, is a vector of trigger levels for π above which harm opportunities

are taken in a punishment equilibrium. Punishment paths provide a natural way to conceive of

punishment equilibria in the sequential punishment model. If a punishment path, which was initiated

in period j through a deviation by player j, is being followed in period t, then player t sets their trigger

level Tt equal to ψt−j (so that player t takes the harm opportunity when πt > ψt−j) and punishes

player j by setting At = j.

Definition 2.2: A punishment path, denoted ψ, is a vector of trigger levels, subscripted by the point

reached along the path.18 Trigger levels must lie within the support for π, therefore ∀ψ∀k : ψk ∈ [π̂, 1].

The set of possible punishment paths is Ψ, so that ∀ψ : ψ ∈ Ψ. A flat punishment path, ψ̄, has the

property that ∀k : ψ̄k = ψ̄.19 The set of flat punishment paths is denoted Ψ̄.

Following Abreu’s argument, in order to find out if the socially efficient outcome is supportable

for any given θ and δ, it is in general necessary to derive the optimal punishment path. Along

a punishment path, it will be desirable to harm the most recent deviator as much as possible.

18We use the term “period” to refer to “game time” and “point” to refer to the current position along an
ongoing path.

19We use ψ̄ to denote both a flat path and the constant trigger level that defines it. This simplifies notation
significantly in subsequent lemmas and theorems. A number of functions will be defined later on as taking a
path (a vector of real numbers) or a constant trigger level along a flat path (a real number) as an input. When
we are dealing with flat paths, the two interpretations of the notation can be used interchangeably without
causing any problematic ambiguity. When dealing with non-flat paths, however, the distinction between the
two types of input must be kept in mind.
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Since players are indifferent as to whom they harm, any harm opportunities taken along an optimal

punishment path will therefore be “focused” upon the most recent deviator.

We can imagine choosing a fixed punishment, and then finding out the most severe path we can

support given the use of that fixed punishment for any deviation. However, as argued by Abreu, we

will only have found the most severe path we can support if we are in fact using that path to punish any

deviation from any ongoing punishment path. Hence the optimal punishment path must be used to

punish any deviation from itself. This is a useful recursive symmetry which we exploit in constructing

the conditions for supportability in Definition 2.3.

There are two constraints at each point along a punishment path. The first concerns the

“squeamishness” of partially altruistic individuals in implementing the “stick”. Individual t is only

willing to take a harm opportunity when πt ≤ θ if he is himself threatened with punishment, in order

to give him an incentive to inflict harm when it is unpleasant for him to do so. The second constraint

concerns the “carrot” part of the path. In order to provide a carrot, it is necessary that trigger levels

be higher later in the path (so that harm is inflicted only for high benefit values). This may involve

individuals being required to abstain from taking a harm opportunity when πt > θ, for which they will

also need to be given an incentive via carrot-and-stick punishment.

The second constraint turns out to be more difficult to deal with, but we are able to prove that,

as θ −→ 1−, this constraint becomes insignificant, because even when it is not imposed, the socially

efficient outcome becomes unsupportable using the optimal path anyway. Also, in many cases the

second (“upper”) constraint will not bind at any point along the path, whereas the first (“lower”)

constraint must always bind at the beginning of the optimal path. It is therefore the first constraint

which primarily drives the shape of optimal punishment paths in the sequential punishment model.

Ignoring the upper constraint, optimal paths will be shown to have a quasi-flat structure, in that

the trigger level is identical following the second point along the path. This is a surprising result, since

optimal paths in the standard infinitely-repeated stage game models treated in the existing literature,

such as the Cournot and Bertrand oligopoly models, involve a finite punishment phase followed by a

return to full co-operation, where the Pareto efficient outcome in the stage game is restored (Abreu,

1986) (Lambson, 1987).20 The different result in the sequential punishment model is driven by the

presence of altruistic preferences, which cause “neutral observers”, who are not being punished (but

20We discuss this further in subsection 2.9.5.
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who are still affected by the “carrot” created by the remainder of the path) to be more sensitive to

variation in the trigger levels than the individual being punished (the first have a more concave inter-

temporal utility function than the second). Intuitively, with partial altruism (θ < 1), the individual

being punished is hurt partly or primarily simply because they are being punished, whereas the benefit

values for which harm opportunities are taken makes more relative difference to a “neutral observer”.

The socially efficient outcome is supportable for given values of δ and θ if and only if there

exists a punishment path ψ such that the corresponding strategy profile forms a subgame-perfect Nash

equilibrium. Checking for supportability involves two conditions. Firstly, ψ must be sustainable. This

requires that individuals be incentivized to co-operate with the punishment path, either by punishing

when they would prefer not to in a single-move game, or by refraining from punishing when they would

prefer to. Secondly, given a sustainable path, it must be of sufficient severity to incentivize all players

to co-operate with the initial path, so that the socially efficient outcome occurs in equilibrium.

Definition 2.3: Let Uk : Ψ −→ R be the per-period average discounted expected utility of the

individual being punished along path ψ, looking forward from point k. Let Vk : Ψ −→ R be the per-period

average discounted expected utility of a “neutral observer” who is not being punished along path ψ.

Uk(ψ) ≡
(

1− δ
δ

) ∞∑
i=k+1

[
δi−k

∫ 1

ψi

(θπ − 1)g(π)dπ
]

(2.5)

Vk(ψ) ≡
(

1− δ
δ

) ∞∑
i=k+1

[
δi−k

∫ 1

ψi

(θπ − θ)g(π)dπ
]

(2.6)

Note that, for a flat path, ψ̄, these functions simplify to give (where U : R −→ R and V : R −→ R):21

∀k : Uk
(
ψ̄
)
≡ U

(
ψ̄
)
≡
∫ 1

ψ̄

(θπ − 1) g(π)dπ ∀k : Vk
(
ψ̄
)
≡ V

(
ψ̄
)
≡
∫ 1

ψ̄

(θπ − θ) g(π)dπ (2.7)

The supportability constraints are as follows. λk : Ψ −→ R is the lowest possible net loss of utility

from refusing to punish when required to at point k along punishment path ψ (this only “bites” when

ψk < θ) and µk : Ψ −→ R is the lowest possible net loss of utility from punishing when required not to

along punishment path ψ (this only “bites” when ψk > θ). κ : Ψ −→ R, meanwhile, is the lowest possible

net loss in utility from defecting from the initial path, given that path ψ is used to punish such a deviation.22

In order for punishment path ψ to support the socially efficient equilibrium, it must be the case that

∀k : λk(ψ) ≥ 0, ∀k : µk(ψ) ≥ 0 and that κ(ψ) ≥ 0. The optimal punishment path is the one which

21The functions defined in 2.8 through 2.11 are therefore also alternatively functions of a constant trigger
level ψ̄ along a flat path (a real number). Note also that we can suppress the subscript to indicate the point
reached along a flat path, since a flat path looks identical at all points.

22These are also functions of δ and θ but we generally suppress this in the notation, for clarity and simplicity.
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minimises U0(ψ) subject to these constraints, which is the same as maximising the severity of the punishment

path for the punishee, denoted by φ : Ψ −→ R. The optimal path, ψ∗ is therefore the path that maximizes

φ (ψ) whilst satisfying all the constraints. The optimal flat path, ψ̄∗ is defined analogously.

λk(ψ) ≡
(

δ

1− δ

)
Vk(ψ)−

(
δ

1− δ

)
U0(ψ) + ψk − θ (2.8)

µk(ψ) ≡
(

δ

1− δ

)
Vk(ψ)−

(
δ

1− δ

)
U0(ψ)− ψk + θ (2.9)

κ(ψ) ≡ −
(

δ

1− δ

)
U0(ψ) + θ − 1 (2.10)

φ(ψ) ≡ −
(

δ

1− δ

)
U0(ψ) (2.11)

2.8 The Optimal Flat Path

In this section, we proceed to exhaustively derive the nature of the socially efficient equilibria

which can be supported using the optimal flat punishment path. The uniform distribution is used as

an illustrative example, but Theorems 2.I, 2.III and 2.IV apply for any continuous benefit distribution.

Theorem 2.II only applies to equilibria supported by flat paths. It will be generalized later on.

Intuitively, the impact of the level of altruism on the severity of the optimal flat punishment path,

and the resultant supportability of the socially efficient equilibrium, depends upon the interaction of

the temptation, severity and willingness effects laid out in section 2.2. The temptation effect means

that lower altruism makes a socially efficient outcome harder to support, ceteris paribus. The severity

effect, by contrast, makes a given punishment path more effective with a lower coefficient of altruism,

and so increases the supportability of the socially efficient equilibrium, ceteris paribus. The willingness

effect makes individuals more willing to punish with lower altruism, thus also rendering punishment

paths more effective, and social efficiency easier to support, ceteris paribus.

The key result to be established is that, as θ −→ 1− and individuals become perfectly altruistic,

the interaction of the three effects leads to a breakdown of the socially efficient equilibrium. The

intuition is, firstly, that when θ = 1, the severity of any punishment path will be 0, and the optimal

path will not involve any harm being inflicted. This is because perfectly altruistic individuals do not

mind harm being focused from other people onto them, and so there is no loss of utility from defecting

from the punishment path, and therefore individuals cannot be incentivized to do any punishing at
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all. The constraint for supportability of the initial path must therefore be just fulfilled with equality

at this point (because there is also no temptation to defect).

If the coefficient of altruism is reduced slightly below θ then, since very little punishment can be

sustained with such a high coefficient of altruism, the willingness and severity effects must be negligible.

Hence the temptation effect must dominate, and social efficiency must be rendered unsupportable.

However, as θ is further reduced, provided δ is sufficiently high, the combined willingness and severity

effects will eventually become large enough to offset the temptation effect and lead the condition for

social efficiency to be supported again. For high enough values of δ, this can continue to occur as

θ −→ −∞, meaning that social efficiency can be supported even with infinite malevolence. (This

phenomenon is driven by the severity effect - see Theorem 2.III.)

There will in general exist an optimal level of altruism θ∗, in the sense that it allows the socially

efficient outcome to be supported for the widest range of δ, δ∗. θ∗ has the general property that it is

low enough for the punishment path to involve inflicting harm for the widest possible range of benefit

values, but not any lower, in order to avoid the temptation effect outweighing the severity effect as

θ is further reduced. As we shall see later, for a “sufficiently flat” benefit distribution, the optimal

punishment path is always flat (see Theorem 2.V). Even when the optimal path is not flat, however,

Theorem 2.II provides an important intermediate step in proving the core result of the paper, that too

high a level of altruism is socially detrimental, for these more general cases.

In this section, we will derive the properties of the optimal flat punishment path denoted by ψ̄∗.

Along such a path, the co-operation constraints at every point are identical, and so ∀k : λk(ψ̄) ≡ λ(ψ̄)

and ∀k : µk(ψ̄) ≡ µ(ψ̄). Assuming that ψ̄∗ is greater than π̂ (i.e. that individuals cannot be incentivized

to punish for all possible values of the benefit), then an expression for the optimal flat trigger level can

be found by setting λ(ψ̄∗) = 0 so that all individuals are being pushed right up against the limit of

their willingness to punish given that they themselves are threatened with punishment if they refuse.

Substituting in (2.5) and (2.6) into (2.8), equating with 0 and solving for ψ̄∗ gives us the following:

ψ̄∗ = θ − (1− θ) δ

1− δ

∫ 1

ψ̄∗
g(π)dπ (2.12)

Although this only implicitly defines ψ̄∗, and cannot be solved without making specific assumptions

about the functional form of g(π), it can be totally differentiated and rearranged to yield the following

expression for the derivative dψ̄∗

dθ . The shows the willingness effect - the impact of a change in the
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coefficient of altruism upon the optimal flat trigger level. We should note at this point that as θ −→ 1−,

this expression becomes unambiguously positive. This means that the willingness effect negatively

affects the severity of punishment as θ increases at an already high level of altruism.

dψ̄∗

dθ
=

(1− δ) + δ
∫ 1

ψ̄∗
g(π)dπ

(1− δ)− δ(1− θ)g(ψ̄∗)
(2.13)

If θ is low enough, individuals will be willing to punish for all possible vales of the benefit. This

will imply that λ(ψ̄∗) ≥ 0 when ψ̄∗ = π̂. Theorem 2.I derives the relevant “cut-off” value of θ.

Theorem 2.I

If θ ≤ δ + (1− δ)π̂ then punishment will occur for all benefit values along the optimal path.

If θ ≤ δ + (1− δ)π̂ then ψ̄∗ = π̂, otherwise ψ̄∗ = θ − (1− θ) δ
1−δ

∫ 1

ψ̄∗
g(π)dπ.

Proof: Substituting expressions (2.5) and (2.6) into (2.8) and making this greater than or equal to 0 where

ψ̄∗ = π̂ gives us (1 − θ) δ
1−δ

∫ 1

π̂
g(π)dπ + π̂ − θ ≥ 0. Since

∫ 1

π̂
g(π)dπ = 1, rearranging yields the stated

inequality. If θ > δ+ (1− δ)π̂, on the other hand, then ψ̄∗ must be where λ(ψ̄∗) = 0 in an interior solution

as described by equation (2.12).

Having derived the optimal flat punishment path, we are now in a position to characterise the

socially efficient equilibria which can be supported using it. Substituting in (2.5) into (2.10) gives us

the following (along with its total derivative with respect to θ):

κ
(
ψ̄∗
)

= − δ

1− δ

∫ 1

ψ̄∗
(θπ − 1)g(π)dπ + θ − 1 (2.14)

dκ

dθ
= 1− δ

1− δ

(∫ 1

ψ̄∗
πg(π)dπ +

(
1− θψ̄∗

)
g(ψ̄∗)

dψ̄∗

dθ

)
(2.15)

We can now prove that, for any functional form for g(π), there will exist values of θ close to but

below 1 for which social efficiency will not be supportable (i.e. for which κ(ψ̄∗) < 0).23

Theorem 2.II

As altruism becomes perfect, the optimal flat punishment path cannot support the socially

efficient equilibrium, for any value of the discount factor.

As θ −→ 1−, ψ̄∗ −→ 1, κ
(
ψ̄∗
)
−→ 0 and dκ

dθ −→ 1, therefore as θ −→ 1−, κ
(
ψ̄∗
)
−→ 0−.

23We will prove this result more generally for any generic optimal punishment path in section 2.10, Theorem
2.VII.
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Proof: As θ −→ 1, it can be seen from expression (2.12) that ψ̄∗ −→ 1. The RHS of (2.14) thus goes

to 0. Meanwhile, the RHS of (2.15) goes to 1. Since κ(ψ̄∗) is a continuously differentiable function of ψ̄∗

and θ, it must be the case that κ(ψ̄∗) falls below 0 for some values of θ close to but less than 1.

We will now show that, if δ is high enough, then, once ψ̄∗ = π̂, so that punishment is occurring

for all possible values of the benefit, the severity effect will dominate. This means that as θ −→ −∞,

κ(ψ̄∗) −→ ∞ and so social efficiency becomes unambiguously supportable. Theorem 2.III derives the

required condition on δ.

Theorem 2.III

If δ > 1
1+π̄ then the socially efficient equilibrium can be supported with infinite malevolence.

If δ > 1
1+π̄ then κ

(
ψ̄∗
)
−→∞ as θ −→ −∞.

Proof: By Theorem 2.I, when θ ≤ δ + (1 − δ)π̂ and so ψ̄∗ = π̂, there is no further willingness effect

and so dψ̄∗

dθ = 0. As θ −→ −∞, this must occur. Therefore, as can be seen from (2.14), as θ −→ −∞,

κ(ψ̄∗) −→ ∞ provided that δ
1−δ >

1R 1
π̂
πg(π)dπ

. (This is because, as θ −→ −∞, any part of (2.14) not

containing θ becomes negligible.) It can similarly be seen from (2.15) that these same conditions will ensure

that dκ
dθ < 0 once θ ≤ δ + (1− δ)π̂. Letting π̄ ≡

∫ 1

π̂
πg(π)dπ and rearranging yields the stated result.

Theorem 2.III shows that as the coefficient of altruism becomes infinitely negative, the severity

effect will dominate if δ > 1
1+π̄ . Since this lower bound for δ is less than 1, there will be a range where

too high a level of altruism renders the socially efficient equilibrium unsupportable but, once θ is below

the upper limit, no arbitrarily high degree of malevolence will do so. If, however, δ∗ < δ < 1
1+π̄ then

both too high and too low a level of altruism will cause a breakdown of social efficiency.24

There are a number of approaches which we could take in defining the socially optimal level of

altruism in the sequential punishment model. In a world where we were unable to achieve the first-best

solution, we could ask what the impact of a change in the coefficient of altruism is upon the efficiency

of the second-best equilibrium. This we do in section 2.11. In this section, we concentrate on worlds

where the first-best solution is available, and ask what value of θ allows the socially efficient outcome

to be supportable for the widest range of δ. We thus not only consider the best we can do in each

24See Theorem 2.IV.
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possible world, but begin by considering the broader and more “philosophical” issue of which is the

best of all possible worlds to be in.

Theorem 2.IV defines the socially optimal level of altruism, θ∗ and corresponding minimum δ, δ∗.

It also establishes that δ∗ ≤ 1
1+π̄ for any benefit distribution, so that both too high and too low a level

of altruism relative to θ∗ will cause a break-down of social efficiency, for values of δ close to, but above,

δ∗. The optimal coefficient of altruism has a number of key features. Firstly, it must be “knife-edge”

socially efficient equilibrium so that κ(ψ̄∗) = 0. Secondly, it must be the case that δ is just high enough

so that punishment can occur for all values of π, in order that punishment paths are maximally severe

for the individual being punished.

Theorem 2.IV

The socially optimal level of altruism is always strictly positive and strictly less than 1.

The socially optimal level of altruism is θ∗ = 3+π̄π̂−
√

5+2 π̄π̂+π̄2π̂2−4 π̄−4 π̂
2(1+π̄) , where 0 < θ∗ < 1.

Proof: The socially optimal level of altruism is where κ(ψ̄∗) = 0 and θ = δ + (1 − δ)π̂. The following

two equations must therefore hold simultaneously: (Equation (2.16) is derived from Theorem 2.I. Equation

(2.17) is derived from setting equation (2.14) equal to 0 and plugging in ψ̄∗ = π̂ and π̄ ≡
∫ 1

π̂
πg(π)dπ.)

θ = δ + (1− δ)π̂ (2.16)

δ

1− δ
=

1− θ
1− θπ̄

(2.17)

Equations (2.17) and (2.16) form a quadratic equation system, yielding the following solution:25

δ∗ =
3− 2 π̂ − π̄π̂ −

√
5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂

2 (1− π̂) (1 + π̄)
(2.18)

θ∗ =
3 + π̄π̂ −

√
5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂

2 (1 + π̄)
(2.19)

To interpret (2.18) and (2.19), we first need to observe that
√

5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂ is decreasing

in π̂ and π̄ and so its value will lie between
√

5 (when π̂ = 0 and π̄ = 0) and 0 (when π̂ = 1 and π̄ = 1).

Therefore, it can immediately be seen that, since
√

5 < 3, the socially optimal level of altruism defined

by (2.19) will always be positive. Also, since θ∗ is increasing in π̂, its upper limiting value will be 1, as

π̂ −→ 1−. Since 0 < θ∗ < 1 and 0 < π̄ < 1, it can therefore also be seen from (2.17) that 0 < δ∗ < 1

(since the LHS must be positive in order to equal the RHS).

25Note that the second solution to the quadratic can be discounted since we require that θ∗ < 1 in order for
(2.16) to be satisfied with δ∗ < 1.
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In order to be certain that (2.19) defines a point where a further decrease in θ will render the socially

efficient initial path unsupportable, we need to show that δ∗ from (2.18) lies weakly below 1
1+π̄ , derived

in Theorem 2.III. Dividing the RHS of (2.18) by 1
1+π̄ yields the following ratio, which we need to show is

always weakly less than 1:

3− 2 π̂ − π̄π̂ −
√

5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂
2 (1− π̂)

(2.20)

Note first that when π̄ = 1, (2.20) also equals 1. If the derivative of (2.20) with respect to π̄ can be

shown to be always positive when (2.20) is positive, then this will be sufficient to establish that (2.20) is

always less than 1. Differentiating (2.20) with respect to π̄ gives us:

2− π̂ − π̄π̂2 − π̂
√

5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂
2
√

5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂ (1− π̂)
(2.21)

Denoting
√

5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂ by β, (2.20) and(2.21) become respectively:

3− 2 π̂ − π̄π̂ − β
2 (1− π̂)

(2.22)

2− π̂ − π̄π̂2 − π̂β
2β (1− π̂)

(2.23)

Both (2.22) and (2.23) are decreasing in β. Therefore they can only be positive when β is low enough.

Setting (2.22) equal to 0 and solving for β yields the following:

β = 3− 2 π̂ − π̄π̂ (2.24)

Since (2.20) must always be positive, β must be weakly lower than this.

Plugging (2.24) into (2.23) yields the following expression, which is always positive, showing that β

can never be high enough to make (2.23) negative.

1− π̂
3− 2 π̂ − π̄π̂

(2.25)

We have therefore established that δ∗ ≤ 1
1+π̄ for all the relevant values of π̂ and π̄.26 Thus, if θ is

further reduced below θ∗ with δ unchanged at δ∗, the supportability constraint on the socially efficient

initial path will be broken. θ∗ is therefore optimal in the sense that a lower level of altruism could, for some

δ values, render the socially efficient outcome unsupportable. Also, by Theorem 2.II, a big enough increase

in θ above θ∗ will cause the socially efficient equilibrium to break down.

26If π̄ < 1 (as will hold in a standard non-limiting case - see subsection 2.8.1) then this inequality is strictly
satisfied, i.e. δ∗ < 1

1+π̄
.
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2.8.1 Illustration: unitary distribution cases

In this subsection, we produce some graphics to compare the socially optimal level of altruism in

a number of key cases. First, we assume that π̂ = 0 and we vary π̄. (2.18) and (2.19) then become:

θ∗ = δ∗ =
3−
√

5− 4π̄
2(1 + π̄)

(2.26)

We compare this to the two extreme unitary distribution cases (where we vary π̂). The first is

where π̄ −→ 1, so that the probability density is infinitely concentrated around the point where the

benefit of punishing to the punisher is equal to the cost of punishing to the punishee. The second is

where π̄ −→ π̂, so that the probability density is infinitely concentrated around π̂, and thus the benefit

is always less than the cost. By taking the limit of (2.16) and (2.17) as π̄ −→ π̂, we get the following

solution for the unitary distribution case where the benefit is always π̂:

θ∗ =
3 + π̂2 −

√
(π̂2 + 2π̂ + 5) (1− π̂)2

2 (π̂ + 1)
δ∗ =

3 + π̂ −
√
π̂2 + 2π̂ + 5

2 (π̂ + 1)
(2.27)

For the case where π̄ −→ 1 and so the benefit is always 1, we get the following:

θ∗ =
π̂

2
+

1
2

δ∗ =
1
2

(2.28)

Finally, if we take a “symmetric” distribution where π̄ = π̂
2 + 1

2 then we get the following:

θ∗ =
6 + π̂2 + π̂ −

√
(π̂2 + 4π̂ + 12) (1− π̂)2

2 (3 + π̂)
δ∗ =

6− π̂2 − 5π̂ −
√

(π̂2 + 4π̂ + 12) (1− π̂)2

2 (3 + π̂) (1− π̂)

(2.29)

Figures 2.2 and 2.3 illustrate the value of the RHS of (2.26) as π̄ changes, and of (2.27) through

(2.29) as π̂ changes. The two unitary distribution cases represent the two extreme values of θ∗ given

a particular value of π̂. The “symmetric” distribution case can be seen to lie somewhere between. A

number of observations are worth noting. Firstly, θ∗ is increasing in both π̂ and π̄. This can be related

to the impact of the willingness, severity and temptation effects. When π̂ is high, the point where

optimal paths become maximal, and the willingness effect becomes 0, is reached more quickly as θ is

reduced, and so the socially optimal level of altruism is higher. When π̂ is fixed and π̄ is increased, on

the other hand, then the severity effect is reduced at all values of θ so that, when the willingness effect

becomes 0, the value of δ must be higher in order to be at a “knife-edge” point where the social efficient

outcome is just supportable. Again, the balance between the severity effect and the temptation effect

is effectively tilted in favour of the latter, leading to a higher socially optimal level of altruism.
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π̂

θ∗

π̄

θ∗

π̂=0π̄=1π̄=π̂ π̄=1/2+1/2π̂

Figure 2.2: Range of θ∗ given π̄ or π̂

π̂

δ∗

π̄

δ∗

π̂=0π̄=1π̄=π̂ π̄=1/2+1/2π̂

Figure 2.3: Range of δ∗ given π̄ or π̂

The second key observation to make is that the range of θ∗ is quite narrow for any given π̂. Again,

this is due to the interaction of the three effects. This can be most clearly seen by considering the

unitary distribution where the benefit is always close to 1. This means that the willingness effect is

always 0, because as soon as the flat trigger level ψ̄∗ falls below 1, all of the probability mass lies above

the trigger level, and so any further reduction in θ and ψ̄∗ has no impact. This explains why δ∗ is

always 1
2 , because this is the value of δ that will lead the temptation and severity effects to exactly

cancel out as θ is reduced. It is, however, still necessary that ψ̄∗ = π̂ in order to reach θ∗.27

27Intuitively, if π̄ is high then the willingness effect becomes negligible but, since the temptation and severity
effects are then roughly equal, it still takes quite a low value of θ before maximal punishment occurs.
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2.8.2 Illustration: continuous uniform distribution

Figure 2.4 illustrates the application of Theorems 2.II, 2.III and 2.IV to the case of a uniform

distribution with support between 0 and 1 and therefore where ∀π : g(π) = 1. The key features are the

socially optimal level of altruism θ∗ and corresponding minimum δ∗ where, by substituting in π̄ = 1
2 ,

expression (2.26) tells us is at θ∗ = δ∗ = 1 − 1√
3
, and the value of δ = 1

1+π̄ = 2
3 above which the

severity effect dominates as θ −→ −∞, resulting in a horizontal asymptote for the black region where

social efficiency is not supportable.

θ

2.8b
2.7
2.8a

2.6
2.9b
2.5
2.9a

0
0

1−1

δ 1

2
3

1
2

1− 1√
3

1− 1√
3

Figure 2.4: Socially efficient equilibria where π̂ = 0 and g(π) = 1

Figure 2.5 illustrates how the value of κ(ψ̄∗) changes (on the y-axis) for a horizontal “cross section”

taken through figure 2.4 where δ = 1− 1√
3

and θ is allowed to vary along the x-axis.28 It can be seen

that κ(ψ̄∗) lies below 0 for any value of θ apart from θ∗ = δ∗ = 1− 1√
3

and θ = 1.29

Figure 2.6 shows a “cross-section” at a second key value of δ = 0.5. The significance of this point

is that it is where the co-operation constraint for the Nash-reversion punishment path (where ψ̄ = θ)

and the co-operation constraint for the optimal flat punishment path both bind at the boundary of

the black region (which is, for this point only, also on the boundary of the dark grey region).

28The labels on the horizontal lines in figure 2.4 indicate the figure which shows the corresponding horizontal
cross-section.

29When θ = 1 there is no temptation to defect and so social efficiency can always be supported.
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ψ̄∗, E[u]

θ

ψ̄∗ κ(ψ̄∗)

Figure 2.5: Values of ψ̄∗ and κ
(
ψ̄∗
)

when δ = 1− 1√
3

ψ̄∗, E[u]

θ

ψ̄∗ κ(ψ̄∗)

Figure 2.6: Values of ψ̄∗ and κ
(
ψ̄∗
)

when δ = 1
2

A third important value of δ is that above which the temptation effect never outweighs the severity

effect as δ −→ −∞. In the case of this model, this is where δ
1−δ = 2 =⇒ δ = 2

3 . This cross-section

is illustrated graphically in figure 2.7. The property of this particular value of δ that the severity and

temptation effects exactly cancel is the fact that the value of κ(ψ̄∗) is constant for any θ < δ. It is

instructive to compare this diagram to figure 2.8, which illustrates values of δ slightly above and below

2
3 respectively. Here we notice that the value of κ(ψ̄∗) increases as θ is reduced below δ when δ > 2

3 ,

showing that the severity effect outweighs the temptation effect, and the opposite occurs when δ < 2
3 .

Figure 2.9 shows cross-sections for values of δ slightly above and below 1− 1√
3
. The key feature is that

when δ is below 1− 1√
3
, the only value of θ for which κ(ψ̄∗) is not negative is 1.
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ψ̄∗, E[u]

θ

ψ̄∗ κ(ψ̄∗)

Figure 2.7: Values of ψ̄∗ and κ
(
ψ̄∗
)

when δ = 2
3

ψ̄∗, E[u]

θ

ψ̄∗ κ(ψ̄∗)

ψ̄∗, E[u]

θ

ψ̄∗ κ(ψ̄∗)

Figure 2.8: Values of ψ̄∗ and κ
(
ψ̄∗
)

when δ = 2
3
± 0.03

2.9 The Optimal Quasi-Flat Path

The next two sections will primarily be concerned with proving the result from Theorem 2.II for the

general case where the optimal punishment path is not flat. We begin by showing that, as θ −→ 1−, the

socially efficient equilibrium becomes unsupportable using the optimal quasi-flat punishment path.

We then proceed, in section 2.10, to establish that the same result holds even when the optimal generic

punishment path is used.

Definition 2.4: A quasi-flat path is one which is flat from point 2 onwards, and is denoted by ψ̃.30

The point 1 trigger level is ψ̃1. The point 2 and after trigger level is ψ̃2.31

30The set of quasi-flat paths is denoted Ψ̃.
31This is the simplest structure enabling carrot-and-stick punishment, because the individual required to

punish at point 1 will take into account the future they face if they co-operate, where the path continues to the
less severe “carrot” part, whereas if they defect the path will reset and the “stick” at point 1 will be repeated.
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ψ̄∗, E[u]

θ

ψ̄∗ κ(ψ̄∗)

ψ̄∗, E[u]

θ

ψ̄∗ κ(ψ̄∗)

Figure 2.9: Values of ψ̄∗ and κ
(
ψ̄∗
)

when δ = 1− 1√
3
± 0.03

An important concept that will be used repeatedly in the lemmas and theorems to follow is the

definition of an average trigger level which defines a flat path which is equivalent in terms of per-

period average discounted utility to a given non-flat path looking forward from a particular point.

This average will in general be different for the individual being punished and for a “neutral observer”.

Definition 2.5: Let the U-average and the V-average be respectively denoted, given Definition

2.3 (equations (2.5) through (2.7)), as U−1(Uk(ψ)) and V −1(Vk(ψ)). These two averages are given an

expanded definition below, and total differentiation is also used to find their derivatives with respect to the

trigger level at a particular point i+k (where i > 0 since the average is “forward looking”), and the implicit

derivative of V −1(Vk(ψ)) with respect to U−1(Uk(ψ)).32

Uk (ψ) ≡
∫ 1

U−1(Uk(ψ))

(θπ − 1)g(π)dπ ≡
(

1− δ
δ

)( ∞∑
i=1

[
δi
(∫ 1

ψi+k

(θπ − 1)g(π)dπ
)])

(2.30)

Vk (ψ) ≡
∫ 1

V −1(Vk(ψ))

(θπ − θ)g(π)dπ ≡
(

1− δ
δ

)( ∞∑
i=1

[
δi
(∫ 1

ψi+k

(θπ − θ)g(π)dπ
)])

(2.31)

d

dψi+k
U−1(Uk(ψ)) =

(
1− δ
δ

)
δi
(

g (ψi+k)
g (U−1(Uk(ψ)))

)(
1− θψi+k

1− θU−1(Uk(ψ))

)
d

dψi+k
V −1(Vk(ψ)) =

(
1− δ
δ

)
δi
(

g (ψi+k)
g (V −1(Vk(ψ)))

)(
1− ψi+k

1− V −1(Vk(ψ))

)

d
dψi+k

V −1(Vk(ψ))
d

dψi+k
U−1(Uk(ψ))

=
(

1− ψi+k
1− θ ψi+k

)(
g
(
U−1(Uk(ψ))

)
g (V −1(Vk(ψ)))

)(
1− θ U−1(Uk(ψ))
1− V −1(Vk(ψ))

)
(2.32)

32Note that (2.30) and (2.31) are identities rather than just equations, so that both sides can be differentiated
with the identity continuing to hold.
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The following two lemmas will prove very useful in this and subsequent sections. Importantly,

Lemma 2.V.i applies to all optimal punishment paths, not just quasi-flat ones. It states that Uk must

we weakly minimised at point 0 along an optimal path. Lemma 2.V.ii states that constraint (2.8) must

bind at point 1 along an optimal quasi-flat path.33

Lemma 2.V.i

The U-average must be weakly minimized at the beginning of an optimal punishment path.

(a) If a punishment path ψ∗ is optimal then ∀k : Uk (ψ∗) ≥ U0 (ψ∗).

(b) If a punishment path ψ∗ is optimal then ψ∗1 ≤ U−1 (U0 (ψ∗)) ≤ U−1 (U1 (ψ∗)).

Proof: For the first claim, note that it would be possible to construct a new path ψ′ identical to ψ∗ except

beginning at point k so that ∀i : ψ′i = ψ∗k+i, resulting in the following sustainability constraints:

λi(ψ′) ≡
(

δ

1− δ

)
Vi(ψ′)−

(
δ

1− δ

)
U0(ψ′) + ψ′i − θ

µi(ψ′) ≡
(

δ

1− δ

)
Vi(ψ′)−

(
δ

1− δ

)
U0(ψ′)− ψ′i + θ

These can be rewritten as:

λi(ψ′) ≡
(

δ

1− δ

)
Vk+i(ψ∗)−

(
δ

1− δ

)
Uk(ψ∗) + ψ∗k+i − θ

µi(ψ′) ≡
(

δ

1− δ

)
Vk+i(ψ∗)−

(
δ

1− δ

)
Uk(ψ∗)− ψ∗k+i + θ

Now, since ψ∗ must, by assumption, be sustainable, we know that, for any k and i:

λk+i(ψ∗) ≡
(

δ

1− δ

)
Vk+i(ψ∗)−

(
δ

1− δ

)
U0(ψ∗) + ψ∗k+i − θ ≥ 0

µk+i(ψ∗) ≡
(

δ

1− δ

)
Vk+i(ψ∗)−

(
δ

1− δ

)
U0(ψ∗)− ψ∗k+i + θ ≥ 0

If we now suppose that there exists a k such that Uk(ψ∗) < U0(ψ∗), this would mean, by observation, that

the supportability constraints for ψ′ would unambiguously be fulfilled at every point. Also, this would mean

that φ(ψ′) > φ(ψ∗). Therefore ψ′ would be sustainable, and would be more severe than ψ∗. Hence ψ∗

could not be optimal - a contradiction.

For the second claim, note that the following identity holds for any path ψ:

δ

1− δ

(∫ 1

U−1(U0(ψ))

(θπ − 1)g(π)dπ
)
≡ δ

∫ 1

ψ1

(θπ − 1)g(π)dπ +
δ2

1− δ

∫ 1

U−1(U1(ψ))

(θπ − 1)g(π)dπ (2.33)

33We only need, given our overall strategy, to prove this result for optimal quasi-flat paths but, intuitively,
it will also hold for all optimal paths.
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This can be rewritten as:(
δ

1− δ

)
U0 (ψ) ≡

(
δ

1− δ

)
U1 (ψ) + δ

∫ U−1(U1(ψ))

ψ1

(θπ − 1)g(π)dπ

Since we know from the argument made above that U0 (ψ∗) ≤ U1 (ψ∗), we also know that∫ U−1(U1(ψ∗))

ψ∗1
(1− θπ)g(π)dπ ≥ 0, and therefore that ψ∗1 ≤ U−1(U1(ψ∗)).

Finally, identity (2.33) can also be rewritten as:

0 ≡ δ
∫ U−1(U0(ψ))

ψ1

(θπ − 1)g(π)dπ +
δ2

1− δ

∫ U−1(U0(ψ))

U−1(U1(ψ))

(θπ − 1)g(π)dπ

Since U−1(U0(ψ∗)) ≤ U−1(U1(ψ∗)), in order for this to hold it must follow that U−1(U0(ψ∗)) ≥ ψ∗1 .

Intuitively, the U-average must be “dragged down” from below by the trigger level at point 1.

Lemma 2.V.ii

The “lower” constraint must bind at the beginning of an optimal quasi-flat punishment path.

If a quasi-flat punishment path ψ̃∗ is optimal then λ1

(
ψ̃∗
)

= 0.

Proof: Firstly, note that differentiating λk(ψ̃) or µk(ψ̃) where k > 1 with respect to ψ̃1 yields

dλk
dψ̃1

= dµk
dψ̃1

= −δ(1−θψ̃1)g(ψ̃1). Since this is unambiguously negative, decreasing ψ̃1 improves the incentive

to co-operate at all later points along the punishment path. Since dφ

dψ̃1
= −δ(1−θψ̃1)g(ψ̃1) is also negative,

decreasing ψ̃1 also makes the punishment path more severe. Therefore, to have reached an optimal path,

ψ̃1 should have been reduced until λ1(ψ̃∗) = 0. It may, however, be the case that ψ̃1 reaches π̂ before the

period 1 co-operation constraint binds. Since ψ̃2 ≡ U−1(U1(ψ̃)), Lemma 2.V.i implies that ψ̃∗2 ≥ ψ̃∗1 . This

in turn means that, for a quasi-flat path ψ̃∗, λ1(ψ̃∗) ≥ 0 is a sufficient condition for λk(ψ̃∗) ≥ 0 to hold

for all k. Therefore, if λ1(ψ̃∗) > 0 and ψ̃∗1 = π̂, then (since dφ

dψ̃2
= − δ2

1−δ (1 − θψ̃2)g(ψ̃2) is negative) ψ̃∗2

could instead be reduced, resulting in an improvement to the severity of the path - a contradiction.

Lemma 2.V.i implies that the optimal quasi-flat path ψ̃∗ must have a weakly lower trigger level

at point 1 (ψ̃∗1) than at point 2 and after (ψ̃∗2), so that ψ̃∗1 ≤ ψ̃∗2 . This fits the intuition that the

“stick” of harsher punishment should come earlier in the punishment path so that the “carrot” of

less harsh punishment later along the path will operate as an incentive for those doing the punishing

to co-operate with the harsher punishment earlier on. Note also that, for any quasi-flat path ψ̃,

∀k≥1 : ψ̃2 ≡ V −1(Vk(ψ̃)) ≡ U−1(Uk(ψ̃)).
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The trade-off which drives the optimal quasi-flat path is between a “bigger stick” at point one

and the resulting “nicer carrot” at point two and after.34 The gain in severity of the punishment path

from a reduction in the point one trigger level depends upon the probability density at that benefit

value, whilst the effectiveness of the carrot in offsetting this to ensure sustainability also depends on

the probability density at the point two and after trigger level. The cost of incentivizing co-operation

with a lower trigger level at point one, however, does not depend upon the probability density at the

point one trigger level, since it is “paid” in full if the value of the benefit turns out to be in the relevant

range. Intuitively, therefore, if the probability density function for the benefit is sufficiently flat, this

cost will always outweigh the benefit of making the quasi-flat punishment path non-flat.35

2.9.1 A taxonomy of optimal quasi-flat paths

An important lesson to draw from the discussion so far is that the framework of strategy profiles

constructed from punishment paths does not, in and of itself, provide enough structure to allow a

complete and comprehensive solution to the problem of finding the form of optimal punishment in a

specific context such as that of the sequential punishment model. Although punishment paths share a

similar carrot-and-stick structure, each particular model requires its own toolkit of “tricks” to derive

the precise shape of the optimal paths.

The concept of a quasi-flat punishment path turns out to be essential to analysing the equilibria

supportable by optimal generic punishment paths in the sequential punishment model. This is because,

as will be shown in section 2.10, it is always possible to construct a quasi-flat path whose severity value

φ (see equation (2.11) in Definition 2.3) forms an upper bound for all sustainable generic paths, and

to derive sufficient structure from this to extend Theorem 2.II to all the necessary general cases. Also,

quasi-flat paths themselves come in a variety of “flavours”, the differences between them driven by

the optimal structure of carrot-and-stick punishment in the sequential punishment model, and its

interaction with the partially altruistic preferences of the players, along with the limits on the support

for the distribution of the benefit π.

34See sections 2.9.5 and 2.9.6 for more detailed examples of this principle in action.
35Theorem 2.V will establish this sufficient condition on the probability density function g(π) to ensure that

the optimal quasi-flat punishment path will be flat.
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It is useful to ask at this point why quasi-flat paths emerge naturally from the structure of

the sequential punishment model whilst, as we shall discuss in more detail in section 2.9.5, optimal

punishment in the infinitely-repeated Bertrand and Cournot games involves complete “front-loading”,

with as much punishment as possible packed into the early stages of the path (Abreu, 1986) (Lambson,

1987). The answer is that it is the presence of partial altruism which drives the “flattening-out” of the

tail of paths in the sequential punishment model.

The positioning of trigger levels at point 2 and onwards involves a trade-off, allowing greater

punishment to be “bought” at point 1, but at the cost of less severe punishment later. The “sacrifice

ratio” will be given by expression (2.32), which measures the increase in “carrot” (measured as a higher

V-average) for a given reduction in “stick” along the path (a higher U-average), brought about by a

rise in a later trigger level, ψk+i. It can be seen that this ratio is more favourable when ψk+i is lower.36

It is therefore optimal to “spread out” the punishment evenly over the entire tail, in order to provide

the maximum incentive to co-operate for those doing the punishing.

There are a number of possibilities for the precise form that the optimal quasi-flat path might

take. By Lemma 2.V.i, it is impossible for the trigger level at point 1 to be higher than at point 2

onwards. This leaves seven possibilities, types A-G. Type A is the maximal path characterised in

Theorem 2.I. Possibility B is a quasi-maximal path, where the trigger level is “maxed-out” at point

1 but not from point 2 onwards. Type C is a flat path. With type D paths, on the other hand, the

amount of punishment at point 1 runs up against constraint (2.9) in that we cannot further increase ψ̃2

without rendering the path unsustainable. We shall refer to this case as a carrot-constrained path.

A fifth possibility, E, is that there is an optimal marginal trade-off between punishment in point 1 and

punishment at point 2 and after. We shall call this a carrot-maximized path. The next type, F, is a

path where the amount of punishment at point 1 runs up against the constraint imposed by not being

able to make the future “carrot” attractive enough to allow more severe punishment.37 We shall call

this a quasi-minimal path. The seventh and final case, G, is one where no punishment at all can be

incentivized; this is a minimal path. It can immediately be seen, however that type G paths cannot

possibly be optimal, since Theorem 2.I implies that there will always exist an optimal flat path with

ψ̄∗ < 1, which is strictly more severe than the minimal path (where ψ̄∗ = 1).

36The benefits and costs are discounted, so the exchange ratio, given a particular trigger level, looks the
same for all future periods.

37This happens because we reach the top of the support of the distribution for π (i.e. ψ̃2 reaches 1).
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We shall also find it essential in the lemmas and theorems to follow to distinguish between two

different types of optimal path. Fully-constrained paths must satisfy all co-operation conditions

defined by (2.8) and (2.9). Semi-constrained paths only need satisfy the conditions defined in (2.8).

A fully-constrained optimal quasi-flat path satisfies co-operation conditions λ1 ≥ 0, λ2 ≥ 0, µ1 ≥ 0

and µ2 ≥ 0. Given quasi-flatness, these form a sufficient condition for all the co-operation constraints

to be fulfilled. A semi-constrained optimal quasi-flat path is one which is only constrained to satisfy

λ1 ≥ 0 and λ2 ≥ 0 (though it may, by “chance”, also satisfy µ1 ≥ 0 and µ2 ≥ 0, and therefore also be

in the set of fully-constrained paths).

Definition 2.6: Let Ψ denote the set of unconstrained paths, in increasing order of φ. Let Ψsc

and Ψfc be the sets of sustainable semi-constrained and fully-constrained paths respectively, so that

Ψfc ⊂ Ψsc ⊂ Ψ. These are similarly ordered by φ. The optimal generic path can be defined as

ψ∗ = sup Ψfc = maxψ∈Ψfc {φ(ψ)}. Let Ψ̃ ⊂ Ψ be the set of quasi-flat paths and Ψ̄ ⊂ Ψ̃ be the

set of flat paths. Let Ψ̃sc = Ψ̃∩Ψsc, Ψ̄sc = Ψ̄∩Ψsc, Ψ̃fc = Ψ̃∩Ψfc and Ψ̄fc = Ψ̄∩Ψfc denote analogous

sets of semi-constrained and fully-constrained quasi-flat and flat paths. The optimal flat and quasi-flat

paths are respectively defined as ψ̄∗ = sup Ψ̄fc and ψ̃∗ = sup Ψ̃fc. Let ψ̄∗sc = sup Ψ̄sc denote the optimal

semi-constrained flat path and ψ̃∗sc = sup Ψ̃sc denote the optimal semi-constrained quasi-flat path.

It should be noted at this point that the optimal semi-constrained quasi-flat path cannot be “carrot-

constrained”, since constraint (2.9) does not apply. Also, observe that the optimal semi-constrained

path will be at least as effective as the optimal fully-constrained path. In other words, if all paths are

ordered in φ, the optimal semi-constrained path will equal or beat the optimal fully-constrained path:

φ(sup Ψsc) ≥ φ (sup Ψfc). Analogously, φ(sup Ψ̃sc) ≥ φ(sup Ψ̃fc) and φ(sup Ψ̄sc) ≥ φ(sup Ψ̄fc). This

observation is key in enabling Theorem 2.II to be generalized to the case where the optimal generic

path is used to punish deviations from the socially efficient initial path.

Define ψλk and ψµk as the values of ψk that respectively satisfy conditions (2.8) and (2.9) with

equality.38 These therefore represent the upper and lower limits for the trigger level that could be

sustained at point k given the structure of the entire punishment path. Figures 2.10 through 2.15

illustrate the various possible structural types of optimal quasi-flat path.39

38Note that for a quasi-flat path this will be the same for any k because ∀k≥1 : Vk(ψ̃) ≡ V1(ψ̃).
39We do not show case G, that of a minimal path, since we have already argued that this type of quasi-flat

path cannot possibly be optimal.
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Figure 2.10: Type A: A maximal path
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Figure 2.11: Type B: A quasi-maximal path

Theorems 2.I, 2.III and 2.IV continue to hold for the equilibria supportable by generic optimal

paths (and, therefore, quasi-flat paths) without alteration. In general, the quasi-maximal case only

occurs when θ is close to the boundary established in Theorem 2.I below which the optimal path is

maximal. In section 2.9.5, we see an example of this with the triangular distribution. As we shall argue
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Figure 2.12: Type C: A flat path
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θ

ψλj
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ψµj

Figure 2.13: Type D: A carrot-constrained path

shortly, the quasi-minimal case cannot possibly be optimal.40 The flat, carrot-constrained and carrot-

maximized paths illustrated in figures 2.12, 2.13 and 2.14 respectively represent the three possibilities

for an “interior solution”.

40The proof of Lemma 2.IX.i (the appendix) verifies this.
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Figure 2.14: Type E: A carrot-maximized path
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Figure 2.15: Type F: A quasi-minimal path

2.9.2 Conditions for a flat path

To intuitively derive necessary and sufficient conditions for the optimal quasi-flat path to be flat

(type C), we can use a trick from Abreu by considering the optimal path we are able to construct using

a fixed punishment for a deviation. If this can be shown to be flat, then the optimal path constructed
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using itself as a punishment will also be flat. Let U ≡ ( δ
1−δ )U0

(
ψ
)

be the expected utility for the

punishee along the fixed punishment path ψ. Let λk(ψ̃) ≡ ( δ
1−δ )Vk(ψ̃)−U+ ψ̃k−θ be the co-operation

constraint at point k for quasi-flat path ψ̃ given the use of the fixed path ψ to punish any deviation.

Since the trigger level at point 1 should be set so that λ1(ψ̃) = 0 for an optimal path, we know that

the following condition must hold:

ψ̃1 =θ −
(

δ

1− δ

)
V1(ψ̃) + U

=θ +
(

δ

1− δ

)∫ 1

ψ̃2

(θ − θπ)g(π)dπ + U

(2.34)

We are seeking to maximize the disutility of the person being punished along the quasi-flat

punishment path ψ̃. This will be given by:

φ =−
(

δ

1− δ

)
U0

(
ψ̃
)

=δ
∫ 1

ψ̃1

(1− θπ) g(π)dπ +
(

δ2

1− δ

)∫ 1

ψ̃2

(1− θπ) g(π)dπ

(2.35)

Totally differentiating (2.34) with respect to ψ̃1 gives us:

dψ̃1

dψ̃2

= −
(

δ

1− δ

)(
θ − θψ̃2

)
g
(
ψ̃2

)
(2.36)

Totally differentiating (2.35) with respect to ψ̃2 gives us:

dφ

dψ̃2

= δ
(
θψ̃1 − 1

)
g
(
ψ̃1

) dψ̃1

dψ̃2

−
(

δ2

1− δ

)(
1− θψ̃2

)
g
(
ψ̃2

)

Substituting in (2.36) and simplifying yields:

dφ

dψ̃2

=
(

δ2

1− δ

)
g
(
ψ̃2

)((
1− θψ̃1

)(
θ − θψ̃2

)
g
(
ψ̃1

)
−
(

1− θψ̃2

))

This is unambiguously negative if the following condition holds:

g
(
ψ̃1

)
<

1− θψ̃2(
1− θψ̃1

)
θ
(

1− ψ̃2

) (2.37)
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The RHS of (2.37) is increasing in ψ̃1 and ψ̃2. This means that the most stringent condition will

be where ψ̃1 = ψ̃2 = π̂. Requiring that the probability density function g(π) always be less than this

ensures that the above condition will always hold. This yields the following condition:

∀π : g(π) <
1

θ(1− π̂)
(2.38)

Provided this condition holds, increasing ψ̃2 in order to further reduce ψ̃1 always makes the

punishment path less effective by reducing φ. It is therefore optimal to set ψ̃2 = ψ̃1 since to set

ψ̃2 < ψ̃1 will result in a clearly non-optimal path, by Lemma 2.V.i. Condition (2.38) is therefore

sufficient for the optimal quasi-flat path to be flat. (This result is verified in Theorem 2.V below.)

A necessary condition for the optimal quasi-flat path to be flat can be found by substituting

ψ̃1 = ψ̃2 = ψ̄∗ into condition (2.37) to give the following:

g
(
ψ̄∗
)
<

1
θ
(
1− ψ̄∗

) (2.39)

Theorem 2.V

If the benefit distribution is sufficiently flat, then the optimal quasi-flat punishment path is flat.

If ∀π : g(π) < 1
θ(1−π̂) , then φ

(
ψ̄∗
)
≥ φ

(
ψ̃∗sc

)
and therefore φ

(
ψ̄∗
)
≥ φ

(
ψ̃∗
)

.

Proof: Lemma 2.IX.i (the appendix) proves that if ∀π : g(π) < 1
θ(1−π̂) then the optimal semi-constrained

quasi-flat path must be flat (sup(Ψ̃sc) ∈ Ψ̄sc). This implies that φ(ψ̄∗sc) ≥ φ(ψ̃∗sc). If we can show that

sup Ψ̄sc ∈ Ψ̄fc, then this will mean that φ(ψ̄∗) ≥ φ(ψ̄∗sc) ≥ φ(ψ̃∗sc), and the result of the lemma will follow.

Crucially to the result of this lemma, the “upper” (µ) constraint never binds for an optimal flat path.

To observe this, first note that it can be seen, from expressions (2.8) and (2.9) in Definition 2.3, that if

ψ̄ ≤ θ and λ(ψ̄) ≥ 0, then µ(ψ̄) ≥ 0. Also, by observation of expression (2.12), it must be the case that

ψ̄∗ ≤ θ for any conceivable optimal flat path ψ̄∗, since the “lower” (λ) constraint must bind. Therefore, it

must follow that sup Ψ̄sc ∈ Ψ̄fc.

Finally, to verify the second claim of the lemma, that φ(ψ̄∗) ≥ φ(ψ̃∗), simply note that Ψ̃fc ⊂ Ψ̃sc and

thus φ(ψ̃∗) ≤ φ(ψ̃∗sc).
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2.9.3 Conditions for non-flat paths

We now proceed to lay out the conditions which must hold for the various possible configurations

(types A to F) of a fully-constrained optimal quasi-flat path. Firstly, we already know the necessary

and sufficient condition for a maximal (type A) path from Theorem 2.I. Secondly, taking the case of a

quasi-maximal (type B) path, we know that ψ̃1 = π̂. The value for ψ̃2 can then be derived using the

λ1(ψ̃) = 0 condition. This should be checked as a candidate for the fully-constrained optimal quasi-flat

path. We have already characterized flat (type C) paths in section 2.8.

For a carrot-constrained (type D) path, constraint (2.8) binds at point one and constraint (2.9)

at points two and after. In this case, the limit to how much “carrot” can be created is imposed by

the difficulty in incentivizing individuals to refrain from punishing when they would like to along the

“tail” of the punishment path.41 The optimal carrot-constrained path is characterised by the property

that both λ1(ψ̃) = 0 and µ2(ψ̃) = 0. Solving µ2(ψ̃) − λ1(ψ̃) = 0 (applying identities (2.8) and (2.9)

from Definition 2.3) gives us:

ψ̃2 = 2θ − ψ̃1 (2.40)

The fact that a carrot-maximized (type E) path is also a possibility can be seen by observation

of condition (2.37). As ψ̃2 −→ 1, the RHS of (2.37) goes to infinity. Therefore the inequality will

definitely be fulfilled, and further increases in ψ̃2 in order to decrease ψ̃1 will no longer improve the

severity of the path. If this happens before ψ̃2 reaches ψµj then the optimal quasi-flat path will be

“carrot-maximized”. A carrot-maximized path must therefore have the property that condition (2.37)

is satisfied as an equality. Rearranging this condition gives us:

ψ̃2 =
g
(
ψ̃1

)(
1− θψ̃1

)
θ − 1

g
(
ψ̃1

)(
1− θψ̃1

)
θ − θ

(2.41)

The above argument from condition (2.37) also shows why a quasi-minimal (type F) path is

impossible, because as ψ̃2 −→ 1− the RHS of the inequality goes to ∞. Therefore, when raising ψ̃2 in

search of the optimal quasi-flat path, a path would always become carrot-maximized before it becomes

quasi-minimal.

41Although it might be felt intuitively that if the socially efficient initial path is to be sustainable using
a particular path, then co-operation with the “tail” of the punishment path would automatically also be
sustainable, this does not necessarily follow because there is still a less attractive future along the tail of
the punishment path if punishers co-operate, rendering the severity of punishment lower and thus making
co-operation with the “tail” more difficult to incentivize than co-operation with the initial path.
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2.9.4 The optimal quasi-flat path

We now have all the information we need to lay out the procedure for finding the optimal quasi-flat

path. Assuming that the optimal path is not maximal, the only possibilities are a quasi-maximal, flat,

carrot-constrained and carrot-maximized path. Solving (2.40) and (2.41) respectively simultaneously

with equation (2.43) below provides a shortcut in finding the optimal quasi-flat path since, once the

various solutions have been compared with the optimal flat path defined by (2.12) and with the quasi-

maximal candidate where λ1(ψ̃) = 0 and ψ̃1 = π̂, and the most severe path among them found,42 we

can be sure that it is optimal.43 Most importantly, we can now prove the analogue of Theorem 2.II

for the more general case of the optimal quasi-flat path. This requires the use of Lemma 2.IX.i (the

appendix).44 Once we present Theorem 2.VII, the result will be generalized to all globally optimal

fully-constrained paths. This will allow us to substantiate generally, for any benefit distribution, the

result that too high a level of altruism will cause the socially efficient equilibrium to break down.45

Theorem 2.VI

As altruism becomes perfect, the optimal quasi-flat punishment path cannot support the socially

efficient equilibrium, for any value of the discount factor.

As θ −→ 1−, κ
(
ψ̃∗
)
< 0.

Proof: Firstly, observe that the most severe path in Ψ̃sc, sup Ψ̃sc must be at least as severe as the most

severe path in Ψ̃fc, sup Ψ̃fc. Therefore φ(sup Ψ̃sc) ≥ φ(sup Ψ̃fc) and so φ
(
ψ̃∗sc

)
≥ φ

(
ψ̃∗
)

. Now,

combining with expressions (2.10) and (2.11), we know that:

κ
(
ψ̃∗
)
≤ φ

(
ψ̃∗sc

)
+ θ − 1 (2.42)

Theorem 2.II, combined with Lemma 2.IX.i, has already established that the RHS of expression (2.42) goes

to 0− as θ −→ 1−. Therefore the LHS of (2.42) must be strictly negative as θ −→ 1−.

42Note that we must also check the sustainability of each “candidate” because these are necessary rather
than sufficient conditions.

43We use this method in subsection 2.9.6 to analyse a specific example of a carrot-maximized and a carrot-
constrained path.

44In Lemma 2.IX.i, we impose only that the optimal path be semi-constrained, partly to simplify the proof
but, more importantly, because we are later able to generate semi-constrained quasi-flat paths by “flattening-
out” generic paths.

45In the course of the proof for Lemma 2.IX.i, we exhaustively derive the conditions on g(π) under which
the optimal semi-constrained quasi-flat path can be maximal, quasi-maximal, carrot-maximized and flat. The
key result is that as θ −→ 1−, the optimal semi-constrained quasi-flat punishment path must be flat.
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2.9.5 Illustration: quasi-maximal paths

Given assumption (2.3), condition (2.38) will definitely hold for a uniform distribution with support

between π̂ and 1. It is however, instructive to look at some examples where the optimal quasi-flat path

is not flat. As we have seen, this requires a distribution with a high enough probability density around

the optimal flat trigger level. The simplest distribution for the benefit which can produce this result

is a triangular distribution. The triangular probability density function g(π) = 50(1−π) with support

between 0.8 and 1 and illustrated below is one such example.

π

g(π)

Figure 2.16: Triangular probability density function

The optimal quasi-flat path can be computed by using the λ1(ψ̃) = 0 condition to derive the

following expression for ψ̃1, and then numerically solving for ψ̃1 given each particular ψ̃2:

ψ̃1 = θ − δ

1− δ

∫ 1

ψ̃2

(θπ − θ)g(π)dπ + δ

∫ 1

ψ̃1

(θπ − 1)g(π)dπ +
δ2

1− δ

∫ 1

ψ̃2

(θπ − 1)g(π)dπ (2.43)

Figures 2.17 through 2.22 illustrate the results of this exercise for δ = 0.48 and δ = 0.49, with

θ = 0.9. Figures 2.17 and 2.20 show the value of ψ̃2 imputed from (2.43) for each value of ψ̃1. They

also show the optimal flat trigger level ψ̄∗ (numerically solved using (2.12)), and the ψ̃2 = ψ̃1 line.

If δ = 0.5, then solving equation (2.12) to find the optimal flat path for the assumed triangular

benefit distribution yields ψ̄∗ = 0.8. This would be a maximal (type A) path involving punishment

for all benefit values all of the time, as π̂ = 0.8. By making δ slightly lower than this, we prevent the

optimal flat path from being maximal because the future is no longer “important enough” to sustain

it. For the triangular distribution, this results in the optimal path being quasi-maximal (type B).

Figures 2.18, 2.19, 2.21 and 2.22 show the values of the various co-operation constraints, and the

severity of the punishment paths (φ).46 In both cases, all of the constraints are positive, showing that

46Note that, because (2.8) binds at point 1 (and so (2.9) cannot), λ1 and µ1 do not need to be displayed.
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the punishment path is itself sustainable and supports the initial path. In both cases, the highest value

of φ(ψ̃) occurs where ψ̃1 = 0.8. We have, therefore, two cases where the optimal quasi-flat punishment

path is “maxed-out” at point 1, so that ψ̃∗1 = π̂. The “tail” of the path is, however, not maxed-out.

A notable feature of the graph of the imputed ψ̃2 in figure 2.17 is that it initially climbs as ψ̃1

is reduced below ψ̄∗. This means that ψ̃2 must initially be raised to compensate for a reduction in

ψ̃1 if the point 1 co-operation constraint is to remain unbroken. Eventually, on the other hand, the

imputed ψ̃2 graph begins to fall as ψ1 is reduced. Since this line continues to lie above the dashed

ψ̃2 = ψ̃1 line, these more severe quasi-flat punishment paths can only be achieved by introducing some

carrot-and-stick element into the punishment path. By doing this, however it is possible to reduce

both trigger levels below the trigger level of the optimal flat punishment path.

Figure 2.20 shows a situation where the graph of the imputed ψ̃2 has a positive gradient for any

change in ψ̃1. This means that it is now possible to reach more effective paths which remain sustainable

by simultaneously reducing both trigger levels below the optimal flat trigger level, provided that ψ̃2

is reduced by less than ψ̃1. Here we have a classic illustration of Abreu’s principle that, when being

optimally punished, individuals can be persuaded to put up with an even more unpleasant present in

exchange for a relatively less unpleasant future.

The carrot-and-stick structure of optimal quasi-flat punishment paths illustrated here is similar

to the optimal penal codes derived for infinitely repeated oligopoly games. Abreu himself derived the

properties of optimal penal codes in the infinitely repeated Cournot game (Abreu, 1986). He found

that, provided there is sufficiently low discounting, optimal punishment paths would involve one period

of very high output and negative profits followed by a return to fully collusive behaviour. Such paths

cannot be any worse than the 0 discounted stream of profits that could be achieved by shutting down.

Lambson built on Abreu’s work to derive optimal penal codes in the infinitely repeated

homogeneous product Bertrand model with identical firms and capacity constraints (Lambson, 1987).

Optimal punishment paths in this model involve a number of periods of low profits followed by a return

to fully collusive behaviour. This is because the losses per firm in any one period cannot be infinite in

the Bertrand model. The sequential punishment model is more like Bertrand in that the severity of

the punishment path at point 1 is constrained by the fact that ψ̃1 cannot be any lower than π̂. This

means that generally there will also be some punishment along the “tail” of an optimal quasi-flat path.
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ψ̃2 ψ̃1 ψ̄∗
ψ̃1

ψ̃2

Figure 2.17: Trigger levels for a quasi-maximal path - θ = 0.9, δ = 0.48.

λ2 µ2

ψ̃1

E[u]

Figure 2.18: Co-operation constraints for a quasi-maximal path - θ = 0.9, δ = 0.48.

φ φ(ψ̄∗) κ

ψ̃1

E[u]

Figure 2.19: Severity of a quasi-maximal path - θ = 0.9, δ = 0.48.
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ψ̃2 ψ̃1 ψ̄∗
ψ̃1

ψ̃2

Figure 2.20: Trigger levels for a quasi-maximal path - θ = 0.9, δ = 0.49.

λ2 µ2

ψ̃1

E[u]

Figure 2.21: Co-operation constraints for a quasi-maximal path -θ = 0.9, δ = 0.49.

φ φ(ψ̄∗) κ

ψ̃1

E[u]

Figure 2.22: Severity of a quasi-maximal path - θ = 0.9, δ = 0.49.
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2.9.6 Illustration: carrot-constrained and carrot-maximized
paths

In this subsection, we will present specific numerical examples of a flat, a carrot-constrained and

a carrot-maximized path, to illustrate more of the general principles discussed in subsection 2.9.1.

Figures 2.24, 2.25 and 2.26 respectively show the numerically calculated values for ψ̃2 given ψ̃1, the

various co-operation constraints47 and the effectiveness of the punishment path φ for the triangular

distribution shown in figure 2.16, with δ = 1
3 and θ = 0.9. Figures 2.27, 2.28 and 2.29 show the results

for the same exercise conducted using the probability density function given in (2.44) below, and shown

in figure 2.23, with δ = 1
8 and θ = 0.9, π̂ = 0.8 and support between 0.8 and 1. Figures 2.30, 2.31 and

2.32 show the analysis for the same distribution but with δ = 1
16 .

g(π) = 17.5

1−

((
2π − π̂ − 1

1− π̂

)2
) 1

5
 (2.44)

The key features to note are, firstly, that in all three cases µ2 reaches 0 before ψ̃1 reaches π̂ =

0.8, showing that the optimal path cannot possibly be quasi-maximal. Secondly, whereas in figure

2.26, φ decreases as ψ̃1 is reduced, showing that the optimal quasi-flat path is flat, in figure 2.29, φ

reaches an interior maximum, showing that the optimal quasi-flat path is carrot-maximized. In figure

2.32, meanwhile, φ reaches a constrained maximum at the carrot-constrained value of ψ̃1, where the

x-axis begins. Note, finally, that the starting value on the x-axis, corresponding to the carrot-maximized

“candidate” for the optimal path in each case, and the “carrot-maximum” denoted by the vertical

dotted line in figure 2.29 were derived using the shortcut method described earlier in section 2.9.4.

π

g(π)

Figure 2.23: Probability density for a carrot-maximized or carrot-constrained path

47Note that we do not show κ(ψ̃) here as, in some of these cases, the optimal quasi-flat path is not severe
enough to enable to socially efficient initial path to be supported. However, an optimal punishment path would
still be needed to support the optimal second-best equilibrium, as we will discuss in section 2.11.
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ψ̃2 ψ̃1 ψ̄∗

ψ̃1

ψ̃2

Figure 2.24: Trigger levels for a flat path

λ2 µ2

ψ̃1

E[u]

Figure 2.25: Co-operation constraints for a flat path

φ φ(ψ̄∗)

ψ̃1

E[u]

Figure 2.26: Severity of a flat path
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ψ̃2 ψ̃1 ψ̄∗
ψ̃1

ψ̃2

Figure 2.27: Trigger levels for a carrot-maximized path

λ2 µ2

ψ̃1

E[u]

Figure 2.28: Co-operation constraints for a carrot-maximized path

φ φ(ψ̄∗)
ψ̃1

E[u]

Figure 2.29: Severity of a carrot-maximized path
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ψ̃2 ψ̃1 ψ̄∗
ψ̃1

ψ̃2

Figure 2.30: Trigger levels for a carrot-constrained path

λ2 µ2

ψ̃1

E[u]

Figure 2.31: Co-operation constraints for a carrot-constrained path

φ φ(ψ̄∗)
ψ̃1

E[u]

Figure 2.32: Severity of a carrot-constrained path
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2.10 The Optimal Generic Path

We are now ready to further generalize Theorems 2.II and 2.VI to the case where the optimal

generic punishment path is used to support the initial path. The result hinges upon three intuitive

observations. Firstly, the optimal semi-constrained path is quasi-flat, because it is always possible to

take any given optimal semi-constrained path and “flatten out” the tail, producing an equally severe

path without breaking any of the co-operation constraints. Secondly, as θ −→ 1−, it is impossible to

support the socially efficient equilibrium using the optimal semi-constrained quasi-flat path, because it

must become flat (this is proved in Lemma 2.IX.i), and we already know (from Theorem 2.II) that the

result holds for flat paths. Thirdly, since the optimal fully-constrained generic path must be weakly

less severe than the optimal semi-constrained path, then it must also follow that, as θ −→ 1−, the

socially efficient equilibrium cannot be supported by any path.

Theorem 2.VII will work by arguing, firstly, that any generic optimal punishment path can be

replaced by a semi-constrained quasi-flat path constructed by “flattening out” to the point 1 U-average

from point 2 onwards. This newly constructed quasi-flat path will continue to fulfil the point 1 and

point 2 cooperation conditions48 λ1 ≥ 0 and λ2 ≥ 0. It will therefore be in the set of semi-constrained

paths, and will be as severe as the path it was generated from.

Applying Lemma 2.IX.i (the appendix), it will therefore be shown that the supportability constraint

on the socially efficient initial path, given the use of the generic optimal path to punish a deviation,

is broken as θ −→ 1−. Whether or not globally optimal paths are flat, it is thus established that

intermediate values of the coefficient of altruism are best able to support a socially efficient equilibrium.

Theorem 2.VII will, as a result, be crucial to establishing the general applicability of the key results

from section 2.8, which form the core contribution of this paper. We also show, in Theorem 2.VIII,

that the globally optimal path is definitely flat if the benefit distribution is sufficiently flat.

Lemma 2.VII.i below is an essential building block. It establishes that for any generic punishment

path looking forward from any point k, the U-average must lie equal to or above the V-average. It

should be noted that the result from Lemma 2.VII.i is based on the assumption of risk neutral agents.

Although mathematically analogous to differing levels of risk aversion, the result is in fact generated

by differing attitudes towards the benefit values under which punishment is inflicted.

48The co-operation conditions for point 3 and after are identical to those at point 2.
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Lemma 2.VII.i

For any punishment path, at any point, the U-average is weakly greater than the V-average.

∀ψ∀k : U−1 (Uk (ψ)) ≥ V −1 (Vk (ψ)).

Proof: This result follows from an application of the principle of stochastic dominance, a key principle

in the economics of risk (Rothschild & Stiglitz, 1970). First, note from Definition 2.3 that the per

period average utility functions for the person being punished and a neutral observer can be rewritten as

Uk(ψ) ≡
∑∞
i=1[piU(ψi+k)] and Vk(ψ) ≡

∑∞
i=1[piV (ψi+k)] where pi = (1−δ)δi−1 and

∑∞
i=1[pi] = 1. This

means that U(ψ) and V (ψ) can be thought of as “expected utility functions”, with the discount factor for

each point along the path taking the role of probabilities for different outcomes of a lottery. The “expected

value” of a particular path ψ looking forward from point k can then be defined as Ek[ψ] =
∑∞
i=1[piψi+k].

Since this “expected value” is equal for both the punishee and the neutral observer, the discounted expected

utility along a path is exactly analogous to the expected utility of a risky prospect. Therefore if we can show

that the “neutral observer” is more “risk averse” than the punishee, the result of the lemma will follow.

The coefficient of absolute risk aversion Ra = −U
′′

U ′ measures the degree of concavity of a utility

function. If it is always higher for one function than another, then the corresponding agent is the more risk

averse (Diamond & Stiglitz, 1974). For the two types of agent under consideration (with utility functions

U(ψ̄) and V (ψ̄) respectively), the CARA works out as the following.

RUa =
θ

1− θψ̄
− g′(ψ̄)
g(ψ̄)

RVa =
θ

θ − θψ̄
− g′(ψ̄)
g(ψ̄)

(2.45)

Since RVa is always unambiguously greater than RUa , the neutral observer is more “risk averse” than the

punishee, and hence will always have a lower “certainty equivalent” from a given path looking forward,

which, from Definition 2.3, is precisely analogous to V −1(Vk(ψ)), as opposed to U−1(Uk(ψ)).

The sensitivity of a “neutral observer” to more “wasteful” punishment when watching others being

punished is greater than the sensitivity of the punishee. This makes intuitive sense, since, to take the

example of a fine, the person being fined is mainly affected in social utility terms by the fact that they

are fined, whereas altruistic neutral observers who value the felicity of the person fined and the recipient

of the revenue equally will be more sensitive to any deadweight loss from punishment. The intuition

for the result can also be related to the “sacrifice ratio” derived in expression (2.32). Punishing within

a certain “bracket” of values of π, with a fixed width, has a greater effect on U−1(Uk(ψ)) (increasing
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the “stick”) relative to V −1(Vk(ψ)) (decreasing the “carrot”) the higher the bracket. V −1(Vk(ψ)) is

maximized when a particular value of U−1(Uk(ψ)) is generated by a flat path looking forwards.

Definition 2.7: Let γ : Ψ −→ Ψ̃ be the function which constructs a quasi-flat path from a generic

path by “flattening-out” the trigger levels from point 2 onwards to the point 1 U-average. This means that

γ1(ψ) = ψ1 and γ2(ψ) = U−1(U1(ψ)). Note also that φ(γ(ψ)) = φ (ψ).49

Lemma 2.VII.ii

If a punishment path is optimal, then the quasi-flat path constructed by “flattening it out” will

be in the set of semi-constrained paths.

If a path ψ∗ is optimal then ∀k : λk (γ (ψ∗)) ≥ 0, therefore γ (ψ∗) ∈ Ψ̃sc.

Proof: Firstly, observe that, given the result from Lemma 2.VII.i, U0(γ(ψ∗)) = U0(ψ∗) and

∀k : Vk(γ(ψ∗)) ≥ V1(ψ∗). To see this, note the following:(
δ

1− δ

)
U0 (ψ) ≡ δ

∫ 1

ψ1

(θπ − 1)g(π)dπ +
δ2

1− δ

∫ 1

U−1(U1(ψ))

(θπ − 1)g(π)dπ

(
δ

1− δ

)
U0 (γ(ψ)) ≡ δ

∫ 1

γ1(ψ)

(θπ − 1)g(π)dπ +
δ2

1− δ

∫ 1

γ2(ψ)

(θπ − 1)g(π)dπ(
δ

1− δ

)
V1 (ψ) ≡ δ

1− δ

∫ 1

V −1(V1(ψ))

(θπ − θ)g(π)dπ

∀k :
(

δ

1− δ

)
Vk (γ (ψ)) ≡ δ

1− δ

∫ 1

γ2(ψ)

(θπ − θ)g(π)dπ

The claim is then straightforward to verify once it is noted that γ1(ψ) = ψ1 and γ2(ψ) = U−1(U1(ψ)),

since, by Lemma 2.VII.i, U−1(U1(ψ)) ≥ V −1(V1(ψ)).

Now we can proceed to note that:

λ1 (γ (ψ)) ≡
(

δ

1− δ

)
V1 (γ (ψ))−

(
δ

1− δ

)
U0 (γ (ψ)) + γ1 (ψ)− θ (2.46)

∀k≥2 : λk (γ (ψ)) ≡
(

δ

1− δ

)
Vk (γ (ψ))−

(
δ

1− δ

)
U0 (γ (ψ)) + γ2 (ψ)− θ (2.47)

Now take an optimal path ψ∗. By assumption, ψ∗ is sustainable, and so:

λ1 (ψ∗) ≡
(

δ

1− δ

)
V1 (ψ∗)−

(
δ

1− δ

)
U0 (ψ∗) + ψ∗1 − θ ≥ 0 (2.48)

Given the result from Lemma 2.V.i that ψ∗1 ≤ U−1(U1(ψ∗)), along with all the observations noted so far,

condition (2.48) is sufficient for (2.46) and (2.47) to be weakly positive for all relevant k.

49Note that γk(ψ) is shorthand for (γ(ψ))k - the kth trigger level in the path γ(ψ).
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Lemma 2.VII.iii

The optimal semi-constrained quasi-flat punishment path is at least as severe as the optimal

fully-constrained generic punishment path.

φ
(
ψ̃∗sc

)
≥ φ (ψ∗).

Proof: Consider the optimal generic path ψ∗ ∈ Ψfc. By Lemma 2.VII.ii, γ(ψ∗) ∈ Ψ̃sc. Also, by definition,

φ(γ(ψ∗)) = φ (ψ∗). Therefore the most severe path in Ψ̃sc, sup Ψ̃sc must be at least as severe as the most

severe path in Ψfc, sup Ψfc. Thus φ(sup Ψ̃sc) ≥ φ(sup Ψfc) and so φ(ψ̃∗sc) ≥ φ (ψ∗).

Theorem 2.VII

As altruism becomes perfect, the optimal generic punishment path cannot support the socially

efficient equilibrium, for any value of the discount factor.

As θ −→ 1−, κ (ψ∗) < 0.

Proof: First, note, from expressions (2.10) and (2.11) in Definition 2.3, that:

κ (ψ∗) = φ (ψ∗) + θ − 1

By Lemma 2.VII.iii, this implies that:

κ (ψ∗) ≤ φ
(
ψ̃∗sc

)
+ θ − 1 (2.49)

Theorem 2.II, combined with Lemma 2.IX.i, has already established that the RHS of expression (2.49) goes

to 0− as θ −→ 1−. Therefore the LHS of (2.49) must be strictly negative as θ −→ 1−.

Theorem 2.VIII

If the benefit distribution is sufficiently flat, then the optimal generic punishment path is flat.

If ∀π : g(π) < 1
θ(1−π̂) then φ

(
ψ̄∗
)
≥ φ (ψ∗).

Proof: From Theorem 2.V, we know that if ∀π : g(π) < 1
θ(1−π̂) , then φ

(
ψ̄∗
)
≥ φ

(
ψ̃∗sc

)
. Applying Lemma

2.VII.iii, the result follows straightforwardly.
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2.11 Second-Best Equilibria

For any particular level of the coefficient of altruism θ, if the discount factor δ is low enough, so

that players are sufficiently impatient, then the socially efficient initial path will not be supportable.

There will still, however, exist a second-best optimal subgame-perfect Nash equilibrium, supported

by the optimal punishment path, in the sense that the associated initial path maximizes efficiency by

minimising the range of benefit values for which punishment occurs. Given condition (2.38) then, as

shown in Theorem 2.VIII, the optimal punishment path which supports such an optimal equilibrium

will be flat. For the remainder of the paper, we will assume that this condition is satisfied.

Along the second-best optimal initial path, the punishment path will be triggered when an

individual punishes for a value of the benefit below trigger level ψ̄h. (Intuitively, the most attractive

punishment opportunities will be the most difficult to deter along the initial path.) All players will

then switch to a path where punishment is carried out above trigger level ψ̄∗, derived from the optimal

flat punishment path (which is globally optimal, under the assumptions made). Assuming an interior

solution for the optimal flat path where ψ̄∗ > π̂, ψ̄∗ and its total derivative with respect to θ will be

respectively given by (2.12) and (2.13).

The supportability constraint on the initial path will therefore be:

ψ̄h − θ ≤
δ

1− δ

∫ 1

ψ̄h

(θπ − θ)g(π)dπ − δ

1− δ

∫ 1

ψ̄∗
(θπ − 1)g(π)dπ (2.50)

When ψ̄h is set just high enough to make (2.50) bind, to give us the optimal second-best equilibrium,

we will have the following implicit definition of ψ̄∗h in terms of itself, ψ̄∗, θ and δ:

ψ̄∗h = θ +
δ

1− δ

(∫ 1

ψ̄∗
g (π) dπ − θ

∫ ψ̄∗h

ψ̄∗
πg (π) dπ − θ

∫ 1

ψ̄∗h

g (π) dπ

)
(2.51)

Totally differentiating (2.51) with respect to θ and solving for dψ̄∗h
dθ gives us the following expression

for the overall derivative of ψ̄∗h with respect to the coefficient of altruism:

dψ̄∗h
dθ

=
(1− δ)− δ

(∫ ψ̄∗h
ψ̄∗
g (π)πdπ +

∫ 1

ψ̄∗h
g (π) dπ

)
− δ

(
1− θψ̄∗

)
g
(
ψ̄∗
)
dψ̄∗

dθ

(1− δ)− δθ
(
1− ψ̄∗h

)
g
(
ψ̄∗h
) (2.52)
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By observation of (2.12) and (2.51), as θ −→ 1−, ψ̄∗ −→ 1− and therefore ψ̄∗h −→ 1−. Additionally,

note that as θ −→ 1−, the RHS of (2.52) goes to 1. These observations imply that there must be a

region where increasing the coefficient of altruism results in a decreasing ψ̄∗h, followed by a region of

increasing ψ̄∗h. Note also that as δ −→ 0, the RHS of (2.52) again goes to 1. This implies that, for a low

enough δ, increasing θ always increases ψ̄∗h (intuitively, this is where the future counts for sufficiently

little that the severity effect, even in combination with the willingness effect, is never sufficient to

outweigh the temptation effect).

θ

ψ̄∗h

Figure 2.33: Second-best equilibria, π̂ = 0 and g(π) = 1

Figure 2.33 shows the highest ψ̄∗h which is supportable along the initial path given different values

of θ (along the x-axis) and δ. It can be seen that the curve always has a slope of 1 as θ −→ 1, and for

all θ when δ is low. Importantly, there is always a level of θ high enough but lower than 1 where ψ̄∗h

falls below one and then back up to one as θ −→ 1. This corresponds to the black region in figure 2.4

and derived analytically in Theorems 2.I through 2.IV. Finally, for high enough δ with a low enough

θ, ψ̄∗h goes above one (i.e. the graph gets “cut off”).
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An important conclusion to draw from figure 2.33 is that the efficiency loss from too high a level

of altruism can be non-negligible. Although as θ −→ 1, ψ̄∗h −→ 1, there will exist intermediate levels

of altruism where an increase in the coefficient of altruism to a higher intermediate level (which is still

less than 1) could make the efficiency of the optimal second-best outcome significantly lower. Altruism

is in many realistic cases a “double-edged sword” in the sequential punishment model, and greater

altruism will in general be socially harmful in a significant way.

2.12 Conclusion

This paper has taken two areas of economic theory, the modelling of altruistic preferences and

the structure of optimal punishment paths, and shown how they can interact to produce interesting

results in a new type of model, the sequential punishment model - a simple infinite-move sequential

game with perfect information and discounting - where players move by choosing whether or not to

take opportunities to inflict harm upon others with benefit to themselves. Essentially, the model is

an abstract representation of the fundamentally vicarious nature of human interaction in any kind of

society, whatever its organizational principles.

The central implication of the analysis is that excessive altruism will interfere detrimentally with

punishment systems, “denting” them in such a manner that social welfare is reduced compared

to a situation with lower altruism. Greater “intrinsic” altruistic motivation generally weakens

the effectiveness of “extrinsic” social incentive mechanisms in inducing socially beneficial altruistic

behaviour. Since societal punishment systems “amplify” the impact of altruistic preferences upon

individual altruistic behaviour, the relationship between altrustic preferences, altruistic behaviour

and social efficiency is not straightforward. The sequential punishment model shows that perverse

interaction effects are not only possible, but likely and, indeed, general.

The concepts of willingness, severity and temptation effects which were used to analyse the subgame

perfect equilibria of the sequential punishment model, and to establish the existence of a socially

optimal level of altruism, should present themselves in other contexts. They would, for instance, be

highly relevant to the analysis of optimal taxation, the economic theory of criminal punishment, and

to issues surrounding the evolution of altruistic preferences; see, for example, “Punishment and the

Potency of Group Selection” (Chapter 3).
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Sections 2.1 through 2.7 set up the notation for the sequential punishment model, and related this

to Abreu’s framework of optimal punishment paths, originally developed for repeated stage games. The

main body of novel results for this paper is in sections 2.8, 2.9 and 2.10, which progressively generalize

the core result of the paper, that as altruism becomes perfect the socially efficient equilibrium breaks

down, to the equilibria supportable by the optimal flat punishment path, the optimal quasi-flat path

and, finally, the optimal generic punishment path.

In the sequential punishment model, the interaction between the severity, willingness and

temptation effects can be conclusively seen to lead to the result that an intermediate “Goldilocks”

level of altruism is socially optimal. This result was established (initially for equilibria supportable by

flat paths), in Theorem 2.II. The key intuition for this result is that, for a low enough value of the

discount factor δ, the temptation effect must initially dominate the severity and willingness effects as

θ is reduced from below 1. Since social efficiency is only barely supportable at θ = 1, the constraint

for supportability must be broken as θ −→ 1− for the relevant values of δ.

If individuals are sufficiently impatient, excessive malevolence will, on the other hand, be socially

damaging, due to the dominance of the temptation effect over the severity effect as θ −→ −∞. In

contrast however, if the discount factor δ is high enough, then even infinite malevolence does not break

the socially efficient equilibrium, because the severity effect will outweigh the temptation effect as

θ −→ −∞ (Theorem 2.III). The sequential punishment model also demonstrates, therefore, an

important asymmetry, in that high altruism is in general more damaging than extreme malevolence.

With sufficiently effective monitoring (leading to a δ close to 1) malevolent preferences are not of

concern from a social welfare perspective, but excessively altruistic ones remain so.

The analysis in section 2.9 involved the investigation of quasi-flat paths, which maintain a simple

structure of carrot-and-stick punishment, and are an interesting illustration of the general principles

governing optimal penal codes in and of themselves. Quasi-flat paths are a specific feature which

emerges from the application of the principles of optimal carrot-and-stick punishment to the sequential

punishment model. They occur because the presence of partially altruistic preferences leads to a

“flattening-out” of the tail of the optimal punishment path. This is a key difference between the nature

of optimal punishment paths in the sequential punishment model and those found in the infinitely-

repeated Cournot and Bertrand simultaneous oligopoly stage games.
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The optimality of quasi-flat paths is driven by the higher relative concavity of the “inter-temporal”

utility function of a “neutral observer” relative to the punishee in a punishment equilibrium. This is also

an interesting result which should have wider implications. The broader society is more sensitive to the

inefficiencies brought about by “wasteful” punishment technology than the individual being punished.

This is because the individual cares primarily about the fact that they are punished, and so places less

relative weighting on the deadweight loss to society from punishment. A similar phenomenon should

emerge in any model with altruistic agents and punishment technologies. There are therefore potential

applications in optimal taxation theory and in rational choice models of criminality and punishment.

Theorem 2.VII completes the generalization of the results from section 2.8 so that they apply to

any continuous distribution of the benefit with support between π̂ and 1 (where 0 ≤ π̂ < 1), and when

the optimal generic punishment path is used to support the socially efficient equilibrium by punishing

any deviation from the socially efficient initial path. This is a satisfyingly general result, although it

does require ruling out situations where individuals would actually enjoy being punished. Another

limitation of this paper is that the case where θ ≥ 1, so that individuals are martyrs, who care about

others more than themselves, has been excluded from the outset.

Section 2.11 demonstrated that there is a potentially significant loss of social efficiency from the

detrimental effects of too high a level of altruism on the social incentive systems used to induce co-

operation via the punishment of transgressors. This was an important final piece of the argument, as it

is necessary not only to show that too high a level of altruism will break the supportability constraint

on the socially efficient outcome, but also that the resultant loss of social welfare in a second-best

world will often be non-negligible.
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Appendix

Lemma 2.IX.i

(a) As altruism becomes perfect, the optimal semi-constrained quasi-flat path becomes flat.

(b) If the benefit distribution is sufficiently flat, the optimal semi-constrained quasi-flat path

becomes flat.

(a) As θ −→ 1−, ψ̃∗sc ∈ Ψ̄sc.

(b) If ∀π : g(π) < 1
θ(1−π̂) then ψ̃∗sc ∈ Ψ̄sc.

Proof: The optimal semi-constrained quasi flat path ψ̃∗sc can be found by solving a constrained optimization

problem (Lagrange, 1806) (Simon & Blume, 1994) using the following Lagrangean function:

L =−
(

δ

1− δ

)
U0

(
ψ̃
)

+ λ̄1

((
δ

1− δ

)
V1

(
ψ̃
)
−
(

δ

1− δ

)
U0

(
ψ̃
)

+ ψ̃1 − θ
)

+ λ̄2

((
δ

1− δ

)
V1

(
ψ̃
)
−
(

δ

1− δ

)
U0

(
ψ̃
)

+ ψ̃2 − θ
)

+ η̄1

(
1− ψ̃1

)
+ η̄2

(
1− ψ̃2

)
+ ζ̄1

(
ψ̃1 − π̂

)
+ ζ̄2

(
ψ̃2 − π̂

)
We know that the following first order conditions must hold at the constrained maximum:

∂L
∂ψ̃1

= 0, ∂L
∂ψ̃2

= 0, ∂L
∂λ̄1
≥ 0, λ̄1 ≥ 0, ∂L

∂λ̄1
λ̄1 = 0, ∂L

∂λ̄2
≥ 0, λ̄2 ≥ 0, ∂L

∂λ̄2
λ̄2 = 0, ∂L

∂η̄1
≥ 0, η̄1 ≥ 0,

∂L
∂η̄1

η̄1 = 0, ∂L
∂η̄2
≥ 0, η̄2 ≥ 0, ∂L

∂η̄2
η̄2 = 0, ∂L

∂ζ̄1
≥ 0, ζ̄1 ≥ 0, ∂L

∂ζ̄1
ζ̄1 = 0, ∂L

∂ζ̄2
≥ 0, ζ̄2 ≥ 0, ∂L

∂ζ̄2
ζ̄2 = 0.

Substituting in to the Lagrangean from (2.5) and (2.6) and rearranging yields the following:

L =− δ
(
1 + λ̄1 + λ̄2

) ∫ 1

ψ̃1

(θ π − 1) g (π) dπ

−
δ2
(
1 + λ̄1 + λ̄2

) ∫ 1

ψ̃2
(θ π − 1) g (π) dπ

1− δ
+
δ
(
λ̄1 + λ̄2

) ∫ 1

ψ̃2
(θ π − θ) g (π) dπ

1− δ

+
(
ζ̄1 + λ̄1 − η̄1

)
ψ̃1 +

(
ζ̄2 + λ̄2 − η̄2

)
ψ̃2 −

(
ζ̄1 + ζ̄2

)
π̂ −

(
λ̄1 + λ̄2

)
θ + η̄1 + η̄2

The relevant derivatives for the first order conditions are:

dL
dψ̃1

= δ
(
1 + λ̄1 + λ̄2

) (
θ ψ̃1 − 1

)
g
(
ψ̃1

)
+ ζ̄1 + λ̄1 − η̄1

dL
dψ̃2

=
δ2
(
1 + λ̄1 + λ̄2

) (
θ ψ̃2 − 1

)
g
(
ψ̃2

)
1− δ

−
δ
(
λ̄1 + λ̄2

) (
θ ψ̃2 − θ

)
g
(
ψ̃2

)
1− δ

+ λ̄2 − η̄2 + ζ̄2

dL
dλ̄1

= −δ
∫ 1

ψ̃1

(θ π − 1) g (π) dπ −
δ2
∫ 1

ψ̃2
(θ π − 1) g (π) dπ

1− δ
+
δ
∫ 1

ψ̃2
(θ π − θ) g (π) dπ

1− δ
+ ψ̃1 − θ

dL
dλ̄2

= −δ
∫ 1

ψ̃1

(θ π − 1) g (π) dπ −
δ2
∫ 1

ψ̃2
(θ π − 1) g (π) dπ

1− δ
+
δ
∫ 1

ψ̃2
(θ π − θ) g (π) dπ

1− δ
+ ψ̃2 − θ
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In order to prove the result, we must exhaustively consider the various possibilities for the different

constraints, and whether or not they bind. We also see that this procedure relates straightforwardly and

directly to the taxonomy of quasi-flat paths laid out in section 2.9.1.50

Maximal paths

Suppose, first of all, that 0 < ζ̄1 and 0 < ζ̄2. This means that both “lower constraints” on the trigger

levels bind, so that ψ̃1 = π̂ and ψ̃2 = π̂. Therefore, the upper constraints cannot possibly bind, and so

η̄1 = 0 and η̄2 = 0. The requirements that ∂L
∂λ̄1
≥ 0 and ∂L

∂λ̄2
≥ 0 therefore both become the following:

0 ≤
∫ 1

π̂

g (π) δ (1− θ)
1− δ

dπ − θ + π̂ (2.53)

This simplifies to give θ ≤ δ+ (1− δ) π̂. So, only when the inequality condition from Theorem 2.I is either

not fulfilled, or just fulfilled with equality51, can we have a maximal path. Rearranging this condition for δ,

we know that the maximal path will be the constrained optimum if and only if:

θ − π̂
1− π̂

≤ δ (2.54)

If (2.54) is satisfied as a strict inequality, then, since ∂L
∂λ̄1

> 0 and ∂L
∂λ̄2

> 0, we know that λ̄1 = 0 and

λ̄2 = 0. The first order conditions on ψ̃1 and ψ̃2 therefore yield the following solution for ζ̄1 and ζ̄2.

∂L
∂ψ̃1

= δ (θ π̂ − 1) g (π̂) + ζ̄1 = 0

∂L
∂ψ̃2

=
δ2 (θ π̂ − 1) g (π̂)

1− δ
+ ζ̄2 = 0

ζ̄1 = δ (1− θ π̂) g (π̂) ζ̄2 =
δ2 (1− θ π̂) g (π̂)

1− δ

The solutions for ζ̄1 and ζ̄2 are positive, which is consistent with our initial assumptions.

If we take the limit of the LHS of condition (2.54), we can see that a maximal path is not possible as

θ −→ 1−, since, by assumption, δ < 1.

lim
θ→1−

{
θ − π̂
1− π̂

}
= 1−

Suppose instead that ζ̄1 = 0 and 0 < ζ̄2. This implies that ψ̃2 = π̂ and that η̄2 = 0. However, by

Lemma 2.V.i, for a quasi-flat path to be optimal, it must be the case that ψ̃∗1 ≤ ψ̃∗2 . Also, it must hold

that ψ̃∗1 ≥ π̂. Therefore ψ̃∗1 = π̂, and so this case collapses into the previous one.

50We do not need to consider second order conditions since the first order conditions are necessary for an
optimal path, and the results of the Lemma follow from these necessary conditions.

51If (2.53) is just fulfilled with equality, then the path is also flat (type C), so we are really only interested
here in the case where (2.53) is fulfilled as a strict inequality.
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Quasi-maximal paths

Suppose that 0 < ζ̄1 and ζ̄2 = 0. This implies that ψ̃1 = π̂ and η̄1 = 0. The requirements that ∂L
∂λ̄1
≥ 0

and ∂L
∂λ̄2
≥ 0 become the following:

0 ≤ −
∫ 1

ψ̃2

g (π) δ (−θ π + θ + δ θ π − δ)
1− δ

dπ −
∫ 1

π̂

δ (θ π − 1) g (π) dπ + π̂ − θ (2.55)

0 ≤ −
∫ 1

ψ̃2

g (π) δ (−θ π + θ + δ θ π − δ)
1− δ

dπ −
∫ 1

π̂

δ (θ π − 1) g (π) dπ + ψ̃2 − θ (2.56)

Assuming that ψ̃2 > π̂ (otherwise we would have a maximal path) then, since (2.55) must be fulfilled as a

weak inequality, it follows that (2.56) is fulfilled as a strict inequality. Therefore, λ̄2 = 0.

Condition (2.55) can be rearranged to give:

∫ 1

ψ̃2

δ g (π) (−θ π + θ + δ θ π − δ)
1− δ

dπ + δ θ π̄ − δ + θ ≤ π̂ (2.57)

The first order conditions on ψ̃1 and ψ̃2 become the following:

∂L
∂ψ̃1

= δ
(
1 + λ̄1

)
(θ π̂ − 1) g (π̂) + ζ̄1 + λ̄1 = 0

∂L
∂ψ̃2

=
δ2
(
1 + λ̄1

) (
θ ψ̃2 − 1

)
g
(
ψ̃2

)
1− δ

−
δ λ̄1

(
θ ψ̃2 − θ

)
g
(
ψ̃2

)
1− δ

− η̄2 = 0

We now need to consider two possible cases, one where λ̄1 = 0 and one where λ̄1 > 0. Taking the

first, the first order conditions on ψ̃1 and ψ̃2 become:

δ (θ π̂ − 1) g (π̂) + ζ̄1 = 0

δ2
(
θ ψ̃2 − 1

)
g
(
ψ̃2

)
1− δ

− η̄2 = 0

The second of these cannot possibly be fulfilled, since the LHS is unambiguously negative. Therefore, it

must be the case that λ̄1 > 0. The two first order conditions then yield the following solutions for λ̄1:

λ̄1 = −δ (θ π̂ − 1) g (π̂) + ζ̄1
1 + δ (θ π̂ − 1) g (π̂)

(2.58)

λ̄1 = −
δ2
(
θ ψ̃2 − 1

)
g
(
ψ̃2

)
− η̄2(1− δ)

δ g
(
ψ̃2

)((
θ ψ̃2 − 1

)
δ − θ

(
ψ̃2 − 1

)) (2.59)

In order for (2.59) to be weakly positive, we must have that:

δ <
θ − θψ̃2

1− θ ψ̃2

(2.60)
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Now consider whether η̄2 = 0 or η̄2 > 0. If η̄2 > 0 then ψ̃2 = 1 and so (2.60) cannot be fulfilled.

Hence η̄2 = 0. In that case, solving (2.58) and (2.59) simultaneously for ζ̄1 yields:

ζ̄1 =
δ
(
θ (θ π̂ − 1)

(
ψ̃2 − 1

)
g (π̂) +

(
θ ψ̃2 − 1

))
(
θ ψ̃2 − 1

)
δ − θ

(
ψ̃2 − 1

)
Given condition (2.60), the denominator is positive. The numerator will be positive if and only if the

following condition holds:

g (π̂) ≥ 1− θ ψ̃2

θ
(

1− ψ̃2

)
(1− θ π̂)

(2.61)

Note that this is simply condition (2.37) derived via a more intuitive argument in the main text.

Since condition (2.55) must be satisfied with equality, we have that:

−
∫ 1

ψ̃2

δ g (π) (−θ π + θ + δ θ π − δ)
1− δ

dπ = δ (θ π̄ − 1)− π̂ + θ

Taking limits of both sides as θ −→ 1− yields:

−δ
∫ 1

ψ̃2

(1− π) g (π) dπ = 1− π̂ − δ (1− π̄)

This is not possible, since the LHS is unambiguously negative whilst the RHS is unambiguously positive.

Therefore, a quasi-maximal path is not possible as θ −→ 1−.

Minimal paths

Now take the case where 0 < η̄1 and 0 < η̄2. This implies that ψ̃1 = 1, ψ̃2 = 1, ζ̄1 = 0 and ζ̄2 = 0.

Thus we have a minimal path, where no punishment occurs at all. ∂L
∂λ̄1

and ∂L
∂λ̄2

both simplify to give 1− θ.

Clearly, therefore, λ̄1 = 0 and λ̄2 = 0. The first order conditions on ψ̃1 and ψ̃2 become:

∂L
∂ψ̃1

= −δ (1− θ) g (1)− η̄1 = 0

∂L
∂ψ̃2

= −δ
2 (1− θ) g (1)

1− δ
− η̄2 = 0

Neither of these can possibly be fulfilled for θ < 1, so a minimal path can never be optimal.

Consider instead the case where 0 < η̄1 and η̄2 = 0. This implies that ψ̃1 = 1 and ζ̄1 = 0. However,

in that case, by Lemma 2.V.i, ψ̃2 ≥ 1 and so ψ̃2 = 1 (since it must also hold that ψ̃2 ≤ 1). Therefore this

case collapses into the previous one (a minimal path, which can never be optimal).
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Quasi-minimal paths

Now we consider the case where η̄1 = 0 and 0 < η̄2. This implies that ψ̃2 = 1 and ζ̄2 = 0. The

requirements that ∂L
∂λ̄1
≥ 0 and ∂L

∂λ̄2
≥ 0 become the following:

0 ≤
∫ 1

ψ̃1

−δ (θ π − 1) g (π) dπ + ψ̃1 − θ

0 ≤
∫ 1

ψ̃1

−δ (θ π − 1) g (π) dπ + 1− θ

Assuming ψ̃1 < 1 (otherwise we would have a minimal path) then, since the first of these is fulfilled as a

weak inequality, the second is fulfilled as a strict inequality. Therefore, ∂L
∂λ̄2

> 0 and so λ̄2 = 0. The first

order conditions on ψ̃1 and ψ̃2 thus become:

∂L
∂ψ̃1

= δ
(
1 + λ̄1

) (
θ ψ̃1 − 1

)
g
(
ψ̃1

)
+ ζ̄1 + λ̄1 = 0 (2.62)

∂L
∂ψ̃2

= −
δ2
(
1 + λ̄1

)
(1− θ) g (1)

1− δ
− η̄2 = 0 (2.63)

The second expression is unambiguously negative, so this shows that quasi-minimal paths cannot possibly

ever be optimal, regardless of the value of θ.

Carrot-maximized paths

The case where ζ̄1 = 0, ζ̄2 = 0, η̄1 = 0, η̄2 = 0 is the most interesting one, where the carrot-maximized

and flat path possibilities can occur. The requirements that ∂L
∂λ̄1
≥ 0 and ∂L

∂λ̄2
≥ 0 then become:

0 ≤ −
∫ 1

ψ̃2

δ g (π) (−θ π + θ + δ θ π − δ)
1− δ

dπ +
∫ 1

ψ̃1

−δ (θ π − 1) g (π) dπ + ψ̃1 − θ (2.64)

0 ≤ −
∫ 1

ψ̃2

δ g (π) (−θ π + θ + δ θ π − δ)
1− δ

dπ +
∫ 1

ψ̃1

−δ (θ π − 1) g (π) dπ + ψ̃2 − θ (2.65)

By Lemma 2.V.i, we know that an optimal path must have the property that ψ̃1 ≤ ψ̃2. There are therefore

two cases to consider. First, suppose that ψ̃1 6= ψ̃2 and so ψ̃1 < ψ̃2. In that case, only (2.64) can bind,

and so ∂L
∂λ̄2

> 0 and λ̄2 = 0. The first order conditions on ψ̃1 and ψ̃2 then become the following:

∂L
∂ψ̃1

=
(
δ
(
θ ψ̃1 − 1

)
g
(
ψ̃1

)
+ 1
)
λ̄1 + δ

(
θ ψ̃1 − 1

)
g
(
ψ̃1

)
= 0

∂L
∂ψ̃2

=
(
− θ ψ̃2 +

(θ − δ)
1− δ

)
δg
(
ψ̃2

)
λ̄1 +

δ2

1− δ

(
θ ψ̃2 − 1

)
g
(
ψ̃2

)
= 0
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Clearly, λ̄1 must be positive, or the first of these could not possibly be fulfilled. Solving these two equations

respectively for λ̄1 gives us:

λ̄1 = −
δ
(
θ ψ̃1 − 1

)
g
(
ψ̃1

)
δ
(
θ ψ̃1 − 1

)
g
(
ψ̃1

)
+ 1

λ̄1 = −

(
θ ψ̃2 − 1

)
δ

−θ (1− δ) ψ̃2 − δ + θ

Finally, solving these two equations simultaneously for g
(
ψ̃1

)
gives us the following necessary condition for

a carrot-maximized path, which, once rearranged to make ψ̃2 the subject, verifies condition (2.41) derived

in the main text in section 2.9.2:

g
(
ψ̃1

)
=

1− θ ψ̃2

θ
(

1− ψ̃2

)(
1− θ ψ̃1

) (2.66)

Since λ̄1 > 0, condition (2.64) must be satisfied with equality. This gives us:

0 = −
∫ 1

ψ̃2

δ g (π) (−θ π + θ + δ θ π − δ)
1− δ

dπ −
∫ 1

ψ̃1

δ (θ π − 1) g (π) dπ + ψ̃1 − θ

Taking the limit of both sides as θ −→ 1− yields:

0 = δ

∫ ψ̃2

ψ̃1

(1− π) g (π) dπ − (1− ψ̃1)

This condition cannot possibly be fulfilled, so a carrot-maximized path is also impossible as θ −→ 1−.

Flat paths

Consider, finally, the case where ζ̄1 = 0, ζ̄2 = 0, η̄1 = 0, η̄2 = 0 and ψ̃1 = ψ̃2 = ψ̄. The requirements

that ∂L
∂λ̄1
≥ 0 and ∂L

∂λ̄2
≥ 0 then both become:

0 ≤
∫ 1

ψ̄

δ g (π) (1− θ)
1− δ

dπ − θ + ψ̄

This must hold with equality, yielding condition (2.12), which defines the optimal flat path ψ̄∗.

The first order conditions on ψ̃1 and ψ̃2 become the following:

(
δ
(
θ ψ̄ − 1

)
g
(
ψ̄
)

+ 1
)
λ̄1 + δ

(
θ ψ̄ − 1

)
g
(
ψ̄
) (

1 + λ̄2

)
= 0

δ
(
δ θ ψ̄ − δ − θ ψ̄ + θ

)
g
(
ψ̄
)
λ̄1

1− δ
+

(
1 +

δ
(
δ θ ψ̄ − δ − θ ψ̄ + θ

)
g
(
ψ̄
)

1− δ

)
λ̄2 +

δ2
(
θ ψ̄ − 1

)
g
(
ψ̄
)

1− δ
= 0
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Solving these simultaneously for λ̄1 and λ̄2 yields

λ̄1 =
δ g
(
ψ̄
) (
θ δ
(
ψ̄ − 1

) (
θ ψ̄ − 1

)
g
(
ψ̄
)
− (1− δ)

(
θ ψ̄ − 1

))
δ (θ − 1) g

(
ψ̄
)

+ 1− δ

λ̄2 = −
(
θ
(
ψ̄ − 1

) (
θ ψ̄ − 1

)
g
(
ψ̄
)

+ θ ψ̄ − 1
)
δ2g

(
ψ̄
)

δ (θ − 1) g
(
ψ̄
)

+ 1− δ

The following two conditions are together sufficient for both of these expressions to be finite and positive.

δ <
1

1 + (1− θ)g
(
ψ̄
) (2.67)

g
(
ψ̄
)
≤ 1(

1− ψ̄
)
θ

(2.68)

Note now that the RHS of (2.37) from the main text (and (2.66) from this proof) is increasing in ψ̃1

and ψ̃2, and is the same as the RHS of (2.61) when ψ̃1 = π̂ and (2.68) when ψ̃1 = ψ̃2 = ψ̄. Hence,

condition (2.38) (repeated below as (2.69)) is sufficient for (2.68) to definitely hold, and for (2.61) and

(2.66) to never hold. Also, condition (2.69) is sufficient for (2.67) to hold provided that (2.54) does not.

(Subtracting the LHS of (2.54) from (2.67), requiring that this be positive and solving for g(ψ̄) yields

g(ψ̄) < 1
θ−π̂ , which will definitely be fulfilled if (2.69) is.)

∀π : g(π) <
1

θ (1− π̂)
(2.69)

Condition (2.69) is therefore sufficient for the optimal semi-constrained quasi-flat path to be flat (type C),

provided that it is not maximal (type A).
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Punishment and the Potency of
Group Selection

It is an important fact of human life that individuals can often greatly increase (reward)
or decrease (punish) the fitness of others at trivial costs to themselves...Secondary
behaviours evolve more easily by group selection than primary behaviours because they
are less strongly opposed by within-group selection, but they still evolve by group
selection. The package of primary and secondary behaviours therefore remains a group-
level adaptation.

(Sober & Wilson, 1999)

The indirect evolutionary approach is based on the assumption that players behave
rationally for given preferences but that their preferences change through an evolutionary
process...While preferences might be inherited literally in a genetical sense, one could also
think of it in terms of social evolution since preferences and value judgements of children
are shaped by taking parents or peers as role models.

(Huck & Oechssler, 1999)

3.1 Overview

It is a well-established result in evolutionary theory that altruism can in principle be sustained by a

process of group selection if a population is split into groups whose members interact disproportionately

with one another, provided that there is migration between groups. The level of altruism which can

be sustained depends upon the relative strength of the evolutionary forces benefiting the more selfish

individuals at the expense of altruists within groups, and that favouring the more altruistic groups

over the less altruistic ones. There is an evolutionary “tug-of-war” between individual-level selection

and group-level selection (Sober & Wilson, 1999).
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This paper embeds a simple model of a punishment system within an indirect cultural evolution

framework. The result is that the availability of punishment as a device for social control is shown

to drastically reduce the potency of the group selection mechanism, and thus the average equilibrium

level of altruism. A normative analysis of the outcome shows that the use of the punishment system

can sometimes increase social welfare at the evolutionary equilibrium, by inducing selfish individuals

to behave better. However, by weakening the group selection mechanism, it can also under some

conditions cause a reduction in social welfare at the equilibrium, by causing less altruism to evolve.

The idea of group selection originates with Darwin, but the contemporary formulation was

developed in the twentieth century literature on evolutionary biology, most famously in the work

of W. D. Hamilton (Hamilton, 1963) (Hamilton, 1972). The mathematical framework was originally

devised by Price (Price, 1970). Still controversial among some biologists (but more widely accepted as

a useful practical theory in social science fields), the multilevel selection paradigm has recently been

popularised within and beyond the biological field by Sober and Wilson. They have provided a survey

article (Sober & Wilson, 1994) and a book-length treatment of the subject (Sober & Wilson, 1999).

Group selection has also become a popular framework in theoretical anthropology, from which

the fruitful suggestion that we may see cultural as well as genetic characteristics as evolving through

natural selection has been developed and employed (Boyd & Richerson, 1982) (Soltis et al., 1995)

(Blackmore, 1999). This idea has a pedigree going back to Darwin in biology, but arguably he was

heavily influenced (Hirshleifer, 1977) (Hayek, 1988) by the application of the same principle to social

institutions by the philosophers of the Scottish Enlightenment, most famously Adam Smith (Smith,

1976). Economists have also made important contributions to the modern theory of group selection,

particularly in clarifying issues regarding the mathematical analysis of the different types of group

structure that can enable this phenomenon to arise (Bergstrom, 2002) (Cooper & Wallace, 2004).

There is also an existing literature on the role that punishment, such as in the form of informal

sanctions or a legal system, can play as an “altruism amplification device” that allows selfish individuals

to be induced to behave more like altruistic ones. It has been shown that, because punishing others is

often “cheaper” in terms of cost to onesself than benefiting them, the emergence of the ability to carry

out altruistic punishment (which Sober and Wilson refer to as secondary behaviours) can explain how

the evolution of primary altruism is made possible in a much wider variety of cases. This hypothesis fits
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the empirically-observed phenomenon that the ability to punish transgressors in simple experimental

games such as the public goods game results in more co-operation being sustained (usually in models

where the standard Nash equilibrium with self-interested individuals leads to a complete break-down

of co-operation) (Fehr & Gächter, 2000b) (Fehr & Gächter, 2000a) (Fehr & Gächter, 2002a) (Fehr

& Fischbacher, 2003) (Fehr & Gächter, 2002b). There are two dimensions to this impact. Firstly,

altruistic punishment improves “static” outcomes by making selfish individuals behave better, because

they are afraid of being punished. Secondly, the evolution of altruistic punishment can also make it

easier for altruism to evolve as a primary behaviour, by reducing the gain in fitness by selfish individuals

relative to the altruists in the group (Sober & Wilson, 1999) (Boyd et al., 2003).

This paper aims to make a contribution to the theoretical understanding of the connection between

group selection and punishment by applying a third conceptual strand; that of indirect evolution. Most

models of the cultural evolution of altruism model cultural norms in a “mechanical” way in the sense

that individuals blindly carry out their “programmed” behaviour, whereas economic theory seeks to

explain phenomena from a wide variety of cultural scenarios as caused by the same underlying human

rationality. The alternative is to assume that it is the weightings that individuals place on the felicity

of others that form the evolving phenotype, rather than specific altruistic behaviours directly. In other

words, preferences evolve but behaviour within the games being played is rational and forward looking,

and therefore modelled in the standard manner in which game theory is applied in economic theory.

The indirect evolution approach was first proposed by Güth and Yaari (Güth & Yaari, 1992)

following a suggestion originally made by Becker (Becker, 1976). It has been profitably applied to

explaining the evolution of preferences for fairness in the ultimatum game (Huck & Oechssler, 1999),

in which context it has been shown that “vengeful” individuals who gain utility from reducing the

payoffs of others even at cost to themselves can survive and spread in an evolutionary context because,

provided the damage they inflict by punishing is high enough relative to the loss to the punisher, they

will still have a relatively higher fitness than the “non-vengeful” types.

The application of the indirect evolution methodology to modelling the relationship between

punishment and group selection enables an original contribution to be made to an already vast

literature. In the standard direct evolution group selection models, there is no distinction between

“altruistic preferences” and “altruistic behaviour”; both are modelled as a simple “programmed”
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phenotype. The presence of altruistic punishers in the population can only lead to more altruistic

behaviour in the evolutionary equilibrium by causing the evolved proportion of selfish types to reduce,

by weakening the fitness differential between selfish and altruistic individuals (see section 3.2). By

contrast, an indirect evolution approach allows an analysis of punishment mechanisms that can alter

the static equilibrium in the game being played at each stage of the evolutionary process. Since the

use of punishment improves the static outcome for selfish phenotypes by making them behave better

towards one another, it can, paradoxically, potentially result in more selfish individuals evolving.

The sequential punishment model which forms the workhorse model in this paper has the property

that only the outcome for the selfish phenotypes is improved, because the altruistic phenotypes are

unwilling to carry out punishment. Thus the result is unambiguous that fewer altruists are able to

survive. The normative consequences are, however, ambiguous, because it may be that despite having

more selfish individuals, the gain in static efficiency for any given proportion of selfish individuals

outweighs this. The balance of normative effects can also, however, go in the opposite direction.

Although the result that the evolution of altruism is unambiguously weakened is a strong one, and

dependent on the specific form of model used, the phenomenon described is arguably quite general.

The analysis of the sequential punishment model uses standard conceptual tools from economics

such as social welfare, subgame-perfect Nash equilibria and utility functions for individuals which are

weighted sums of the felicities of other individuals (a common way to model altruism). This enables

normative analysis to be carried out in the usual way. The unconventional aspect of the model is the

fact that the level of altruism exhibited by the players (the weighting they place upon the consumption

of others in their utility function) is, instead of being exogenously determined, endogenously evolving.

The key result that punishment reduces the potency of group selection is demonstrated analytically

for any population structure, but specific simulations are also carried out for illustrative purposes.

Evolutionary game theory provides the theoretical tools we can use to analyse the selection

pressures that will lead to the pattern of behavioural phenotypes at an evolutionarily stable equilibrium.

In general, the level of altruism which would evolve would not be expected to be that which is socially

optimal, because selection at the individual level creates pressure upon individual phenotypes in the

direction of those which are economically non-altruistic. With a population structure split into groups,

however, there can be selection pressure at the group-level as well as the individual level. The resulting
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phenotype pattern then represents a kind of “compromise” between the two. This is the essential

conceptual scheme provided by multilevel selection theory (Sober & Wilson, 1999).

3.2 The Standard Direct Evolution Model

There are many ways to set up an evolutionary model where the evolution of a phenotype which

engages in altruistic punishment makes it easier for primary altruism to evolve. A common set-up

is a two-stage prisoners’ dilemma, where individuals have a chance to punish their opponent at cost

to themselves if they cheat in the first phase or, in the context of a group public goods game, where

individuals have a chance, after having observed the contribution of other individuals, to carry out

costly punishment on under-contributors. In general these models have the property that altruistic

punishers do equally well against each other as against pure altruists, and that, although, in a static

sense, they do worse relative to selfish individuals than pure altruists (because they carry out costly

punishment), the long-run dynamic evolutionary impact of their presence is to make it much harder

for selfish individuals to survive.

The intuition for this result is that the fitness reduction for the selfish types is the dominant effect

on relative fitness. It is therefore possible, in a group with a sufficient number of altruistic punishers

(which can be maintained by “genetic drift” through mutations), for the selfish types to be rapidly

driven out of the population. It has been generally found that a three-phenotype model (selfish types,

altruists, altruistic punishers) enables the population to be dominated by a mixture of altruists and

altruistic punishers in a much wider variety of cases than the two-phenotype model (Boyd et al., 2003).

An indirect evolution approach, however, can provide a radically different perspective on this

issue, because it can recognise the distinction between altruistic preferences and altruistic behaviour.

Punishment is not carried out “blindly” but when the evolved preferences of the punisher make it

rational for them to carry out the punishment. This means that there is no longer a simple connection

between altruistic preferences and altruistic behaviour. More individuals with altruistic preferences

in a population will not necessarily lead to more altruistic behaviour, because altruistic individuals

who care about others may not be willing to go through with punishment. On the other hand, more

altruistic behaviour may occur without an increase in altruistic preferences, because selfish individuals

may be incentivized to behave better by the credible threat of punishment.
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The results of this approach support the existing view that pure altruism is unlikely to survive

evolutionarily. However, punishment is modelled not as a phenotype but as a potential equilibrium in

the game being played in an evolutionary context. This means that punishment, although improving

static outcomes, may worsen the dynamic outcome by helping more selfish individuals to evolve. Even

if punishment is dynamically beneficial, this approach can also help explain why only imperfect forms

of altruism appear to evolve in the real world. (See “The Limits to Altruism - A Survey” (Chapter 1)

for a summary of the empirical results in this area.)

3.3 The Sequential Punishment Model

This paper uses a simplified two-move three-player version of the sequential punishment model

which has been analysed extensively it its infinite-player form in “The Socially Optimal Level of

Altruism” (Chapter 2). The analysis of the sequential punishment model there shows that there

is a complex relationship between the altruism embodied in individual preferences and the social

efficiency of the resulting outcomes. Sometimes these interactions can perversely result in too much

altruism making it harder to support a socially efficient outcome. More frequently, the use of a

self-supporting system of punishment means that, beyond a certain level, greater altruism is not

necessary, as a socially efficient outcome can already be supported. These results were driven by

the combination of the temptation effect (more altruistic individuals are less tempted to do harm to

others), the willingness effect (more altruistic individuals are less willing to inflict punishment), and

the severity effect (punishments, such as a fine where the revenue is redistributed, are less severe for

more altruistic individuals, because they value the contribution of the revenue to the welfare of others).

In the version of the sequential punishment model analysed here, there are three players. Players

1 and 2 each get a opportunity in sequence to inflict harm upon1 another individual. If they take the

opportunity, they gain a benefit π̂ (where 0 < π̂ < 1) and the individual they harm suffers a felicity

loss of 1. Player 1 first chooses whether or not to harm player 2. Player 2, observing player 1’s action,

can either choose not to inflict harm, to harm player 3, or to harm player 1. Player 2 is assumed to be

indifferent as to whom they harm.2 Player 2’s ability to focus harm onto player 1 if they inflict harm

1Throughout the paper, we will use “harm” to refer to the infliction of a negative externality and “punish”
to refer to the specific use of such harm opportunities to construct punishment equilibria.

2If individuals are indifferent between inflicting harm and not inflicting harm, they are assumed not to
inflict harm.
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creates the potential for a simple punishment scheme to be used to support a subgame perfect Nash

equilibrium where a selfish player 1 is deterred from inflicting harm.

Imagine there is a large population of individuals, who differ in their level of altruism. This is

designated by the coefficient of altruism, θi, which is the weighting placed on the felicity of other

individuals in individual i’s utility function. Since the benefit from inflicting harm always takes the

value π̂, we only need two distinct phenotypes, H and L, which correspond to π̂ ≤ θH < 1 and θL < π̂

respectively.3 Suppose that the proportion of individuals in the population with phenotype H is q, so

that (1− q) have phenotype L.

Each period, individuals are randomly chosen to play the sequential punishment game. Individuals

are formed into triplets, where two of the individuals are able to actually make a move whilst a third

individual is randomly selected to be player 3. This third individual does not play any role except to

act as a passive receptacle for the harm inflicted by player 2 if player 1 co-operates by not inflicting

harm. Nature randomly determines, with equal probability, which individuals will receive their harm

opportunity first and second. All individuals are assumed to have full knowledge of the coefficient of

altruism of the others with whom they interact. We will begin by assuming that the most socially

efficient available equilibrium is played, and consider the consequences of dropping it later on.

3.4 Derivation of Payoff Matrices

We can think of the sequential punishment game as a sub-game nested within a supergame in which

the coefficients of altruism chosen by individuals A and B4 are a simultaneous move made before the

sequential punishment game is played. The choice of the coefficients of altruism by the players then

determines the payoffs, and therefore the outcome, of the sequential punishment game nested within.5

It is, of course, not really appropriate to think of the coefficient of altruism as a strategy chosen, but

rather as a phenotype which can be altered via mutations.6 Also, whereas it is the social utility payoff

that determines each player’s behaviour in the nested game, it is the felicity payoff that determines

3We assume that individuals are always only “partially altruistic”.
4We refer to the two individuals who are chosen to be players 1 and 2 as A and B before they know who

will go first. Player A and player B both have a probability of 0.5 of being in each position.
5Additional assumptions about the properties of the equilibrium that will be played in the sequential

punishment game are also required to make the outcome determinate. Initially we are assuming that it will be
the most socially efficient one, where player 2 harms player 1 only if player 1 harms player 2 (otherwise player
2 either harms player 3, or does not inflict harm).

6In the context of cultural selection theory, mutations are not genetic but represent a kind of cultural
random drift as behaviours are imperfectly mimicked or new ways of doing things are tried out.
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the evolutionary stable equilibrium in the supergame, and the more complex evolutionarily dynamics

involved in group selection that we analyse later.

Since there are two possible phenotypes for each individual, there are four possibilities when three

individuals meet and interact.7 Firstly, if both individuals have high altruism8 then they both behave

efficiently by never inflicting harm. Therefore whichever individual goes first, the felicity payoff to each

individual is zero. The value of the social welfare function is also zero because no harm is inflicted, and

therefore all three individuals get a felicity payoff of 0.9 This can be seen in the upper payoff matrix in

figure 3.1 in which the top left square shows the zero payoffs of individuals 1 and 2, and the resulting

zero social welfare in the box in the middle of the square. Similarly, the corresponding square in the

lower matrix10 looks identical, because the payoffs are still zero for each player regardless of who gets

to move first.

Suppose instead that player 2 has phenotype L and player 1 has phenotype H. Since there is no

future in which they can be punished, player 2 will inefficiently inflict harm. Player 1 will still not

inflict harm because he is sufficiently altruistic not to do this in a single-move game anyway. Therefore

player 2 will get a felicity payoff of π̂ and player 1 will get a felicity payoff of 0, because he co-operates

and so player 2 follows her default behaviour and harms player 3. Total social welfare is therefore

π̂ − 1.

On the other hand, supposing that player 1 has phenotype L and player 2 has phenotype H, player

2 will not inflict harm, and so there is then no credible threat to punish player 1 for inflicting harm,

and so player 1 will do so. In this case, player 1 gets a felicity payoff of π̂ and player 2 gets -1 because

she is punished by player 1. Again, social welfare is π̂ − 1.

In the lower matrix, the payoffs for individuals A and B in the bottom left and top right squares

are found by averaging the payoffs in the corresponding squares from the first matrix to produce a new

symmetric matrix, because players A and B have an equal chance of being player 1 or 2.

7The phenotype of the individual selected to be player 3 is unimportant because they do not have any
opportunity to act.

8Meaning that they both “play” strategy H in the supergame.
9The per-period social welfare function sums the felicity of the two individuals who get a harm opportunity

along with the felicity of the third individual who acts as a “passive receptacle”.
10Which shows the felicity payoffs for players A and B, once the chance of being player 1 or 2 has been

randomized, and is therefore symmetric.
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1’s Phenotype H L

2’s Phenotype θ1 ≥ π̂ θ1 < π̂

H θ2 ≥ π̂
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0
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L θ2 < π̂

0

π̂ − 1
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A’s Phenotype H L

B’s Phenotype θA ≥ π̂ θA < π̂

H θB ≥ π̂

0

0

0
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π̂ − 1

−1
2

L θB < π̂

−1
2

π̂ − 1

π̂

π̂
2

π̂ − 1

π̂
2

Figure 3.1: Sequential-move game

Finally, we have the case where both individuals have phenotype L. Here, player 2 will definitely

inflict harm because there is no future. However, this allows a credible threat to be made to player 1

that if he harms socially inefficiently, the harm inflicted by player 2 will be switched from player 3 onto

him. If this occurs, player 1 loses social utility of 1− θ1.11 However, the gain in social utility he gets

by inflicting harm is only π̂ − θ1. Player 1 will therefore be effectively deterred from inflicting harm.

Player 1’s felicity payoff is therefore 0 and player 2’s is π̂. Social welfare will be π̂ − 1. The payoffs

for the second matrix are again found by averaging, in order to take into account the equal chance of

players A and B being player 1 or 2 in the first matrix.

11This is assuming, for simplicity, no discounting. Permitting discounting would be problematic because we
would then have to decide whether or not to discount felicity payoffs as well as social utility payoffs. It would
also not really add anything insightful to the analysis of a finite-move sequential game.
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Here we see an example of the interplay between the willingness effect and the temptation effect.

If we examine the social impact of changing person 2 from a low altruism individual to a high

altruism individual (with person 1 remaining a low altruism individual), we see that although the

temptation effect leads person 2 not to inflict harm when she would have done so before, the willingness

effect completely counteracts this by leading person 1 to defect, because he no longer faces the threat

of being punished by person 2. The overall impact upon social welfare is therefore neutral.

The best response payoffs in the second matrix are underlined, and the pure strategy Nash

equilibrium12 is for both individuals A and B to have phenotype L. Since each player is always better

off in felicity terms by having low altruism, regardless of whether the other individual has high or

low altruism, the individual level selection pressure in this simple model leads to a socially inefficient

evolutionarily stable equilibrium, in a similar manner to the standard prisoners’ dilemma. This comes

about because individuals with low altruism receive higher felicity payoffs and therefore reproduce

faster than high altruism individuals, thus coming to dominate the population.

Before further analysing the properties of this evolutionary equilibrium, it is instructive to compare

it to that of an identical model, except that rather than having a two-move sequential punishment

model nested within the supergame, there is instead a game where each individual chooses whether or

not to inflict harm in a single-move game simultaneously.13 So, person A inflicts harm if and only if

θA < π̂ and person B if and only if θB < π̂. (We continue to assume that person 1 will harm person 2

by default and that person 2 will harm person 3 by default. Thus individuals A and B only take the

felicity loss of -1 if they turn out to be person 2, with probability 1
2 .) The payoff matrix for this model

is shown in figure 3.2. Although the evolutionarily stable equilibrium is again for all individuals to

have phenotype L, the important difference compared to the case where the nested game is sequential

is that in the evolutionary equilibrium for this model, both individuals will inflict harm, whereas in the

case of the two-move sequential game, although all individuals have low altruism in the evolutionary

equilibrium, the individual who has a chance to inflict harm first does not inflict harm, due to the

threat of having the harm inflicted by player 2 focused on to him if he defects by inflicting harm. This

difference between the two models will turn out to be of crucial importance in determining the nature

of their evolutionarily stable equilibria when group selection effects can occur.

12Which is also a dominant strategy equilibrium and therefore the unique Nash equilibrium.
13When we analyse this model is more detail later on, we will see that in terms of the evolutionary pressures,

this model is essentially the same as the standard prisoners’ dilemma set-up.
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H L

θA ≥ π̂ θA < π̂

H θB ≥ π̂

0

0

0

π̂

π̂ − 1
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L θB < π̂
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π̂ − 1

π̂

π̂ − 1
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2π̂ − 2
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Figure 3.2: Simultaneous-move game

The relevant difference between the sequential-move and simultaneous-move versions of the model

can be brought out if we consider the effect on social welfare of a marginal increase in the proportion of

the population with high altruism (phenotype H) from the evolutionarily stable equilibrium in a single

homogeneous population. The expected value of the social welfare function, E(W ), depends upon the

proportion of each phenotype in the population. In the case of the nested sequential-move punishment

model, in a finite population of size n, this will be given by:

E (W ) =
q (nq − 1) 0
n− 1

+ 2
q (1− q)n (π̂ − 1)

n− 1
+

(1− q) (n (1− q)− 1) (π̂ − 1)
n− 1

In the case of the nested simultaneous-move punishment model, this will be:

E (W ) =
q (nq − 1) 0
n− 1

+ 2
q (1− q)n (π̂ − 1)

n− 1
+

(1− q) (n (1− q)− 1) (2 π̂ − 2)
n− 1

If we now differentiate these expressions with respect to q, we can find an expression for the gains

in social welfare from a marginal increase in the proportion of altruists. For the nested sequential

punishment model, we get:

d

dq
E (W ) (q) =

(1− π̂) (2nq − 1)
n− 1

(3.1)

For the simultaneous-move model, we get:

d

dq
E (W ) (q) = 2 (1− π̂) (3.2)

As n −→∞, (3.1) goes to:

d

dq
E (W ) (q) = 2 (1− π̂) q (3.3)
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The diagram below shows social welfare as a function of q for both types of nested model, letting

π̂ = 1
2 and taking the limit as n −→∞. We see that at the evolutionary equilibrium where q = 0, the

marginal increase in social welfare when q increases is positive for the simultaneous-move model but 0

for the sequential-move model. This is because introducing a small number of high altruism individuals

into a population of low altruism individuals means that they are almost certain to interact with low

altruism individuals. In the nested sequential move game, however, this means that if the new high

altruism individual inflicts harm first, they do not change their behaviour, whereas if they go second,

although they do not inflict harm, this causes the low altruism individual to defect and inflict harm,

whereas they would not do so if the second individual had low altruism instead of high altruism.

So, altruism is only socially beneficial in the sequential punishment model when altruists encounter

each other rather than low altruism individuals. In the simultaneous-move game, by contrast, the

presence of even a small number of high altruism individuals is socially beneficial because even if they

do interact with a low altruism individual, their behaviour is changed because they now do not inflict

harm, and this increases social efficiency, even though the low altruism individual they interact with

still defects and inflicts harm.

q

E[W]

Simultaneous-move
Sequential-move

Figure 3.3: Comparison of evolutionary models
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What this analysis shows us is that by introducing a change in the way social interactions are

modelled so that there are sequential moves enabling conditional punishment, the properties of the

evolved equilibrium pattern of individual altruism are altered in the sense that marginal injections of

additional altruism into the population are not as socially beneficial. This gives us the intuition for

the result that the group selection mechanism is weaker in the sequential-move model.

3.5 Price Equations

The conditions under which group-level selection pressures will dominate, and altruism will evolve,

can be described using Price equations. Price was an evolutionary biologist and the first person to

outline the mathematical conditions required for altruism to evolve by group selection (Price, 1970).

It is clear that altruists will always be wiped out in the long run in a single isolated group because

the selfish individuals always get better felicity payoffs from their interactions on average, and thus

breed more rapidly. However, if altruists are sufficiently concentrated together in sub-groups within the

population, whose members interact only (or mainly) with one another, then altruists can get better

average payoffs in the population as a whole, and thus outbreed selfish types, because the benefits of

altruism will be focused (mainly) upon other altruists. For this to work in the long run, there must

be a dispersal mechanism which has the property that it allows altruists to migrate between groups

whilst maintaining sufficient inter-group variance of the altruistic phenotype relative to the intra-group

variance that altruists are fitter on average than selfish types. The dispersal mechanism determines

the manner in which migration of individuals between groups occurs.14 The Price Equation for a

particular model establishes the minimum variance ratio required to enable altruism to survive.

In this section, we will show that the sequential-move game described above leads to a more

stringent requirement on the variance ratio achieved by the dispersal mechanism than the simultaneous-

move game. This means that altruism will, under general conditions, evolve to a higher degree if the

social control mechanism provided by person 2’s threat to punish person 1 is removed. Although the

presence of this threat prevents person 1 from inflicting harm, and therefore causes a social welfare gain,

ceteris paribus, the potential for the use of punishment also weakens the group selection mechanism,

and thus the ability to achieve a socially efficient high altruism equilibrium “anarchically”. Potentially,

14There must always be some migration of altruists in order for altruism to survive, since otherwise they
would always be extinguished within each isolated group.
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H L

H
b− c

b− c

b

−c

L
−c

b

0

0

Figure 3.4: Standard prisoners’ dilemma

therefore, removing the social control mechanism might improve social welfare by giving a boost to

altruism sufficient to cause a net rise in social welfare. After deriving analytic results regarding the

Price equation which apply to any dispersal mechanism, we will proceed to show, using some simple

specific simulations, that this can indeed be the case.

We will proceed by first showing that the simultaneous-move version of the punishment game has

essentially the same Price equation as the standard prisoners’ dilemma, which is the classic example

of a Price equation in the literature. We will then derive the Price equation for the sequential-move

punishment game, and proceed to prove that it always involves a more stringent requirement upon the

inter-group variance. Finally, we will illustrate the analysis using a computer simulation of a specific

dispersal mechanism.

3.6 The Standard Prisoners’ Dilemma

The standard model involves a population split into m groups with average size n, so that

n = 1
m

∑m
i=1 ni, where ni is the number of individuals in group i. Individuals in each group only

interact with members of their own group, and do so by playing a 2-person prisoners’ dilemma game

with the payoff matrix shown below (where b > c). Now, since the only Nash equilibrium is the

dominant strategy equilibrium where both individuals play L (low altruism, equivalent to “defect” in

the usual parlance), the only evolutionarily stable equilibrium if all individuals are in a single group is

for all individuals to have phenotype L.15

15If there are random mutations, there may be some type Hs but they are always evolutionarily less fit than
the type Ls and so are always in the process of dying out.
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When there is more than one group, however, we can show that conditions exist under which the

altruistic phenotype can spread through the population. We do this by deriving the change which will

occur in the number of high altruism individuals and the total population, thus enabling the derivation

of the condition for the proportion of high altruism individuals to increase, assuming that the number

of offspring is equal to the felicity payoff. The payoffs for a member of a particular group depend upon

the proportion in the group of each type, qi being the proportion of high altruism types in group i and

q = 1
mn

∑m
i=1 niqi being the proportion of altruists in the population.

The payoffs of high and low altruism individuals in group i will be:16

Ui
H = f +

(qini − 1) b
ni − 1

− c (3.4)

Ui
L = f +

qinib

ni − 1
(3.5)

From the above, we can see that, once interactions have occurred and breeding has taken place,

the new proportion of altruists in the overall population after one phase of interactions will be given

by the following expression, derived by dividing the new number of high altruism individuals in the

population by the new total population:

q′ =

∑m
i=1

((
f + (qini−1)b

ni−1 − c
)
qini

)
∑m
i=1

((
f + (qini−1)b

ni−1 − c
)
qini +

(
f + qinib

ni−1

)
(1− qi)ni

) (3.6)

Dividing the numerator and denominator through by n and collecting like terms gives us:

q′ =

(∑m
i=1

qinif
n +

∑m
i=1

qi
2ni

2b
n(ni−1) −

∑m
i=1

qinib
n(ni−1) −

∑m
i=1

qinic
n

)
(∑m

i=1
fni
n −

∑m
i=1

qinib
n(ni−1) −

∑m
i=1

qinic
n +

∑m
i=1

qini2b
n(ni−1)

) (3.7)

The following expressions are used now to simplify the above expression, and also subsequently for

the same purpose later in this section:

∑m
i=1

qini
2

ni−1 = mCov
(
qini
ni−1 , ni

)
+
∑m
i=1

qini
ni−1n∑m

i=1
qi

2ni
2

ni−1 = mCov
(
qini
ni−1 , qini

)
+
∑m
i=1

qini
ni−1nq∑m

i=1
ni

2

ni−1 = mCov
(

ni
ni−1 , ni

)
+ n

∑m
i=1

ni
ni−1

(3.8)

∑m
i=1

qini
ni−1 = mE

(
qini
ni−1

) ∑m
i=1 qini = qnm∑m

i=1 ni = mn
∑m
i=1

ni
ni−1 = mE

(
ni
ni−1

) (3.9)

16UHi and ULi are the expected felicity payoffs in group i. Note also the introduction of a fixed payoff f .
This is the same for both phenotypes and thus has no effect on relative fitness, but is needed to ensure that
both types always gain a strictly positive payoff. It will be set to a fixed value in the simulations later on.
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In order for the proportion of high altruism individuals to grow in the population, we require that

q′ − q > 0, where q′ − q can be derived to be the following:

q′ − q =

(
−qbCov

(
qini
ni−1 , ni

)
+ bCov

(
qini
ni−1 , qini

)
− b (1− q)E

(
qini
ni−1

)
− qcn (1− q)

)
(
fn+ bCov

(
qini
ni−1 , ni

)
+ b (n− 1)E

(
qini
ni−1

)
− cqn

) (3.10)

Provided f is set high enough to ensure a positive payoff for both phenotypes, the denominator

of (3.10) will be positive. Therefore the sign of the numerator will determine whether q′ − q > 0 is

positive or negative. It will therefore be the case that q′− q > 0 if and only if the following is fulfilled:

c

b
<

Cov
(
qini
ni−1 , qini

)
qn (1− q)

−
Cov

(
qini
ni−1 , ni

)
n (1− q)

−
E
(
qini
ni−1

)
nq

(3.11)

This result can be most easily interpreted in the situation where all groups are of equal size, so that

E
(
qini
ni−1

)
= qn

n−1 , Cov
(
qini
ni−1 , qini

)
= n2

n−1V ar(qi) and Cov
(
qini
ni−1 , ni

)
= 0. In this case, expressions

(3.10) and (3.11) simplify respectively to give:

q′ − q =
(nVar (qi)− q(1− q)) b− q (n− 1) (1− q) c

(n− 1) (f + q(b− c))
(3.12)

c

b
<

nVar (qi)
(n− 1) q (1− q)

− 1
(n− 1)

(3.13)

The intuition for this result is that altruism is able to survive if altruists are sufficiently concentrated

together that they have a higher average fitness level than the selfish types. Within a particular group,

selfish individuals still do better than altruistic individuals, but across the population, altruists are able

to do better than selfish individuals because the altruistic groups spread more rapidly. The V ar(qi)

part of the above condition is the inter-group variance of the level of altruism. The q(1− q) part is the

intra-group variance: the variance of the random variable formed by taking a single individual from

the population and assigning a value of 1 if they have phenotype H and 0 if they have phenotype L.

As n −→∞, (3.13) simplifies even further to give c
b <

Var(qi)
q(1−q) ; the variance ratio must be greater than

the ratio of the cost of co-operating to the benefit bestowed upon the other individual by doing so. The

lower the cost relative to the benefit, the easier it is for altruism to evolve, because the individual-level

selection pressure in favour of the selfish types is weakened relative to group-level selection.

If we now take the example of the simultaneous-move punishment game, we can see that a high

altruism individual refraining from inflicting harm and imposing the cost of 1 on the other individual

at benefit π̂ to herself is logically equivalent to bestowing a benefit of 1 upon the other individual at
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a cost of π̂ to herself. The simultaneous-move punishment game therefore has almost the same payoff

matrix as the standard prisoners’ dilemma, with b = 1 and c = π̂, except that person 2, if she has

phenotype L, inflicts harm upon person 3 rather than person 1. We will see when we come to derive

the Price equation that this is an insignificant difference. We will also see that the simultaneous-

move game can be analysed as an instance of the sequential-move game but with player 2’s strategy

being not to condition her actions upon those of player 1. In this context, therefore, the standard

prisoners’ dilemma situation can essentially be viewed as one of the possible equilibrium outcomes of

the sequential punishment model, and thus as a subcase of this more general model.

3.7 The Sequential-Move Game

Before deriving the Price equation for the sequential-move game, we need to further consider the

possible subgame-perfect equilibria in this game, and justify why we pay particular attention to certain

of these. Player 1’s moves are restricted to either inflicting harm upon player 2 or not inflicting harm

at all.17 This means that player 1 has only 2 available strategies. If player 2 has the high altruism

phenotype then she only has one credible strategy available, which is not to inflict harm. If player 2

has low altruism then, after the elimination of strictly dominated strategies, she has only 4 possible

strategies that could be played in a subgame-perfect Nash equilibrium.18 These restrictions enable us

to fully characterize all of the equilibria of the embedded subgame. The discussion and payoff matrices

below describe the subgame-perfect Nash equilibria for the four combinations of phenotype: (H,H),

(L,H), (H,L) and (L,L)19, where L corresponds to θ < π̂ and H corresponds to θ ≥ π̂.

Taking first the two cases when player 2 has high altruism, it is clear that here player 2 will choose

not to harm either player 1 or player 3. This is turn means that player 1 will face no future punishment

when deciding whether or not to harm player 2, and so will do so if he has low altruism, but not if

he has high altruism. Taking instead the two cases where player 2 has low altruism, it is clear that

player 2 will choose to inflict harm, but she will be indifferent between inflicting harm upon player 1

and player 3. This makes the strategic possibilities more interesting.

17We could justify this by assuming that individuals can only harm those adjacent to them.
18This is because player 2 can either harm player 1 or harm player 3 in response to each of player 1’s possible

moves. She cannot credibly threaten to refrain from inflicting harm, or to harm herself.
19(H,L) and (L,H) are distinct because players 1 and 2 do not have symmetric moves or information sets.
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Punish (A) Don’t Punish (B)

A→ 1 B→ 1

π̂ − θ1 + θ1π̂ − 1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − 1

π̂ − θ2

A→ 1 B→ 3

π̂ − θ1 + θ1π̂ − 1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − θ1

π̂ − θ2

A→ 3 B→ 1

π̂ − θ1 + θ1π̂ − θ1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − 1

π̂ − θ2

A→ 3 B→ 3

π̂ − θ1 + θ1π̂ − θ1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − θ1

π̂ − θ2

Figure 3.5: Player 1 has phenotype L and player 2 has phenotype L

The first payoff matrix in figure 3.5 illustrates the case where both individuals have low altruism.

The underlined payoffs indicate potential best responses for each player,20 so that squares with

both payoffs underlined represent subgame-perfect Nash equilibria.21 In three such equilibria, both

individuals inflict harm, but there is also one where player 2 (the row player) makes a credible threat

to switch harm onto player 1 (the column player) if he chooses to inflict harm, thus resulting in player

1’s best response being not to inflict harm. This is a reasonably plausible equilibrium because player

2 can gain by making the threat (if it is credible), but is indifferent as to who she inflicts harm upon

and so never incurs a cost from carrying out the threat, thus rendering it credible.

The second payoff matrix, in figure 3.6, illustrates the case where player 1 has phenotype H and

player 2 has phenotype L. Provided θ1 >
1+π̂

2 , all the sub-game perfect Nash equilibria involve player 1

20When a player is indifferent between payoffs, all of the equally preferred payoffs are underlined.
21Note that although, in general, a best response to a best response is a necessary, but not sufficient condition

for a subgame-perfect Nash equilibrium, in this simple game all Nash equilibria are subgame-perfect.
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Punish (A) Don’t Punish (B)

A→ 1 B→ 1

π̂ − θ1 + θ1π̂ − 1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − 1

π̂ − θ2

A→ 1 B→ 3

π̂ − θ1 + θ1π̂ − 1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − θ1

π̂ − θ2

A→ 3 B→ 1

π̂ − θ1 + θ1π̂ − θ1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − 1

π̂ − θ2

A→ 3 B→ 3

π̂ − θ1 + θ1π̂ − θ1

θ2π̂ − 1 + π̂ − θ2

θ1π̂ − θ1

π̂ − θ2

Figure 3.6: Player 1 has phenotype H and player 2 has phenotype L, assuming θ1 >
1+π̂

2
.

not inflicting harm and player 2 inflicting harm. If 1+π̂
2 ≥ θ1 ≥ π̂ then there can be a Nash equilibrium

where player 2 threatens to harm player 1 unless he inflicts harm, and so player 1 does indeed inflict

harm even though he loses utility from doing so as a standalone act. However, this equilibrium is not

very believable as it involves player 2 making a threat which it is not in her interest to make. She

would prefer player 1 not to inflict harm, and so it is not intuitively plausible that she would make

such a threat.

Although it is not likely that player 2 would make a threat which influences player 1’s behaviour

in a manner which is against her own interest, it is more plausible that for some reason player 2 might

not be able to effectively make the threat to induce player 1 not to inflict harm when he has low

altruism. If player 1 does not believe that player 2 will carry out the threat, then, once it comes to

enforcing it, player 2 is indifferent as to whether she does in fact do so, since “bygones are bygones”. If



132 PUNISHMENT AND THE POTENCY OF GROUP SELECTION

the punishment equilibrium breaks down, then the sequential-move game essentially collapses into the

simultaneous-move game. This can occur if the subgame-perfect equilibrium that is played involves

player 2 playing either the strategy A→ 1, B → 1 or the strategy A→ 3, B → 3. So, in this sense, the

sequential-move move model contains the simultaneous-move model as a special case.

3.8 Deriving the Price Equations

We can now derive the expected payoffs of high altruism and low altruism types in the sequential-

move game. We assume that each individual has a 1
3 chance of being player 1, 2 or 3 respectively in

each interaction. We will first assume that player 2 plays either strategy A → 1, B → 1 or strategy

A→ 3, B → 3. In both cases, we will see that the resultant Price equation is basically the same as the

standard prisoners’ dilemma. We will then move on to the subgame-perfect equilibrium where strategy

A → 1, B → 3 is played, and where the resultant Price equation places a more stringent condition

upon the variance ratio, thus reducing the potency of the group selection mechanism.

Suppose first of all that a selfish player 2 (a player 2 with a low altruism phenotype, L) chooses to

play the strategy A→ 1, B → 1, so that she always inflicts harm upon player 1 regardless of whether

player 1 inflicts harm upon her or not22. A selfish player 1 will therefore definitely choose to harm

player 2, because he will be punished anyway and so will optimally wish to take his opportunity to

inflict harm for a gain in his social utility. This is a subgame-perfect Nash equilibrium because once

player 1 has made his choice, player 2 will be indifferent over whether she inflicts harm upon player 1

or player 3.

3.8.1 Selfish player 2 plays strategy A→ 1, B → 1

We derive the Price equation condition by finding the expected felicity payoff of an altruistic

individual with phenotype H and a selfish individual with phenotype L. Altruistic individuals have a

1
3 chance of being player 1, 2 or 3 respectively. If they are player 1, then if player 2 is selfish (with

probability (1−qi)ni
ni−1 ), they will receive a felicity payoff of −1. Otherwise they will receive a felicity

payoff of 0. If they are player 2, they also will receive a felicity payoff of −1, if player 1 is selfish

(probability (1−qi)ni
ni−1 ), and 0 otherwise. If they are player 3, they will always receive a felicity payoff

22As we have already seen, since there is no future an altruistic player 2 with phenotype L will never inflict
harm.
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of 0, because they are never punished. The expected felicity payoff for an altruist will thus be:

Ui
H = f − 2

3
(1− qi)ni
ni − 1

(3.14)

If players are selfish, then if they turn out to be player 1, they will definitely choose to harm player

2, who will harm them in turn if they too are selfish. The expected payoff if they are player 1 would

therefore be π̂− (1−qi)ni−1
ni−1 . If they turn out to be player 2, they will again definitely inflict harm, and

player 1 will harm them if they are selfish. Again, the expected payoff would be π̂ − (1−qi)ni−1
ni−1 . As

before, if they turn out to be player 3, their expected payoff is definitely 0. So:

Ui
L = f +

2
3
π̂ − 2

3
(1− qi)ni − 1

ni − 1
(3.15)

The new proportion of altruists in the population after one stage of interaction will therefore be:

q′ =

∑m
i=1

(
f − 2

3
(1−qi)ni
ni−1

)
qini∑m

i=1

((
f − 2

3
(1−qi)ni
ni−1

)
qini +

(
f + 2

3 π̂ −
2
3

(1−qi)ni−1
ni−1

)
(1− qi)ni

) (3.16)

Multiplying out, dividing the numerator and denominator by n and collecting like terms gives us:

q′ = „Pm
i=1

3
2
qinif

n −
Pm
i=1

qini
2

n(ni−1)
+
Pm
i=1

qi
2ni

2

n(ni−1)

«
„Pm

i=1
3
2
fni
n +

Pm
i=1

qini
2

n(ni−1)
+
Pm
i=1

π̂ ni
n −

Pm
i=1

π̂ niqi
n −

Pm
i=1

ni
2

n(ni−1)
+
Pm
i=1

ni
n(ni−1)

−
Pm
i=1

qini
n(ni−1)

« (3.17)

We can now apply (3.8) and (3.9) to derive the following expression for the change in the proportion

of altruists in the overall population:

q′ − q =

2
“
−(1+q)Cov

“
qini
ni−1 ,ni

”
+Cov

“
qini
ni−1 ,qini

”
−(n−q)E

“
qini
ni−1

”
+q(n−1)E

“
ni
ni−1

”
+q
“
Cov

“
ni
ni−1 ,ni

”
−π̂ n(1−q)

””
“

3 fn+2 Cov
“
qini
ni−1 ,ni

”
+2(n−1)

“
E
“
qini
ni−1

”
−E
“

ni
ni−1

””
−2 Cov

“
ni
ni−1 ,ni

”
+2 π̂ n(1−q)

”
(3.18)

Provided f is high enough so that both types always get a positive payoff, the denominator of

(3.18) will be positive, and q′ − q > 0 if and only if the following condition is fulfilled:

π̂ < −
(1+q)Cov

“
qini
ni−1 ,ni

”
qn(1−q) +

Cov
“
qini
ni−1 ,qini

”
qn(1−q) −

(n−q)E
“
qini
ni−1

”
qn(1−q) +

(n−1)E
“

ni
ni−1

”
n(1−q) +

Cov
“

ni
ni−1 ,ni

”
n(1−q) (3.19)

If all groups are of equal size, the conditions (3.18) and (3.19) become, respectively:

q′ − q =
2 (nVar (qi)− q (n− 1) (1− q) π̂ − q(1− q))

(n− 1) (3 f − 2(1− q)(1− π̂))
(3.20)

π̂ <
nVar (qi)

q (n− 1) (1− q)
− 1

(n− 1)
(3.21)

If all groups are the same size, the condition on the variance ratio is therefore identical to the

prisoners’ dilemma, since (3.21) is identical to (3.13) with c
b = π̂.23

23There is a slight difference between the two models when groups are of different sizes, due to the differing
position of player 3 in different sized groups.
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3.8.2 Selfish player 2 plays strategy A→ 3, B → 3

This case will be very similar to the previous one, except that it is player 3 rather than player 1

who always receives the harm inflicted by a selfish player 2. The expected utility payoffs will therefore

be the same as above, as will the Price equation.

3.8.3 Selfish player 2 plays strategy A→ 1, B → 3

We will now assume that player 2 always plays strategy A→ 1, B → 3, so that player 1 is always

induced not to inflict harm if player 2 is of type L. Our first step will be to derive the expected felicity

payoff for individuals with high and low altruism.

Taking first the expected felicity payoff of an altruistic individual, they have a 1
3 chance of being

player 1 in their interaction. In this case, whether or not player 2 is altruistic, the individual will

not inflict harm, and so will receive a payoff of 0. If, on the other hand, they turn out to be player 2

(probability 1
3 ), they will be punished by player 1 if player 1 is selfish (probability (1−qi)ni

ni−1 and suffering

a loss of 1), because they can make no credible threat to punish a selfish player 1 for doing this. The

third possibility is that they will be player 3, in which case they will be punished by player 2 if player

2 turns out to be selfish (probability (1−qi)ni
ni−1 and suffering a loss of 1). This is because even if player

1 turns out to be selfish, he will never choose to harm player 2 due to his fear of being punished by

having the harm inflicted by player 2 focused onto him. Hence, a selfish player 2 will always harm

player 3. So, the expected felicity payoff of an altruistic individual in this model is:

Ui
H = f − 2

3
(1− qi)ni
ni − 1

(3.22)

Now we take the case of selfish individuals. If they turn out to be player 1, they will choose to

harm player 2 if and only if player 2 is altruistic (the unconditional probability of this scenario is 1
3
qini
ni−1

and the felicity payoff would be π̂).24 If selfish individuals turn out to be player 2 (probability 1
3 ),

then they will definitely harm either player 1 or player 3, gaining a felicity payoff of π̂. If they turn

out to be player 3, they are in the same situation as they would be if they were altruistic, except that

the probability that player 2 is selfish and inflicts harm upon them is now (1−qi)ni−1
ni−1 . The expected

utility payoff of an altruistic individual will therefore be:

Ui
L = f +

1
3
π̂ qini
ni − 1

+
1
3
π̂ − 1

3
(1− qi)ni − 1

ni − 1
(3.23)

24The benefit received by inflicting harm inefficiently is equivalent to the cost that must be incurred in order
to behave efficiently in the prisoners’ dilemma model.



3.8. DERIVING THE PRICE EQUATIONS 135

From the above, we can see that, once interactions have occurred and breeding has taken place,

the new proportion of high altruism individuals in the population will be given by:

q′ =

∑m
i=1

(
f − 2

3
(1−qi)ni
ni−1

)
qini∑m

i=1

((
f − 2

3
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)
(1− qi)ni

) (3.24)

Multiplying out, dividing the numerator and denominator by n and collecting like terms yields:
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(3.25)

Expressions (3.8) and (3.9) can now be applied to derive the following expression for the change

in the proportion of altruists in the overall population:

q′ − q =

(2−q(1−π̂))Cov( qinini−1 ,qini)−(2+π̂ q)Cov( qinini−1 ,ni)−(((1−q)(qπ̂+2)+q2)n−q)E( qinini−1 )+(n−1)qE( ni
ni−1 )−q(1−q)π̂ n+qCov( ni

ni−1 ,ni)
(3 fn+π̂ Cov( qinini−1 ,ni)+(1−π̂)Cov( qinini−1 ,qini)−(1−((1−q)π̂+q)n)E( qinini−1 )−(n−1)E( ni

ni−1 )+(1−q)π̂ n−Cov( ni
ni−1 ,ni))

(3.26)

Assuming f is high enough to make the denominator of the RHS of (3.26) positive, q′ − q will be

positive if and only if the following condition holds:

π̂ <
(2−q)Cov
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”
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ni−1 ,ni

”
−(n(1−q)2+n−q)E
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“
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”
+qCov
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”
q
“
Cov
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”
−Cov
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”
+n(1−q)

“
E
“
qini
ni−1

”
+1
”” (3.27)

When all groups are of equal size, the relevant conditions become:

q′ − q =
(qnπ̂ + n (2− q)) Var (qi)− q (1− q) (n(q + 1)− 1) π̂ − q (1− q) (n+ 1− nq)

3 (n− 1) f + n (1− π̂) Var (qi)− (1− q) (nq + n− 1) (1− π̂)
(3.28)

π̂ <
q (1− q) (n+ 1− nq)− n (2− q) Var (qi)
q (Var (qi)n− (1− q) (nq + n− 1))

(3.29)

Condition (3.27) will be shown in Theorem 3.I to be more stringent than the equivalent condition

(3.19) for the simultaneous-move game. This means that it is unambiguously more difficult for group

selection to operate in the sequential-move model. The proof works by making a number of simplifying

substitutions so that the RHS of (3.27) can be directly compared to the RHS of (3.19). It can then be

shown that, if the RHS of (3.27) is positive then the RHS of (3.19) must also be positive and strictly

greater. In other words, if group selection can survive given some values of π̂ in the sequential-move

model, it must be able to survive for a wider range of π̂ values in the simultaneous-move model.
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Theorem 3.I

If π̂′seq > 0, then π̂′sim > π̂′seq.

Proof: Let π̂′sim be the RHS of (3.19) and π̂′seq be the RHS of (3.27). The following substitutions can be

used to rewrite (3.19) and (3.27) in a more easily comparable form:

αi = Cov
(

ni
ni − 1

, ni

)
+ nE

(
ni

ni − 1

)
− Cov

(
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)
− nE

(
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)
(3.30)

βi = E

(
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)
− E

(
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)
(3.31)

γi = Cov
(
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, ni

)
+ nE

(
qini
ni − 1

)
− Cov

(
qini
ni − 1

, qini

)
− qnE

(
qini
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)
(3.32)

Note that αi > βi > 0 and that αi > γi > 0. Using these substitutions, (3.19) and (3.27) become:

π̂′sim =
(αi − βi) q − γi
qn (1− q)

(3.33)

π̂′seq =
(αi − βi) q − (2− q) γi

(γi + n (1− q)) q
(3.34)

It can now be seen clearly by observation that if π̂′seq > 0, then π̂′sim > π̂′seq.

3.9 Illustration - “Haystacks” Model

The “Haystacks” model is a well-known scenario in evolutionary biology which provides one

possible population structure which could produce sufficient inter-group variance to allow altruism to

survive via group selection. The original analogy was a population of mice which splits into haystacks,

following which interaction takes place entirely within each haystack for a period of time. Periodically,

however, the hay is taken away and the mice are forced out, so that the meta-population once again

intermingles. If altruistic mice are sufficiently concentrated within the haystacks, they will breed more

rapidly on average than selfish mice.

We are not seeking here to demonstrate the conditions under which such a population structure will

enable group selection to take place. There has been controversy about the nature of the mechanism

by which the haystacks are formed required to enable group selection to operate effectively. It has

been shown that there must either be assortative group formation or more than one period of isolation

in order for altruism to survive (Bergstrom, 2002). A thorough investigation has now been undertaken
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(Cooper & Wallace, 2004). Cooper and Wallace have shown that altruism can indeed evolve by

group selection, even with finite groups and when the assortment mechanism is completely random,

provided the ratio of benefit to cost is high enough and the number of periods of isolation is within an

intermediate “Goldilocks” band.

We will use different lengths of the isolation period to illustrate the phenomenon that the sequential-

move model makes it more difficult for altruism to survive by, as we have already seen analytically,

making the Price equation condition more stringent. The haystacks structure acts as a kind of

amplification device for the inter-group variance. The longer groups are isolated, the longer the

altruists have to benefit one another. However, counteracting this is the fact that the longer the

groups are isolated, the better the selfish individuals are doing at the expense of the altruists within

each haystack. This means that there is an optimal amount of time for the haystacks isolation, in

terms of maximizing the success of the altruists. Isolating the haystacks for a longer or shorter period

than this results in a lower average proportion of altruists evolving.

The haystacks model can only operate if there is some initial inter-group variance to be amplified.

This is usually achieved by introducing randomness into the assortment process by which groups are

formed. In the simulations that follow, we assume that individuals in the overall population are sorted

into groups of size 6. We use the hypergeometric distribution to approximate this process. Simulations

are “smoothed”, in the sense that the fraction of altruists is treated as a continuous variable, even

though the Price equations are based on finite group sizes. This has been found to deliver a reasonably

close approximation to the discrete model, and allows for much faster simulations, and thus better

quality data (Cooper & Wallace, 2004). The haystacks idea is not here being used primarily to justify

the possibility of group selection working, but to provide a variable, in the number of periods of

isolation g, that can be used to adjust the inter-group variance and illustrate the differences between

the sequential-move model and the simultaneous-move model.

Group selection can, of course, occur by other methods aside from a Haystacks population

structure. An example commonly used in the social sciences is assortative interaction, where altruists

are able to disproportionately interact with one another by forming groups and excluding selfish types.

It is commonly argued that group selection is likely to be stronger in human cultural evolution than in

human biological evolution not only because cultural phenotypes can be transmitted more rapidly (e.g.
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by imitation) than biological ones (which must be passed on genetically via biological reproduction)

but also because the concentration of particular cultural traits in groups of humans does not have to

rely on randomness as it does in biological models of group selection. For example, groups can expel

or reject interaction with non-altruists, or bring extra pressures to bear to enforce conformity. One

empirical study (Soltis et al., 1995) found sufficient empirical evidence from anthropological studies of

group formation and interaction to conclude that cultural group selection may occur in this manner

over a long time scale in human society.

The simulations proceed as follows. The population begins at size 100, with 1
3 of the individuals

having high altruism. This is split into groups of 6, approximated by a hypergeometric distribution for

the proportion of groups with each different possible composition, then multiplied by 100
6 to give the

number of each type of group.25 Each group then evolves in isolation for g periods. The members of

the group are formed each period into triplets to play the sequential punishment game, assuming that

its simultaneous-move and sequential-move equilibria are played respectively for the simulations with

and without the use of punishment. At the end of each period, mutations occur where a fraction ε of

each type change into the other type. The new population composition is then generated as a weighted

average of the different group types after g periods. The number of individuals in the overall population

is then normalised back to 100, but preserving the new proportion of altruists q′. (This is done in

order to prevent the population from exploding to infinity, to aid the running of the simulations.)

Figures 3.7 through 3.11 overleaf illustrate the outcomes from the simulation over 500 generations,

with π = 0.075 and ε = 1
500 (time being measured along the x-axis), in the two models, with isolation

times of g = 3, g = 6, g = 52, g = 117 and g = 204 periods respectively.26 The black line illustrates

the simultaneous-move model and the grey line the sequential-move model. The top graph shows the

proportion of altruists, and the bottom graph shows the average value of the social welfare function.27

In figure 3.7, g = 3 is not high enough for altruism to survive in the long run in either model.

Since the sequential-move model results in a socially superior static outcome, social welfare can be

seen to be higher with the sequential move model (the grey line in the bottom diagram) than with the

simultaneous-move model (the black line in the bottom diagram).

25Recall that the simulations are smoothed, so there is no reason why the population size need be an integer
multiple of the group size.

26The simulations were written in Ox. Source code is provided in the appendix.
27Calculated as the expected felicity payoff for each individual, and normalized so that both individuals

choosing to inflict harm results in a felicity of 0.
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In figure 3.8, g = 6 is high enough for altruism to survive in the simultaneous move model, but

not the sequential-move model. Once sufficient time has elapsed for the proportion of altruists in the

population to become high enough, social welfare in the simultaneous model ends up higher than social

welfare in the sequential model.

Figure 3.9 shows a situation where g = 52 is in the range necessary for altruism to survive in

both types of model. However, the analytic result from Theorem 3.I still results in the proportion of

altruists oscillating around a lower average in the sequential model. This can be seen to lead to lower

average social welfare in the sequential model.

Figure 3.10 shows a situation where g = 117 is too high for altruism to survive in the sequential

model. It is still able to survive in the simultaneous model, where average social welfare is higher. In

figure 3.11, however, g = 204 is sufficiently high that although altruism still survives in the simultaneous

model, it oscillates so much that social welfare is actually higher on average in the sequential model.

Figures 3.12 and 3.13 show the average values of the proportion of altruists, q and the social welfare

function over 5000 generations for different values of g on the x-axis, given two different possible values

for π̂. The dashed grey line in the top diagram in each figure shows the initial proportion of altruists

q = 1
3 . The important features to note are, firstly, that there is a wider range where altruism survives in

the simultaneous model than in the sequential model and, secondly, that there is a range of values of g

where altruism survives in the simultaneous model and not in the sequential model, but average social

welfare is nonetheless higher in the sequential model. This shows that the normative consequences of

the weakening of group selection are ambiguous, despite the unambiguous result that it is harder for

altruism to evolve in the sequential model.

Figures 3.14 and 3.15 show, for two different values of ε, the region in (g, π) space where the

simultaneous model results in a higher average value of the social welfare function in black and the

region where the sequential model results in a higher average value in white. This shows most clearly

the result that the use of the social control mechanism of person 2’s ability to conditionally punish

person 1 is a mixed blessing. In some circumstances, in which the group selection mechanism would

have been too weak to operate, it will improve the social efficiency of the evolutionary outcome.

However, in other circumstances, where the group selection mechanism would have been strong enough

(corresponding to the black area of the diagram), the use of conditional punishment can weaken
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the group selection mechanism and thus, by reducing the number of altruists in the evolutionary

equilibrium, actually result in society being worse off than in the “anarchic” equilibrium, where

punishment is not used.

3.10 Conclusion

This paper has shown that the use of punishment is a “double-edged sword” for the evolution of

altruism in that it may help selfish types to do better evolutionarily, because they are more willing

to make use of opportunities to harm others at benefit to themselves. In the traditional literature on

altruistic punishment, altruistic punishers are modelled as a specific behavioural phenotype. This is

unsatisfactory from the viewpoint of economic theory because it begs the question of how different

available punishment technologies might interact with such evolved preferences. The indirect evolution

methodology provides a useful way to approach this question, because it allows a separation between

altruistic preferences and altruistic behaviour. The central message is that the ability of humans

to punish one another may weaken the selection pressure in favour of altruistic preferences, with

potentially negative dynamic welfare implications.
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Figure 3.7: 3 periods of isolation, π = 0.075
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Figure 3.8: 6 periods of isolation, π = 0.075
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Figure 3.9: 52 periods of isolation, π = 0.075
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Figure 3.10: 117 periods of isolation, π = 0.075
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Figure 3.11: 204 periods of isolation, π = 0.075
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Figure 3.12: Average level of altruism and social welfare, π = 0.075
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Figure 3.13: Average level of altruism and social welfare, π = 0.05
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g

π

Figure 3.14: Comparison of simultaneous-move and sequential-move game, ε = 1
500

g

π

Figure 3.15: Comparison of simultaneous-move and sequential-move game, ε = 1
100
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Appendix

This is the source code to generate figure 3.13:

#inc lude <oxstd . h>

#inc lude <oxdraw . h>

#inc lude <oxprob . h>

dec l f =2;

dec l p i =0.05;

de c l qs =1/3;

dec l g l =250;

dec l totgen =5000;

dec l n=6;

dec l m=100;

dec l e =1/500;

hypergeom (N, p , n , x )

{

re turn binomial (N∗p , x )∗ binomial (N∗(1−p ) , n−x )/ binomial (N, n ) ;

}

c l a s s Group

{

dec l n ;

de c l nh ;

dec l nq ;

dec l swf ;

Group ( ) ;

r e s e t (nn , nnh , nnq ) ;

nextgen ( ) ;

nextgenseq ( ) ;

NH( ) ;

N( ) ;

SWF( ) ;

}

Group : : Group ( )

{

}
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Group : : r e s e t (nn , nnh , nnq )

{

n=nn ;

nh=nnh ;

nq=nnq ;

}

Group : : nextgen ( )

{

dec l nn , nnh ;

nnh=nh∗( f −2/3∗(n−nh )/( n−1)) ;

nn=n∗ f−2/3∗nh∗(n−nh )/( n−1)+2/3∗(n−nh )∗ ( pi−(n−nh−1)/(n−1)) ;

swf=nn−f ∗n+n ;

dec l q=nnh/nn ;

q=(1−e )∗q+e∗(1−q ) ;

n=nn ;

nh=q∗nn ;

}

Group : : nextgenseq ( )

{

dec l nn , nnh ;

nnh=nh∗( f −2/3∗(n−nh )/( n−1)) ;

nn=n∗ f−2/3∗nh∗(n−nh )/( n−1)+1/3∗(n−nh )∗ ( p i ∗nh/(n−1)+pi−(n−nh−1)/(n−1)) ;

swf=nn−f ∗n+n ;

dec l q=nnh/nn ;

q=(1−e )∗q+e∗(1−q ) ;

n=nn ;

nh=q∗nn ;

}

Group : :NH( )

{

re turn nh∗nq ;

}

Group : : N( )

{
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re turn n∗nq ;

}

Group : :SWF( )

{

re turn swf∗nq ;

}

main ( )

{

SetDrawWindow( ” Simulat ion Output” ) ;

DrawAxis ( 0 , 0 , 0 , 0 , 1 , 0 . 1 , 0 . 1 , 0 . 0 1 , 0 ) ;

DrawAxis ( 1 , 0 , 0 , 0 , 1 , 0 . 1 , 0 . 1 , 0 . 0 1 , 0 ) ;

d e c l i ;

d e c l j ;

d e c l qa ;

de c l group=new array [ n+1] ;

d e c l gen ;

dec l mg;

f o r (mg=0;mg<n+1;mg++)

{

group [mg]=new Group ( ) ;

}

dec l g ;

d e c l q ;

d e c l NH;

dec l N;

dec l gb ;

dec l o ldx ;

dec l o ldy ;

dec l oldSWFx ;

dec l oldSWFy ;

dec l tSWF;

dec l pass ;

d e c l oldN ;

dec l SWF;

oldx =0;

oldy =0;
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oldSWFx=0;

oldSWFy=0;

f o r ( j =1; j<g l +1; j++)

{

gb=j ;

q=qs ;

qa=0;

tSWF=0;

f o r ( gen=0;gen∗gb<totgen ; gen++)

{

N=m∗n ;

f o r (mg=0;mg<n+1;mg++)

{

group [mg ] . r e s e t (n ,mg,N/n∗hypergeom (N, q , n ,mg ) ) ;

}

f o r ( g=0;g<gb ; g++)

{

oldN=N;

N=0;

NH=0;

SWF=0;

f o r (mg=0;mg<n+1;mg++)

{

group [mg ] . nextgen ( ) ;

N=N+group [mg ] . N( ) ;

NH=NH+group [mg ] .NH( ) ;

SWF=SWF+group [mg ] .SWF( ) ;

}

SWF=SWF/oldN ;

tSWF=tSWF+SWF;

q=NH/N;

qa=qa+q ;

}

}

qa=qa /( gen∗gb+g ) ;

tSWF=tSWF/( gen∗gb+g ) ;

i f ( o ldx==0&&oldy==0) { oldx=j ; oldy=qa ;}

DrawLine (0 , oldx , oldy , j , qa , 1 ) ;

o ldx=j ;
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oldy=qa ;

i f (oldSWFx==0&&oldSWFy==0)

{oldSWFx=j ; oldSWFy=tSWF; DrawLine (1 , oldSWFx , oldSWFy , j , tSWF, 1 ) ; }

e l s e

{DrawLine (1 , oldSWFx , oldSWFy , j , tSWF, 1 ) ; oldSWFx=j ; oldSWFy=tSWF;}

}

oldx =0;

oldy =0;

oldSWFx=0;

oldSWFy=0;

f o r ( j =1; j<g l +1; j=j +1)

{

gb=j ;

q=qs ;

qa=0;

tSWF=0;

f o r ( gen=0;gen∗gb<totgen ; gen++)

{

N=m∗n ;

f o r (mg=0;mg<n+1;mg++)

{

group [mg ] . r e s e t (n ,mg,N/n∗hypergeom (N, q , n ,mg ) ) ;

}

f o r ( g=0;g<gb ; g++)

{

oldN=N;

N=0;

NH=0;

SWF=0;

f o r ( mg=0;mg<n+1;mg++)

{

group [mg ] . nextgenseq ( ) ;

N=N+group [mg ] . N( ) ;

NH=NH+group [mg ] .NH( ) ;

SWF=SWF+group [mg ] .SWF( ) ;

}

SWF=SWF/oldN ;

tSWF=tSWF+SWF;

q=NH/N;
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qa=qa+q ;

}

}

qa=qa /( gen∗gb+g ) ;

tSWF=tSWF/( gen∗gb+g ) ;

i f ( o ldx==0&&oldy==0) { oldx=j ; oldy=qa ;}

DrawLine (0 , oldx , oldy , j , qa , 1 4 ) ;

o ldx=j ;

o ldy=qa ;

i f (oldSWFx==0&&oldSWFy==0)

{oldSWFx=j ; oldSWFy=tSWF; DrawLine (1 , oldSWFx , oldSWFy , j , tSWF, 1 4 ) ; }

e l s e

{DrawLine (1 , oldSWFx , oldSWFy , j , tSWF, 1 4 ) ; oldSWFx=j ; oldSWFy=tSWF;}

}

DrawLine (0 , 1 , qs , gl , qs , 1 0 ) ;

DrawText (0 , ” Per iods o f I s o l a t i o n ” , 0 , 0 , −1, −1, TEXT XLABEL) ;

DrawText (0 , ”Average Proport ion o f A l t r u i s t s ” , 0 , 0 , −1, −1, TEXT YLABEL) ;

DrawText (1 , ” Per iods o f I s o l a t i o n ” , 0 , 0 , −1, −1, TEXT XLABEL) ;

DrawText (1 , ”Average S o c i a l Welfare ” , 0 , 0 , −1, −1, TEXT YLABEL) ;

ShowDrawWindow ( ) ;

}
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Conclusion

This thesis has explored the interaction between altruistic preferences and punishment systems

using a new model, the sequential punishment model. This has similarities to existing infinite horizon

sequential games such as those analysed by Samuelson (Samuelson, 1958) and Hammond (Hammond,

1975). The intended style of model is to encapsulate something general about the world in a simple

and abstract manner, in the idiom of Samuelson’s overlapping-generations pension game (Samuelson,

1958) or Diamond’s model of fiat money in a “coconut swapping” economy (Diamond, 1984).

The structure of the model in is straightforward. A series of individuals receive sequential

opportunities to inflict harm upon others. They can choose either to harm themselves, another

individual, or to refrain from inflicting harm. If they choose to inflict harm, they impose a cost

of one unit of felicity upon the individual they harm, but receive a felicity benefit πt whose value is

randomly generated from the same distribution each period, but known to all individuals before each

player makes their move. Each period, a new distinct individual receives a harm opportunity, so that

each individual only moves once during the entire game. Individuals are indifferent as to whom they

harm, and so the ability to focus harm onto the most recent defector allows punishment strategies

to be specified in a fairly economical manner. Although the model is simple, fully analysing all of

the possible subgame-perfect Nash equilibria in the infinite-move version of the sequential punishment

game is nonetheless an involved process, requiring the use of Abreu’s framework of optimal punishment

paths, originally developed for infinitely-repeated simultaneous stage games (Abreu, 1988).

The sequential punishment model is intended to capture the fundamentally vicarious nature of

human social existence, in the sense that social interactions consist of repeated opportunities to impose

negative externalities upon other individuals, with a gain to onesself. In this sense it is meant to

analyse the emergence of incentive systems (of which the market is of course the most common, but

by no means the only, example studied by economists), rather than assuming that they are already
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in place. The second key feature of the sequential punishment model is that defectors from socially

agreed equilibria can be punished for their misbehaviour. Finally, the presence of bona fide altruistic

preferences is central to the model. Altruism and punishment systems therefore provide substitute

methods of achieving a more socially efficient outcome.

The fundamental argument of the thesis is that these substitute methods can interfere with one

another in a perverse manner. Once punishment can be used, it is no longer the case that more altruism

is always better for society. This was the argument in “The Socially Optimal Level of Altruism”

(Chapter 2). In particular, when altruism becomes close to perfect in the infinite-move sequential

punishment game, then socially efficient equilibria which are supportable at lower levels of altruism

are rendered unsupportable. This result was proved for a fixed cost, and for a general continuous

random distribution of the benefit, provided that the benefit and cost of punishment opportunities are

always positive, and that the benefit from punishment is always less than the cost (i.e. 0 ≤ π̂ < πt ≤ 1).

The intuition for this result can best be seen using the framework of willingness, severity and

temptation effects. With greater altruism, individuals are less willing to punish, a given punishment

becomes less severe and individuals are less tempted to misbehave. With perfect altruism (where the

coefficient of altruism θ = 1), there is no temptation to misbehave at all. However, there is also no

credible threat of punishment, because threatening to “focus” the harm inflicted by other individuals

onto a fully altruistic defector does not affect their social utility. Since punishment is ineffective as

a deterrent, and fully altruistic individuals will also not want to inflict harm, no punishment will

be possible. Therefore, if the coefficient of altruism θ is reduced slightly below 1, the temptation

effect (leading to greater temptation to defect and therefore making it more difficult to support an

efficient outcome) will dominate. Thus, high θ but less than 1 will destroy equilibria which were

available at θ = 1. If the discount factor δ is sufficiently high, however, then further reductions in θ

bring the willingness and severity effects into play, both of which can lead to an efficient equilibrium

becoming supportable once again. Therefore the analysis of the sequential punishment model allows

us to conclude that intermediate levels of altruism are the most socially desirable.

One loose end that has not been fully tied down is whether optimal paths are always quasi-flat.

Ideally, one would like to be able to prove this. However, the result that the optimal semi-constrained

path must be quasi-flat was sufficient for proving the main result of the paper, that too much altruism
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will prevent the socially efficient outcome. It would also be interesting in future to analyse the case

where individuals can be martyrs, with θ ≥ 1.

Although the willingness, severity and temptation effects had a very specific application in

analysing the equilibria of the sequential punishment model, they should also have important broader

applications. They would be highly relevant to other areas of economics such as optimal taxation

theory, the application of economic theory to law and criminology and to further modelling of optimal

moral codes in different and extended contexts (see concluding paragraph below). In particular, the

severity effect will emerge when any system of fines in used to punish offenders, provided some or all

of the revenue is redistributed. The argument from the sequential punishment model that altruism

“dents” incentive schemes should thus have wide implications.

A related, but distinct, result - that the use of punishment systems weakens the evolution of

altruistic preferences via the group selection mechanism, with ambiguous normative consequences -

was presented in “Punishment and the Potency of Group Selection” (Chapter 3). This was proved

for a simplified 3-player, 2-move version of the sequential punishment model. The result is general in

the sense that it applies for any kind of dispersal mechanism, not just the “haystacks” model used for

illustrative purposes. It is very specific, on the other hand, in that the result is limited to the very

specific game utilised. One feels that more general results should be available in this area.

Finally, the most serious limitation of the sequential punishment model given the purpose for which

it was developed (the normative analysis of altruistic preferences) is its reliance on the assumption of

perfect information. One feels that another important explanation for why imperfect altruism might

be optimal is the issue of asymmetric information - individuals do not know enough about the world to

allow a perfect utilitarian moral code to be workable. Since individuals know more about themselves

and others in their immediate vicinity, it might be optimal for them to weight the welfare of such

proximate agents more heavily than those who are more remote. A model which is able to capture this

insight, either as an extension, or in parallel, to the sequential punishment model, would be a desirable

avenue for further research. A key component of such a model would need to be the use of government

sanctions (e.g. fines) to punish certain actions prohibited by the authorities to such partially altruistic

individuals. The analytic framework of willingness, severity and temptation effects developed in this

thesis will therefore continue to be highly relevant.
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Allocations: A General Characterization and Empirical Tests”. Econometrica, 66(6), 1241–

1278.

Bruce, Neil and Waldman, Michael (1990). “The Rotten-Kid Theorem Meets the

Samaritan’s Dilemma”. The Quarterly Journal of Economics, 105(1), 155–165.

Calmfors, Lars and Driffill, John (1988). “Bargaining Structure, Corporatism and

Macroeconomic Performance”. Economic Policy, 6, 13–61.

Camerer, Colin and Thaler, Richard H. (1995). “Anomalies: Ultimatums, Dictators

and Manners”. The Journal of Economic Perspectives, 9(2), 209–219.

Case, Anne and Lin, I. Fen and McLanahan, Sara (1999). “Household Resource

Allocation in Stepfamilies: Darwin Reflects on the Plight of Cinderella”. The American

Economic Review, 89(2), 234–238.
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