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For later reference here are the axioms again:

Definition

All instances of the following schemas are axioms of E:

a1 a ⌢ b = ab, where a and b are arbitrary strings of symbols
a2 q(a) = a
a3 sub(a, b, c) = d, where a and c are arbitrary strings of symbols, b is

a symbol (or, equivalently, a length-1 string of symbols), and d is the
string of symbols obtained from a by replacing all occurrences of
the symbol b with c

a4 ∀x∀y∀z ((x⌢ y)⌢ z) = (x ⌢ (y⌢ z))

a5 ∀x∀y(x⌢ y = 0 → x= 0 ∧ y= 0)
a6 ∀x∀y(x⌢ y = x ↔ y= 0) ∧ ∀x∀y(y⌢ x = x ↔ y= 0)
a7 ∀x∀y sub(x⌢ a, a, y) = sub(x, a, y) ⌢ y, where a is a symbol
a8 ∀x∀y∀z∀w

(x⌢y = z⌢w ↔ ∃v4((x = z
⌢v4 ∧ v4

⌢y = w) ∨ (x⌢v4 = z ∧ y = v4
⌢w)))



The liar and other simple paradoxes



The theory E can contain more axioms beyond those explicitly stated.

Thus the following two claims are equivalent:

(i) φ is inconsistent with E.
(ii) E is inconsistent if it contains φ.

Instead of saying ‘φ is inconsistent with E’ I will often only say ‘φ is
inconsistent’.

I do not assume that E is consistent. It is consistent with the stated
axioms.



the liar

Theorem (liar paradox)

The T-schema ◻ψ↔ψ for all sentences ψ of L is inconsistent.

Proof: Apply the diagonal lemma to ¬◻v.



Tarski ’s theorem

Theorem (tarski ’s theorem on the undefinability of
truth)

If E is consistent, there is no formula τ(x) such that τ(ψ)↔ψ can be
derived in E for all sentences ψ of L.

However, we can axiomatically add a new truth predicate.



McGee ’s theorem

McGee (1992) proved:

Theorem (mcgee ’s theorem on t-sentences)

Assume E ⊬ ¬φ. Then there is a sentence γ such that E + (◻γ↔γ) is
consistent and E + (◻γ↔γ) ⊢ φ.

Proof: Apply the diagonal lemma to ◻v↔φ.

This is a variant of Curry’s paradox (Curry 1942). McGee used it against
a ‘solution’ of the truth-theoretic paradoxes in (Horwich 1998).



montague ’s paradox

Theorem (montague ’s paradox , montague 1963)
The schema ◻φ → φ is inconsistent with the rule

(NEC)
φ
◻φ

for all sentences φ.

Which modal notions are affected?
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gödel

Theorem (gödel ’s first incompleteness theorem)

Suppose for all sentences φ of L that E ⊢φ iff E ⊢ ◻φ. Then there is a
sentence γ such that neither γ itself nor its negation is derivable in E, or
E is inconsistent.

This is just extracted from (Gödel 1931).



postcard paradox

Theorem

E is inconsistent if it contains the schema ◻◻φ↔φ.

Proof.
For any for all sentences φ of L and indeed any expression φwe have
the following:

E ⊢ ◻ ⌢q(φ) = ◻⌢φ axiom a2

E ⊢ ◻ ⌢q(φ) = ◻φ axiom a1

The diagonal lemma is applied to the formula ¬◻(◻ ⌢q(v)):

E ⊢ γ↔ ¬◻(◻ ⌢q(γ))

E ⊢ γ↔ ¬◻◻γ remark above

E ⊢ γ↔¬γ assumption



(K) ◻φ→ψ → (◻φ→ ◻ψ).

For our abbreviation of ∧ we have:

Lemma

E ⊢ ◻φ∧ψ ↔ ◻φ∧◻ψ, if E contains K and is closed under NEC.



A theory T is internally inconsistent (with respect to ◻) if and only if
T ⊢◻φ and T ⊢◻¬φ for some sentence φ.

Lemma

Assume E is closed under NEC. Then every internally inconsistent
theory containing E and K proves ◻ψ for all sentences ψ.



4

is the schema ◻φ → ◻◻φ.

This is similar to (Thomason 1980):

Theorem (thomason 1980)

Assume E is closed under NEC. Then any theory T containing E and the
schemas K, 4, and ◻◻φ→φ is internally inconsistent and proves ◻ψ for
all L-sentences ψ.



Read themodal predicate as ‘S knows x’.



Proof:

Roughly speaking, we run the proof ofMontague’s paradox in the scope
of ◻. Assume that E andT have the properties mentioned in the
theorem.

E ⊢ γ↔¬◻γ liar sentence

E ⊢ ◻◻γ→¬γ logic and NEC

E ⊢ (◻γ→ γ)→ ((◻γ→¬γ)→ ¬◻γ) logic

E ⊢ (◻γ→ γ)→ ((◻γ→¬γ)→ γ) first line

E ⊢ ◻◻γ→ γ → (◻◻γ→¬γ → ◻γ) NEC and K

T ⊢ (◻◻γ→¬γ → ◻γ) ◻◻φ→φ

T ⊢ ◻γ second line



Now we invoke 4 to conclude T ⊢◻◻γ from T ⊢◻γ. From the first line
above we also get E ⊢ ◻γ→◻¬◻γ by NEC and K. Combining this with
the last line, we obtain the following internal inconsistency:

T ⊢ ◻¬◻γ∧ ◻◻γ.

Since E and T satisfy the conditions of 9, we have T ⊢◻ψ for all
sentences ψ.



löb

Theorem (löb ’s theorem)

If E is closed under NEC and contains K and 4, then we have
E ⊢ ◻◻φ→φ→ ◻φ for all sentences φ of L.

Then there is themysterium of the de Jongh–Sambin fixed-point
theorem.
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löb

Corollary

Assume that E is closed under NEC and contains K and 4. Then for
any φ of L the following rule of inference holds: If E ⊢ ◻φ→φ, then
E ⊢φ.

Proof.
Assume E ⊢ ◻φ→φ and reason as follows:

E ⊢ ◻φ→φ assumption

E ⊢ ◻◻φ→φ NEC

E ⊢ ◻φ theorem above

E ⊢ φ assumption in first line



g2

Theorem (gödel ’s second incompleteness theorem)

Assume that E is closed under NEC and contains K and 4. Then
E⊢¬◻� implies that E is inconsistent.



Paradoxes from Interaction



Assume Tr is also a primitive unary predicate in the language.

Theorem

Assume E satisfies the following three conditions:

(i) If ψ is a sentence of L not containing Tr, then E containsTrψ↔ψ.
(ii) If ψ is a sentence of L not containing ◻, then E contains ◻ψ→ψ.
(iii) If ψ is a sentence of L not containing ◻ with E ⊢ ψ, then also E ⊢ ◻ψ

holds.

Then E is inconsistent.



Proof.

We apply the diagonal lemma to the formula ¬Tr(◻ ⌢q(x)) and
reason as follows:

E ⊢ γ↔ ¬Tr(◻ ⌢q(γ)) diagonal lemma

E ⊢ γ↔ ¬Tr◻γ axioms a1 and a2; cf. proof of 7

E ⊢ Tr◻γ → ¬γ logic

E ⊢ ◻γ → ¬γ (i)

E ⊢ ◻γ → γ (ii)

E ⊢ ¬◻γ two preceding lines

E ⊢ ¬Tr◻γ (i)

E ⊢ γ second line

E ⊢ ◻γ (iii)

The last line and the fourth line from the bottom establish the
claim.



gettier

Here is another application, which is not an inconsistency. See (Halbach
andHorsten 2025). We assume that we have a predicate K for
knowledge and a predicate JB for justified belief.

The knower sentence is a sentence γ with E ⊢ γ↔ ¬Kγ.



gettier

jtb conception of knowledge
The following assumptions are jointly inconsistent:
schematic definition of knowledge: Kφ↔ (JBφ ∧ φ)
factivity of knowledge: Kφ → φ
Crucial assumption: From a proof of φ conclude JBφ

Kγ → γ factivity

Kγ → ¬γ knower

¬Kγ two preceding lines(1)

γ knower(2)

JBγ crucial assumption(3)

JBγ ∧ γ from (2) and (3)

Kγ def. of knowledge(4)
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no future

Gx is ‘x will always be the case’, while Hx is ‘x has always been the case’.
Defined: Fx is ‘x will be the case at some point (in the future)’, and Px,
stands for ‘x has been the case at some point (in the past)’.

(g1) Gφ→ψ → (Gφ→Gψ),

(h1) Hφ→ψ → (Hφ→Hψ),1

(g2) φ→HFφ,

(h2) φ→GPφ,

(g3) Gφ↔ ¬F¬φ,

(h3) Hφ↔ ¬P¬φ,

(n)
φ
Gφ

and
φ
Hφ

for all sentences φ.

1In the original paper (Horsten and Leitgeb 2001, p. 260), there is a typo in the
formulation of this axiom: the occurrence of G there should be an H, too.



no future

Theorem (no future paradox , horsten and leitgeb 2001)
If E contains g1, h1, g2, h2, g3, and h3 and is closed under n, we have
E ⊢H�∧G�.



Proof.

I shall only prove that there is no future, that is, E⊢G�. The first line
is obtained as in the proof of 14:

E ⊢ γ↔GP¬γ(5)

E ⊢ ¬γ↔ ¬GP¬γ

E ⊢ ¬γ→GP¬γ h2

E ⊢ γ preceding two lines(6)

E ⊢ GP¬γ from (5) and previous line(7)

E ⊢ Hγ n and (6)

E ⊢ ¬P¬γ h3

E ⊢ G¬P¬γ n(8)

E ⊢ G� (7), (8), and g1(9)

The last line follows because, by n, we have Gφ→ (¬φ→�) for all φ
and in particular for P¬γ.



Yablo andVisser



Kripke (1975) metioned something about illfounded hierarchies, but
said later in (2019) that this was not about the Yablo–Visser paradox.
Visser (1989) and Yablo (1985, 1993) presented similar paradoxes. See
also (Cook 2014).

Some authors argued that these are paradoxes without self-reference.
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Visser & Yablo

Yablo (1993) presented his paradox as an infinitely descending list of
sentences.

Visser (1989) presented his paradox in amore formal way,
but it is Yablo’s paradox with typed truth predicates:

for all k > 1, Sk is untrue

1

.(S1)

for all k > 2, Sk is untrue

2

.(S2)

for all k > 3, Sk is untrue

3

.(S3)

for all k > 4, Sk is untrue

4

.(S4)

⋮
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The use of infinite lists is dodgy.

The paradoxes can be formulated in syntax theory.

Before we can formulate the paradoxes, I need to explain how we can
quantify into quotations.

I will present the paradox with very weak assumptions.
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quantifying-in

Assume ◻ is read as ‘necessary’ and we want to say that every expression
is necessarily identical with itself, that is, we want to say that for all
expressions e the sentence e= e is necessary. We cannot do this by
writing ∀x◻x= x, but we can formulate our claim in the following way:

For all expressions e: if we replace in the formula x = x every
occurrence of x by the quotation constant for e, then the resulting
sentence is necessary.
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This can be expressed in L using the following formula:

∀x◻sub(x= x, x, q(x)).

From this we can derive, for instance, ◻¬=¬ in E in the following way:

∀x◻sub(x= x, x, q(x)) assumption

◻sub(x= x, x, q(¬)) logic

◻sub(x= x, x, ¬) a2

◻¬=¬ a3



Assume φ(y) is a formula with no bound occurrences of the variable y,
then

φ(x. ) abbreviates sub(φ(y), y, q(x)).

In arithmetic the dot is placed above the variable; but we have already a
bar there.

Of course, we can still generalize this and stipulate that only free
occurrences of y are replaced; but we don’t need this.



The proof of the diagonal lemma yields the following:

diagonal lemma with free variables

If φ(x, y) is a formula of L with no bound occurrences of x, then one
can find a formula θ(y) such that the following holds:

E ⊢ ∀y(θ(y)↔ φ(θ(y), y)).

We want a dot under the overlined y.



uniform diagonal lemma, parametrized diagonal lemma

Let φ(x, y) be a formula with the two free variables x and y that does
not contain a bound occurrence of y. Then there is a formula θ(y)
such that

E ⊢ ∀y(θ(y)↔ φ(θ(y.), y)).

Proof.
By applying the diagonal lemma above to the formula

φ(sub(x, y, q(y)), y),

I obtain a formula θ(y) such that the following holds:

E ⊢ ∀y(θ(y) ↔ φ(sub(θ(y), y, q(y)), y)).

This is the claim, since θ(y.) is defined as sub(θ(y), y, q(y)).



yablo ’s paradox

I prove Yablo’s paradox with weak assumptions.

The informal proof is based on an infinitely descending list of sentences
with a top element. But much less is needed, as Ketland (2005) has
shown.

I assume that the language L contains a binary predicate symbol ≺ that
satisfies the following conditions:

∀x∃y x≺y,(ser)

∀x∀y∀z (x≺y → (y≺z → x≺z)).(trans)

That’s an order of the entire universe. We don’t need it; but I don’t want
to relativize the quantifiers. We don’t need a primitive symbol for this.
You can think of ≺ as a defined formula that satisfies these conditions.

Using a primitive symbol shows that nothing beyond ser and trans is
needed in addition to . . .



Of course, we need also a truth-theoretic assumption:

(uts) ∀y(◻φ(y.)↔ φ(y)).



Theorem (yablo ’s paradox)

Assume that E contains all the following sentences:

∀x∃y x≺y,(ser)

∀x∀y∀z(x≺y → (y≺z→ x≺z)),(trans)

∀y(◻φ(y.)↔ φ(y)).(uts)

Then E is inconsistent.

I understand the disappointment: uts is obviously inconsistent.

Bear with me. . .

The point is the proof.
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Proof.
I apply the diagonal lemma with a free variable to the formula

∀z≻y ¬◻sub(v, y, q(z)),

which has exactly x and y as free variables. This yields a formula θ(y)
with the following property:

E ⊢ ∀y (θ(y) ↔ ∀z≻y ¬◻sub(θ(y), y, q(z))).

That is

(10) E ⊢ ∀y(θ(y) ↔ ∀z≻y ¬◻θ(z.)).

The sentences θ(e) for arbitrary expressions e correspond to the
Yablo sentences. Priest (1997) defined theYablo sentences in this way
in arithmetic, afterVisser (1989) had used a similar method to obtain
his paradox. The contradiction can now be derived in the following
way in E:



proof continued

E ⊢ ∀y(◻θ(y.) ↔ θ(y)) uts

↔ ∀z≻y ¬◻θ(z.) (10)

→ ∃z≻y ¬◻θ(z.) ser

→ ∃z≻y ∀w≻z ¬◻θ(w. ) second line and trans

→ ∃z≻y θ(z) (10)

→ ∃z≻y ◻θ(z.) uts

From the second and last lines we get ∀y¬◻θ(y.).

E ⊢ ∀y¬θ(y) uts

E ⊢ ∀y∃z≻y ◻θ(z.) (10)

The last line contradicts the previously derived ∀y¬◻θ(y.).



visser’s paradox

uts is inconsistent by itself because of the liar paradox, but the same
proof strategy can be used to prove that the following typed schema is
sufficient.

(vuts) ∀y(◻yφ(y.)↔ φ(y)),

where all terms occurring in index position in φ(y) are variables x1, x2,
. . . , xk distinct from y (but not complex terms or constants) and all
quantifiers ∀x1, ∀x2, . . . , ∀xk in φ(y) are restricted by xi≻y, respectively.

See the book for a proof. This schema is consistent by itself.
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paradox and inconsistency

I get proper inconsistencies, not just ω-inconsistencies, because I
quantify over indicies.

There are other versions of these paradoxes. Some aremere
ω-inconsistencies.



methodology



What do these results tell us?

(i) We cannot have a predicate with thementioned properties. We
cannot combine predicates with certain mixed axioms.

(ii) We cannot define a predicate with certain properties, but could
add a typed predicate axiomatically.

(iii) There is some complexity or definability hierarchies hidden.
(iv) There aremore limitative results than just plain inconsistencies:

internal inconsistencies, trivialities (e.g. predicates cannot apply to
anything), ω-inconsistencies, and ‘unintended’ consequences of
various kinds.
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The paradoxes that are not just plain inconsistencies teach us a lesson
about alleged solutions:

Amere consistency proof doesn’t tell us that there is no paradox.

The proposed strategymay still exclude the standardmodel,make the
notion trivial, or generate off consequences.
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What can go wrong?

outright inconsistency
ω-inconsistency or no ω-model
triviality: Themodality applies to all (or no) sentence.
unacceptable consequences: The theory implies a contingent truth
or decides a question it should not decide.
and there thousand ways things can go wrong.
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McGee’s ω-inconsistency



For the paradox I require amodicum of arithmetic.

We use strings xxx . . . as natural numbers and call expressions xxx . . .
numerals; they act as constants for numbers. Moreover, n, the numeral
of n, stands for

x . . . x
´¹¸¹¹¶

n

.

For instance, 4, that is, xxxx, is the numeral for 4.



Definition

Nat(x) is defined as sub(x, x, 0) = 0.

Lemma

E ⊢Nat(n) for all natural numbers n.



Definition

Nat(x) is defined as sub(x, x, 0) = 0.

Lemma

E ⊢Nat(n) for all natural numbers n.



I write ∀n φ(n) for ∀x(Nat(x)→φ(x)), for any variable x, and
similarly ∃n φ(n) for ∃x(Nat(x) ∧ φ(x)). This abbreviation is used in
conjunction with the underdotting convention as in∀k φ(k. ), which is
short for

∀x (Nat(x)→ sub(qx, x , φ(x))),

where x is a variable with no bound occurrences in φ.



Lemma
Assume n , k , n+k , and n ⋅k are numerals for n, k, n+k, and n ⋅k,
respectively. Then the following holds:

(i) E ⊢ n⌢k = n+k ,
(ii) E ⊢ sub(k, x, n) = n ⋅k.

In particular we have E ⊢ n⌢1 = n+1.



We expect that every number except 0 has a unique predecessor.
However, this relies on the linearity of expressions, which is expressed
by axiom a8.

Lemma

E ⊢ ∀n∀k (n⌢1 = k⌢1 → n = k).



Definition

E is ω-inconsistent if and only if there is a formula φ(x) with the
following properties:

(i) E ⊢ φ(k) for all natural numbers k,
(ii) E ⊢ ¬∀n φ(n).



Lemma

E ⊢ ∀x (Nat(x)→ Nat(x⌢1)).

Lemma

The theory E proves∀n φ(n)→ ∀n φ(n⌢ 1) for all formulæ φ(x) of L.



The sentence (S) says that at least one of the following sentences is not
true:

(S)

(S) is true.

‘(S) is true’ is true.

‘ “(S) is true” is true’ is true.

⋮

McGee’s ω-inconsistency theorem can be obtained by formalizing (S).



Here is the theorem from (McGee 1985):

Theorem (mcgee ’s ω-inconsistency theorem)

Assume that E is closed under the rule in (i) and contains the
formula (v) and the schemas (ii)–(iv) for all sentences φ and ψ and all
formulæ χ(x) having at most x free.

(i) NEC,
(ii) ◻φ→ψ → (◻φ→ ◻ψ),
(iii) ◻¬φ → ¬◻φ,
(iv) ∀x ◻χ(x.) → ◻∀x χ(x),
(v) ∀n(n=0 ∨ ∃k n=k⌢1) ∧ ¬∃k 0=k⌢1.

Then E is ω-inconsistent.

I only sketch a proof.
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