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An expressively strong syntax theory



The syntax theory E is weak (in a way I am going to explain).

This allowedme to prove stronger results about paradoxes.

Now we change perspective: I will formulate theories of truth and prove
their consistency.
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Definition

All instances of the following schemas are axioms of E:

a1 a ⌢ b = ab, where a and b are arbitrary strings of symbols
a2 q(a) = a
a3 sub(a, b, c) = d, where a and c are arbitrary strings of symbols, b is

a symbol (or, equivalently, a length-1 string of symbols), and d is the
string of symbols obtained from a by replacing all occurrences of
the symbol b with c

a4 ∀x∀y∀z ((x⌢ y)⌢ z) = (x ⌢ (y⌢ z))
a5 ∀x∀y(x⌢ y = 0 → x= 0 ∧ y= 0)
a6 ∀x∀y(x⌢ y = x ↔ y= 0) ∧ ∀x∀y(y⌢ x = x ↔ y= 0)
a7 ∀x∀y sub(x⌢ a, a, y) = sub(x, a, y) ⌢ y, where a is a symbol
a8 ∀x∀y∀z∀w
(x⌢y = z⌢w ↔ ∃v4((x = z⌢v4 ∧ v4

⌢y = w) ∨ (x⌢v4 = z ∧ y = v4⌢w)))



The problem with E is that, e.g., in a1
a ⌢ b = ab, where a and b are arbitrary strings of symbols

we have an axiom for each pair of expressions a and b. From a1 we can
prove

(a ⌢ b) ⌢ c = a ⌢ (b ⌢ c);

but we cannot prove a4:

∀x∀y∀z ((x⌢ y)⌢ z) = (x ⌢ (y⌢ z))

We cannot deal with all quotation constants in one proof.



The solution is to replace quotation constants with ‘more structural’
designators for expressions.

This is actually in keeping with our actual practice.



A first preliminary stabmay look as follows:

Definition

The symbols of L−are:

(i) all variable symbols of L,
(ii) all connectives, quantifiers, and auxiliary symbols of L,
(iii) all function and predicate symbols of L and all constants that are

not quotation constants,
(iv) the quotation constant u for each symbol u in clause (i), (ii),

and (iii),
(v) the quotation constant 0.

The symbols in the first three clauses are called the basic symbols of
L−. The remaining symbols, from clauses (iv) and (v), are called
syntactic constants. An L−-expression is a finite string of L−-symbols.

This language has still infinitelymany quotation constants because of
the constants for the variables.



In real life the variables are generated from a finite alphabet using
Arabic numerals.

We don’t want to include Arabic numerals into our syntax theory.
Instead we do the following:

Definition

A variable is an expression (v⋯ v) where v⋯ v is a string consisting
of the symbol v only. The variable containing exactly k-many
occurrences of v is written as vk :

vk ∶= (v⋯ v
´¸¶

k

).

So we have only the single additional symbol v; we get rid of all the
infinitelymany variables.

Have we broken our promise not to employ any coding?



In real life the variables are generated from a finite alphabet using
Arabic numerals.

We don’t want to include Arabic numerals into our syntax theory.
Instead we do the following:

Definition

A variable is an expression (v⋯ v) where v⋯ v is a string consisting
of the symbol v only. The variable containing exactly k-many
occurrences of v is written as vk :

vk ∶= (v⋯ v
´¸¶

k

).

So we have only the single additional symbol v; we get rid of all the
infinitelymany variables.

Have we broken our promise not to employ any coding?



In real life the variables are generated from a finite alphabet using
Arabic numerals.

We don’t want to include Arabic numerals into our syntax theory.
Instead we do the following:

Definition

A variable is an expression (v⋯ v) where v⋯ v is a string consisting
of the symbol v only. The variable containing exactly k-many
occurrences of v is written as vk :

vk ∶= (v⋯ v
´¸¶

k

).

So we have only the single additional symbol v; we get rid of all the
infinitelymany variables.

Have we broken our promise not to employ any coding?



Variables are now complex expressions.

When we substitute variables, we replace complex expression (unlike
in E).

This causes additional problems and was the reason for the simplistic
approach in E.
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Definition

The symbols of L∗ are the following:

Basic symbols

(i) predicate symbols: sym (unary) and = (binary),
(ii) function symbols: q (unary), ⌢ (binary), sub (ternary),
(iii) connectives ¬,→, and the quantifier symbol∀,
(iv) auxiliary symbols: parentheses ( and ) and symbols v and e,
(v) possibly finitelymany other function, relation, and auxiliary

symbols.

Syntactic symbols

(i) a constant 0
(ii) a constant u for each basic symbol u

There are only finitelymany basic symbols and thus only finitelymany
symbols overall.



Generally, we like to keep the language open-ended. It’s a little daft to
have a predicate for truth or necessity, and then to have no vocabulary
beyond the syntactic.

It would also be good to allow for objects beyond the syntactic. It’s not a
big problem, but requires some extra care: sorted or restricted
quantifiers, and stipulation what happens when function symbols are
applied to apples and chairs.



Definition

The L∗-terms are defined as follows.

(i) All variables are terms.
(ii) If t1, . . . , tn are terms and f is a function symbol of arity n, then

f t1⋯tn is a term.

A term is closed if and only if it contains no variables. A subterm of a
term t is any term which is a subexpression of t.

Thus we have prefix notation: ⌢ab instead of (a ⌢ b)



Definition

The L∗-formulæ are defined as follows.

(i) If t1, . . . , tn are terms and P is a predicate symbol of arity n, then
Pt1⋯tn is an atomic formula.

(ii) If φ is a formula and x is a variable, then∀x φ is a formula.
(iii) If φ and ψ are formulæ, so are ¬φ and (φ→ψ).

Prefix notation also applies to predicate symbols: = st instead of s = t.



We can prove various unique readability lemmata.



Definition

The quotation of a ∗-expression e is the L∗-term e defined as follows.

(i) If e is the empty string, e is the expression 0.
(ii) If e is a basic symbol, e is the syntactic constant e .
(iii) If e is a syntactic constant, e is the term qe.
(iv) If e ≡ fu is an expression of length at least 2 and u is a ∗-symbol,

e is the term ⌢ f u.

This is the same idea as for L− .



Definition

The pure terms are the terms of L∗generated by the following clauses.

(i) q0 is a pure term.
(ii) u and qu are pure terms if u is a basic symbol.
(iii) if r is any pure term and s is a pure term of type (i) or (ii), then

⌢rs is a pure term.

Lemma

The pure terms are exactly the quotations of non-empty ∗-expressions.



Definition

Sing(x) ≡ x /= 0 ∧ ∀w∀z(x=w⌢z → w= x ∨ z= x).

An expression e for which Sing(e) holds is called a singleton. From the
basic axioms of E∗we can deduce that every ∗-symbol is a singleton and
that every singleton is either a basic symbol or a syntactic constant. The
unary predicate symbol sym serves to demarcate the basic symbols
from the syntactic symbols. As there are only finitelymany ∗-symbols,
the formula symx could be defined as a disjunction of equations x=u
where u ranges over the basic symbols of L∗.



The following are all axioms of E∗. Theminimal theoryE∗min of L∗
comprises these axioms only.

Axioms for symbols

b1 symu for each basic ∗-symbol u
b2 ∀x(symx→ Sing(x)),
b3 ∀x(x= 0 ∨ symx → Sing(qx))
b4 ∀x(Sing(x) → symx ∨ x=q0 ∨ ∃y(symy ∧ x=qy))
b5 ∀x ¬sym(qx),
b6 for each pair of distinct basic symbols u and v the sentence u /= v

Axioms for concatenation

c1 ∀x∀y(x⌢y = 0 → x= 0 ∧ y= 0),
c2 ∀x∀y(x⌢y = x ↔ y= 0) ∧ ∀x∀y(x⌢y = y ↔ x= 0),
c3 ∀x∀y∀z∀w

(x⌢y= z⌢w ↔ ∃v4((x = z⌢v4 ∧ v4
⌢y = w) ∨ (x⌢v4 = z ∧ y = v4⌢w))).



Axioms for quotation

d1 ∀x∀y(x /= 0 ∧ Sing(y) → q(x⌢y) = ⌢ ⌢qx ⌢qy),
d2 ∀x(symx → q(qx) = q⌢qx),
d3 ∀x∀y(qx=qy → x= y)

Axioms for substitution

e1 ∀y∀z(sub(0, y, z) = 0 ∧ sub(y, 0, z) = y)
e2 ∀x∀y∀z(y /= 0 → sub(x⌢y, y, z) = sub(x, y, z)⌢z)
e3 ∀w∀x∀y(Sing(w)∧∀z x⌢w /= z⌢y→ ∀z sub(x⌢w,y, z)= sub(x,y, z)⌢w)

Axiom schema of induction

f1 the universal closure of ∀x(∀y⊂ x φ(y) → φ(x)) → ∀xφ(x) for
each formula φ(x) of L∗

I use the definition x ⊂ y ∶= ∃w∃z(w ⌢x ⌢z = y) ∧ x /= y



Now we have to develop the syntax of our language L∗and define what a
formula, proof etc is.

This proceeds via ‘words’. We use the symbol e, which does not occur in
words and can be used to separate words.

Using our strong syntax theory we can define various notion such as
term, formula, etc of our language and prove expected observations.

The strong diagonal lemma and other results can be proved just like in
the weak theory E.
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Coding



Now it’s time to look back at my promises ot provide a coding-free
syntax theory.

Our feelings might tell us that Peano arithmetic is about numbers, while
E∗ is about expressions. That’s how I want you to see it.

One can think of Peano arithmetic as a syntax theory. It’s a syntax
theory for expressions with one symbol, a stroke for instance. Thus the
coding just tells us how to write down our expressions in a language
with only one symbol.

E∗ is closer to our normal notation, because we usually usemore than
one symbol. But it’s aslo not coding free. We don’t use e in our normal
notation. Or do we? Is ‘space’ a symbol?

Also, in real life, the variables are not of the form (v⋯ v). We write
them with Arabic numerals as indices. Coding just means we abtract
away from these differences. But such differences generate additional
properties.
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Denotation



I will introduce theories of truth. For this I need denotion.

In general, the denotation of a term can depend on many things; but the
denotions of terms of our syntax theory is ‘obvious’.

Let’s just introduce (define or axiomatize) a function symbol for ‘the
denotation of ’ or ‘the referent of ’.



Theorem (denotation paradox)

Suppose d(x) is a term of L∗and E∗derives the equation d(s)= s for
every closed term s of L∗. Then E∗ is inconsistent.

Proof.

Apply the strong diagonal to the term∀ ⌢ d(x):

E∗min ⊢ s =∀⌢d(s).

Assuming that E∗ ⊢ d(s)= s, we deduce E∗ ⊢ s =∀⌢s, from which it
follows that E∗ ⊢ ∀= 0.



This looks like a accidental flaw of our syntax theory; it isn’t.

There are recursion-theoretic results that prevent the evaluation
function from being one of the functions being evaluated.

The Denotation paradox is very general. As long as we have strong
diagonalization, there is no escape.
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In E∗min we can define a denotation formula for terms in L∗min.

L∗may contain more terms, terms like ‘morning star’ or ‘Madagascar’.
Their denotation cannot be settled by a syntax theory.
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Definition

The formula Den(x, y) is defined as

∃z(Seq(z)∧ ⟨x, y⟩ ∈seq z ∧∀w0∀w1(⟨w0,w1⟩ ∈seq z → ψDen(w0,w1, z))),

where ψDen abbreviates

ψDen(w0,w1, z) ∶= (Sing(w0) ∧w0=qw1) ∨

⋁
f∈F

∃x1⋯∃xaf∃y1⋯∃yaf(w0= f.x1⋯xk∧w1= fy1⋯yaf ∧
af
⋀
i=1
⟨xi , yi⟩ ∈seq z).



Lemma

The following are derivable in E∗.

(i) Den(s, s) for each closed term s,
(ii) ∀x(CTerm(x)→ ∃y Den(x, y)),
(iii) ∀x Den(qx, x),
(iv) ∀x∀y(Den(x, y)→ CTerm(x)),
(v) ∀x∀y∀z(Den(x, y)∧Den(x, z) → y = z).



But we can pretend to have function symbol by using the following
context definition:

φ(s○) ≡ CTerm(s) ∧ ∃y(Den(s, y)∧ φ(y))

That is, there is no real function symbol⋯○, but we can express the
denotation function using the formula Den(x , y). I find the (fake)
functional notation easier to read.



Arithmetic



We can just concentrate on one symbol: Our theory E∗min contains a
theory of strings of vs.

n ∶= v⋯v
´¸¶

n

.

This induces a translation of arithmetic into our theory; and coding
induces a translation into the opposite direction. They are
intertranslatable.



Gödel



We can now prove both of Gödel’s incompleteness theorems in E∗.

We can do so in a very pedestrian way of formalizing syntactic notions.
This is the only way of getting the second theorem.



This now the place to pontificate about natural formalizations of
provability.



Truth



We can define partial truth predicates. They do everything one would
expect for formulæ with a fixed number of alternating quantifiers.

As soon as the want the unrestricted T-Schema, we run into the liar
paradox, aka, Tarski’s theorem on the undefinability of truth.

Long before primitivism became a big thing in philosophy, logicans
understood that, if you cannot define something, just add it by brute
force and axiomatize it.

I use the symbol ◻ from before. This time we axiomatize it as truth.
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If E∗ doesn’t contain any axioms with ◻ beyond those in E∗min, the
following schema is consistent with E∗:

(1) ◻φ↔φ for φ a ◻-free sentence.

The theory is called TB (‘Tarski–biconditionals’).

Some philosophers think that this is a good truth theory!

Note that we have induction with ◻.
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Theorem (conservativity of the typed t-schema)

Suppose
E∗ is an extension of E∗min by ◻-free axioms. ThenTB is a conservative
extension of E∗ for ◻-free formulas. That is, if TB ⊢φ and φ is ◻-free,
then E∗⊢φ.



(utbΓ) ∀t0⋯∀tk−1(ψ(t○0, . . . , t○k−1)↔ ◻ψ[t0, . . . , tk−1])



Theorem

Suppose E∗ is an extension of E∗min by ◻-free axioms. If UTB⊢φ and
φ is ◻-free, then E∗⊢φ. In particular, UTB is consistent if E∗ is.



Definition

CT is the theory extending E∗ by the following axioms:

ct1 ∀s1⋯∀sk(◻(R. s1⋯sk) ↔ R(s1○, . . . , sk○)) for each k and each predi-
cate symbol R ∈L∗ of arity k, excluding ◻,

ct2 ∀α(Sent(α)→ (◻¬. α↔¬◻α))
ct3 ∀α∀β(Sent(α→. β)→ (◻(α→. β)↔ (◻α→◻β)))

ct4 ∀α∀v(Sent(∀.v α) ∧Var(v) → (◻∀.v α ↔∀s ◻α[s/v]))

Induction applies also to formulæ with ◻.



Lemma

UTB is a subtheory of CT.



Theorem

The global reflection principle for E∗min is derivable in CT. That is,

CT ⊢∀α(BewE∗min(α)→ ◻α).

The provability predicate applies only to sentences.



We have now two primitive predicates ◻ and ⊡.
Definition

KF is the extension of E∗ by the following axioms:

kf1 ∀s1⋯∀sk(◻R. s1⋯sk↔ Rs1○⋯sk○) for each k and each relation symbol
R of L∗0 of arity k,

kf2 ∀s1⋯∀sk(⊡R. s1⋯sk ↔ ¬Rs1○⋯sk○) for each k and each relation sym-
bol R of L∗0 of arity k,

kf3 ∀α(Sent(α)→ (◻¬. α↔ ⊡α)),
kf4 ∀α(Sent(α)→ (⊡¬. α↔ ◻α)),
kf5 ∀α∀β(Sent(α→. β)→ (◻(α→. β)↔ (⊡α∨◻β))),
kf6 ∀α∀β(Sent(α→. β)→ (⊡(α→. β)↔ (◻α∧⊡β))),
kf7 ∀α∀v(Sent(∀.vα)→ (◻∀.vα ↔∀s ◻α[s/v])),
kf8 ∀α∀v(Sent(∀.vα)→ (⊡∀.vα ↔ ∃s ⊡α[s/v])),
kf9 ∀s(◻◻. s↔ ◻s○) ∧∀s(◻⊡. s↔ ⊡s○),
kf10∀s(⊡◻. s↔ ⊡s○) ∧∀s(⊡⊡. s↔ ◻s○).



Definition

FS is the theory which extends E∗ by the following axioms and two
rules of inference:

fs1 ∀s1⋯∀sk(◻Rs1⋯sk↔ R(s1○, . . . , sk○)) for each k and each predicate
symbol R of L∗syn of arity k;

fs2 ∀α(Sent(α)→ (◻¬. α↔¬◻α));
fs3 ∀α∀β(Sent(α→. β)→ (◻(α→. β)↔ (◻α→◻β)));
fs4 ∀α∀v(Sent(∀.vα)→ (◻∀.vα↔∀s ◻α[s/v]));
fs5 NEC: if FS⊢φ then FS⊢◻φ;
fs6 CoNEC: if FS⊢◻φ then FS⊢φ.



De remodality
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