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DEFINITION
The symbols of £ are:

(i) infinitely many variable symbols vg, vi, V2, v3, ...,
(ii) predicate symbols = and O,
(iii) function symbols g, ~, and sub,
(iv) the connectives -, — and the quantifier symbol V,
(v) auxiliary symbols (and ),
(vi) possibly finitely many further function and predicate symbols of
arbitrary arities and finitely many further auxiliary symbols, and

(vii) for each string e of symbols exactly one constant.



The language £



DEFINITION CONTINUED

All symbols are pairwise distinct. For instance, vq is distinct from

V1, V2, ..., =, and so on; v; is distinct from vy, ..., =, and so on. In
particular, if e is any string of symbols, the constant for e is distinct
from e itself and from all symbols in (i)-(vi); and if f is a string of
symbols distinct from e, then the constants for e and f are also distinct.
Consequently, the constant for e is distinct from the constant for the
constant of e, and so on. For (vii) we assume that each constant is also
associated with an expression, although this will be needed only later.

There are no further symbols in £ beyond those in (i)-(vii).



The problem mentioned above are eliminated by the following

assumption:
UNIQUE READABILITY ASSUMPTION
Assume that ay, ..., a,, by, ..., by are symbols of L. If the string

ai...an is identical to the string b, ... by, then n=k, a;=by, ..., and
aank.

Example outside £: W and W. The latter was generated by two V with
reduced kerning.



The language L itself has different notations.



The language L itself has different notations.

Quotation constants are strange because of this. In my notation they are
complex and one can read off from them for which expression they are
a constant. There are other notations.

The overlining notation has its own problems.

Later quotations will be understood as complex.



DEFINITION

The L-terms are defined as follows:

(i) All variables are terms.
(ii) All quotation constants are terms.
(iii) If ¢, r, and s are terms, then qt, “st, and sub rst are terms.
(iv) Ifty,..., t, are terms and f is one of the additional function symbols
of arity n, then ft;...t, is a term.
(v) Nothing else is an £-term.

The term “st will be written as (st). (s "¢ "u) is short for ((s~t) ° u).
We will also often add brackets and commas for readability and write,
for instance, sub(r, s, t) instead of sub rst. In the following definitions
we drop the analogous clauses stating that nothing else is a formula,
sentence, and so on.



" isa term. I write 0 for .



DEFINITION

The atomic £-formule are defined as follows:

(i) If s and ¢ are terms, then =st and Os are atomic formulze.
(ii) Ifty,..., t, are terms and P is one of the additional predicate symbols
of arity n, then Pt;...t, is an atomic formula.

The atomic formula =st is written as s = t.



DEFINITION

The atomic £-formule are defined as follows:

(i) If s and ¢ are terms, then =st and Os are atomic formulze.
(ii) Ifty,..., t, are terms and P is one of the additional predicate symbols
of arity n, then Pt;...t, is an atomic formula.

The atomic formula =st is written as s = t.

DEFINITION
If ¢ and y are formule and x is a variable, then —¢, (¢ — ), and Vx ¢
are formulze.



DEFINITION

(i) Everyoccurrence of a variable in an atomic formula is free in that
formula.

(ii) All occurrences of free variables y in ¢ are also free in Vx ¢ iff y is
distinct from x. All other occurrences of variables are not free.

An occurrence of a variable in a formula is bound iff it is not free.



DEFINITION

(i) Everyoccurrence of a variable in an atomic formula is free in that
formula.

(ii) All occurrences of free variables y in ¢ are also free in Vx ¢ iff y is
distinct from x. All other occurrences of variables are not free.

An occurrence of a variable in a formula is bound iff it is not free.

DEFINITION
A formula is a sentence iff it does not contain a free occurrence of a

variable.






The axioms



I will now give the axioms of the theory E.

I will say that E contains certain axioms and rules, but it may also
contain more. I aim at a minimal set of assumptions that are sufficient
for generating the paradoxes. The weaker the assumption, the stronger
the inconsistency result.

If we try to prove more fancy result, we have to make more assumptions
about E.



DEFINITION

All instances of the following schemas are axioms of E:

Al
A2
A3

A4
A5
A6
A7
A8

~b = ab, where a and b are arbitrary strings of symbols

(a) a
sub(a, b, ©) = d, where a and ¢ are arbitrary strings of symbols, b is
a symbol (or, equivalently, a length-1 string of symbols), and d is the
string of symbols obtained from a by replacing all occurrences of
the symbol b with ¢
VxVyVz ((x“y)"z) = (x"(y"z))
VxVy(x"y=0 - x=0 A y=0)
YxVy(x"y =x <> y=0) A VxVy(y x=x < y=0)
VxVy sub(x~a, a,y) = sub(x,a,y) "y, where a is a symbol
VxVyVzVw

(x”y =zZw < vu((x=ZVaAviy =w) v (Xvg=zAy = v[w)))



I have added brackets to A2, A3, and A7 and used infix notation.



COMMENTS

The concatenation of two expressions e; and e, is simply the expression
e followed by e,. For instance, ——v is the concatenation of - and -w.



COMMENTS

The concatenation of two expressions e; and e, is simply the expression
e followed by e,. For instance, ——v is the concatenation of - and -w.

Therefore =—v = = ~ =vis an instance of A1aswellas =—v === " V.



COMMENTS

The concatenation of two expressions e; and e, is simply the expression
e followed by e,. For instance, —=—v is the concatenation of - and —wv.

Therefore =—v = = ~ =vis an instance of A1aswellas =—v === " V.

Concatenating the empty string with any expression e gives again the
same expression e. Therefore we have, for instance, V- 0= Y asan
instance of A1.



COMMENTS

An instance of A2 is the sentence qv— = v—. Thus q describes the
function that takes an expression and returns its quotation constant.



COMMENTS

In a3 I have imposed the restriction that b must be a single symbol. This
does not imply that the substitution function cannot be applied to
complex expressions; just A3 does not say anything about the result of

substituting a complex expression.



COMMENTS

In a3 I have imposed the restriction that b must be a single symbol. This
does not imply that the substitution function cannot be applied to
complex expressions; just A3 does not say anything about the result of
substituting a complex expression.

The reason for this restriction is that the result of substitution of a
complex strings may be not unique. For instance, the result of
substituting — for AA in A A A might be either A or —A. The problem
can be fixed in several ways, but I do not need to substitute complex
expressions in the following. Therefore I do not ‘solve’ the problem but
avoid it by the restriction of b to a single symbol.



COMMENTS

A1-A3 are already sufficient for proving the diagonalization Theorem 10.



COMMENTS

A1-A3 are already sufficient for proving the diagonalization Theorem 10.

A4 simplifies the reasoning with strings a great deal. Since
Er(x"y) z=x"(y" z),thatis, " is associative by A4, I shall simply
write x ~ y ~ z. for the sake of definiteness we can stipulate that x = y ~ z

is short for (x ~ y) ~ z and similarly for more applications of ~.



I write E ¢ if and only if the formula ¢ is a logical consequence of the
theory E.



I write E ¢ if and only if the formula ¢ is a logical consequence of the
theory E.

EXAMPLE

E l= Sub(ﬂ—\,:, —|—|—|) = a0



I write E ¢ if and only if the formula ¢ is a logical consequence of the
theory E.

EXAMPLE

E l= Sub(ﬂ—\,:, —|—|—|) = a0
EXAMPLE

Er-sub(v=vAV=V,V,V;) =vo =V, AV=V



These axioms suffice for proving Godel’s celebrated diagonalization
lemma.
REMARK
Of course, there is no such cheap way to Godel’s theorems. Godel
showed that the functions sub and q (and further operations) can be
defined in an arithmetical theory for numerical codes of expressions.
To this end he proved that all recursive functions can be represented
in a fixed arithmetical system. And then he proved that the operation
of substitution etc. are recursive. This requires some work and ideas.



diagonalization



DIAGONALIZATION

The diagonalization function dia is defined in the following way:

DEFINITION

dia(x) =sub(x,v,q(x))



DIAGONALIZATION

The diagonalization function dia is defined in the following way:

DEFINITION

dia(x) =sub(x,v,q(x))

REMARK
There are at least two ways to understand the syntactical status of dia.
It may be considered an additional unary functionof £, and the above
equation is then an additional axiom of E. Alternatively, one can
conceive dia as a metalinguistic abbreviation, which does not form
part of the language £, but which is just short notation for a more
complex expression. This situation will encountered in the following

frequently.



THE STRONG DIAGONAL LEMMA

LEMMA
Assume ¢(v) is a formula not containing bound occurrences of v. Then
the following holds:

E +dia(g(dia(v))) = ¢(dia(¢(dia(v))))



THE STRONG DIAGONAL LEMMA

LEMMA
Assume ¢(v) is a formula not containing bound occurrences of v. Then
the following holds:

E +dia(g(dia(v))) = ¢(dia(¢(dia(v))))

Proor.

In E the following equations can be proved::

dia(g(dia(v))) = sub(¢(dia(v)),V,a(e(dia(v))))
= sub(g(dia(v)),V, ¢(dia(v)))
= ¢(dia(g(dia(v)))) H




THE DIAGONAL LEMMA

THEOREM (DIAGONALIZATION)

If p(v) is a formula of L with no bound occurrences of v, then one can
find a formula y such that the following holds:

Ery<o(y)



THE DIAGONAL LEMMA

THEOREM (DIAGONALIZATION)

If p(v) is a formula of L with no bound occurrences of v, then one can
find a formula y such that the following holds:

Ery<o(y)

Proor.

Choose as y the formula ¢(dia(¢(dia(v))). Then one has by the
previous Lemma:

E = ¢(dia(g(dia(v))) < ¢(¢(dia(p(dia(v)))))

Y Y




The comparison with diagonalization as in Russell’s paradox.

Define

s(x,y) = sub(x, v, q(y))

Now —0Os(x, y) is a binary predicate.



The diagonal lemma may be provable without strong diagonalization.

Tarski obtained the diagonal lemma with concatenation only.



The diagonal lemma may be provable without strong diagonalization.

Tarski obtained the diagonal lemma with concatenation only.

The language of Peano arithmetic lacks function symbols for sub and q
and thus a functional expression for dia.



The diagonal lemma may be provable without strong diagonalization.

Tarski obtained the diagonal lemma with concatenation only.

The language of Peano arithmetic lacks function symbols for sub and q
and thus a functional expression for dia.

Whether we have weak or strong diagonalization can make a difference
(Heck 2015, Schindler 2014).



The diagonal lemma may be provable without strong diagonalization.

Tarski obtained the diagonal lemma with concatenation only.

The language of Peano arithmetic lacks function symbols for sub and q

and thus a functional expression for dia.

Whether we have weak or strong diagonalization can make a difference
(Heck 2015, Schindler 2014).

At this point I could say more about self-reference.



The liar and other simple paradoxes



The theory E can contain more axioms beyond those explicitly stated.

Thus the following two claims are equivalent:

(i) ¢ isinconsistent with E.

(ii) E isinconsistent if it contains ¢.

Instead of saying ‘g is inconsistent with E” I will often only say ‘¢ is

inconsistent.

I do not assume that E is consistent. It is consistent with the stated

axioms.



THE LIAR

THEOREM (LIAR PARADOX)

The T-schema Oy <>y for all sentences y of L is inconsistent.

Proof: Apply the diagonal lemma to —Ov.



TARSKI’S THEOREM

THEOREM (TARSKI,S THEOREM ON THE UNDEFINABILITY OF
TRUTH)

If E is consistent, there is no formula t(x) such that T(y) <>y can be
derived in E for all sentences v of L.

However, we can axiomatically add a new truth predicate.



McGEE’S THEOREM

McGee (1992) proved:
THEOREM (MCGEE’S THEOREM ON T-SENTENCES)
Assume E v+ —¢. Then there is a sentence y such that E + (Oy <> y) is

consistent and E + (Oy < y) + ¢.

Proof: Apply the diagonal lemma to Ov< ¢.

This is a variant of Curry’s paradox (Curry 1942). McGee used it against
a ‘solution’ of the truth-theoretic paradoxes in (Horwich 1998).



MONTAGUE’S PARADOX

THEOREM (MONTAGUE’S PARADOX, MONTAGUE 1963)

The schema O¢ — ¢ is inconsistent with the rule

4

(NEC) ==
Op

for all sentences ¢.



MONTAGUE’S PARADOX

THEOREM (MONTAGUE’S PARADOX, MONTAGUE 1963)

The schema O¢ — ¢ is inconsistent with the rule

4

(NEC) ==
Op

for all sentences ¢.

Which modal notions are affected?



THEOREM (GODEL’S FIRST INCOMPLETENESS THEOREM)

Suppose for all sentences ¢ of L that E ~ ¢ iff E +— O¢. Then there is a
sentence y such that neither y itself nor its negation is derivable in E, or
E is inconsistent.

This is just extracted from (Godel 1931).



POSTCARD PARADOX

THEOREM
E is inconsistent if it contains the schema 0OO0@ <> .

PROOE.
For any for all sentences ¢ of £ and indeed any expression ¢ we have

the following:
E-TO°q(p)=0"9 axiom A2
ErTq(p) =0p axiom A1

The diagonal lemma is applied to the formula —D(ﬁAq (v)):

Erye-o(0a(y))
E -y ooy remark above

Eryo-y assumption



(K) Dp—y — (0p - Oy).

For our abbreviation of A we have:

LEMMA

E + OpAy < OpAOy, if E contains K and is closed under NEC.



A theory 7T is internally inconsistent (with respect to 0O) if and only if
T +0¢ and 7+ 0O-¢ for some sentence ¢.

LEMMA

Assume E is closed under NEC. Then every internally inconsistent

theory containing E and K proves Oy for all sentences .



is the schema Oip — O0g.

This is similar to (Thomason 1980):

THEOREM (THOMASON 1980)

Assume E is closed under NEC. Then any theory T containing E and the
schemas K, 4, and OO¢ — ¢ is internally inconsistent and proves Oy for
all L-sentences y.



Read the modal predicate as ‘S knows x’



Proof:

Roughly speaking, we run the proof of Montague’s paradox in the scope
of O. Assume that E and 7 have the properties mentioned in the

theorem.
Eryo-0y liar sentence
E - ody—-y logic and NEC
Er (@y-y)~ ((0y~~y) > -gy)  logic
Er (0y—y)— ((E‘?*ﬁ)/) - y) first line
E - 0oy -y - (00y -y - 0y) NEC and K
T+ (DD?—>—|y — D?) O0¢ — ¢

T + oy second line



Now we invoke 4 to conclude 7'+ 0Oy from 7T+ Oy. From the first line
above we also get E -~ Oy — 0-0)y by NEC and K. Combining this with
the last line, we obtain the following internal inconsistency:

T + -0y A OOy.

Since E and T satisfy the conditions of 18, we have 7 + Oy for all
sentences .



THEOREM (LOB’S THEOREM)

If E is closed under NEC and contains K and a, then we have
E +~ 009 — ¢ — Og for all sentences ¢ of L.



THEOREM (LOB’S THEOREM)

If E is closed under NEC and contains K and a, then we have
E +~ 009 — ¢ — Og for all sentences ¢ of L.

Then there is the mysterium of the de Jongh—Sambin fixed-point
theorem.



COROLLARY

Assume that E is closed under NEC and contains K and 4. Then for
any ¢ of L the following rule of inference holds: If E ~ O¢ — ¢, then
Ero.

ProOOF.

Assume E + 0O¢ — ¢ and reason as follows:

Er-rOp—o assumption
E-odp—o NEC
E+oOp theorem above

Ero assumption in first line



THEOREM (GODEL’S SECOND INCOMPLETENESS THEOREM)

Assume that E is closed under NEC and contains K and 4. Then
E+-0O1 implies that E is inconsistent.



Paradoxes from Interaction



Assume Tr is also a primitive unary predicate in the language.

THEOREM
Assume E satisfies the following three conditions:

(i) If y is a sentence of L not containing Tr, then E contains Try <> .
(ii) If v is a sentence of L not containing O, then E contains Oy — y.
(iil) If v is a sentence of L not containing O with E ~ v, then also E ~ Oy
holds.

Then E is inconsistent.



ProoF.

We apply the diagonal lemma to the formula ﬁTr( O07q (x)) and

reason as follows:

Eryo-Tr(87a(7))
E+ryo-Troyp

E+ Traoy » -y
Er-ogy—-y
EroOy—y

E+~ -Oy

E +~ -TroOy

Ery

E+ oy

diagonal lemma

axioms A1 and A2; cf. proof of 16
logic

@)

(ii)

two preceding lines

(@)

second line

(iii)

The last line and the fourth line from the bottom establish the

claim.



GETTIER

Here is another application, which is not an inconsistency. See (Halbach
and Horsten 2025). We assume that we have a predicate K for

knowledge and a predicate JB for justified belief.

The knower sentence is a sentence y with E - y < -Ky.



GETTIER

JTB CONCEPTION OF KNOWLEDGE

The following assumptions are jointly inconsistent:
schematic definition of knowledge: K¢ < (JBp A ¢)
factivity of knowledge: K¢ — ¢

Crucial assumption: From a proof of ¢ conclude JBgp

Ky -y factivity



GETTIER

JTB CONCEPTION OF KNOWLEDGE

The following assumptions are jointly inconsistent:
schematic definition of knowledge: K¢ < (JBp A ¢)
factivity of knowledge: K¢ — ¢

Crucial assumption: From a proof of ¢ conclude JBgp

Ky -y factivity
Ky = -y knower



GETTIER

JTB CONCEPTION OF KNOWLEDGE

The following assumptions are jointly inconsistent:
schematic definition of knowledge: K¢ < (JBp A ¢)
factivity of knowledge: K¢ — ¢

Crucial assumption: From a proof of ¢ conclude JBgp

Ky -y factivity
Ky = -y knower

-Ky two preceding lines



GETTIER

JTB CONCEPTION OF KNOWLEDGE

The following assumptions are jointly inconsistent:
schematic definition of knowledge: K¢ < (JBp A ¢)
factivity of knowledge: K¢ — ¢

Crucial assumption: From a proof of ¢ conclude JBgp

Ky —y factivity
Ky = -y knower
(1) -Ky two preceding lines

y knower



GETTIER

JTB CONCEPTION OF KNOWLEDGE

The following assumptions are jointly inconsistent:
schematic definition of knowledge: K¢ < (JBp A ¢)
factivity of knowledge: K¢ — ¢

Crucial assumption: From a proof of ¢ conclude JBgp

Ky —y factivity

Ky = -y knower
(1) -Ky two preceding lines
(2) y knower

JBy crucial assumption



GETTIER

JTB CONCEPTION OF KNOWLEDGE

The following assumptions are jointly inconsistent:
schematic definition of knowledge: K¢ < (JBp A ¢)
factivity of knowledge: K¢ — ¢

Crucial assumption: From a proof of ¢ conclude JBgp

Ky —y factivity

Ky = -y knower
(1) -Ky two preceding lines
(2) y knower
(3) JBy crucial assumption

JByay from (2) and (3)



GETTIER

JTB CONCEPTION OF KNOWLEDGE

The following assumptions are jointly inconsistent:
schematic definition of knowledge: K¢ < (JBp A ¢)
factivity of knowledge: K¢ — ¢

Crucial assumption: From a proof of ¢ conclude JBgp

Ky -y factivity
Ky = -y knower
(1) -Ky two preceding lines
(2) y knower
(3) JBy crucial assumption
JBy Ay from (2) and (3)

(4) Ky def. of knowledge



NO FUTURE

Gx is x will always be the case;, while Hx is ‘x has always been the case’
Defined: Fx is x will be the case at some point (in the future); and Px,
stands for ‘x has been the case at some point (in the past)’.

(@) Gp=y -~ (Gp-Gp),
(m) Ho—vy — (Hp—Hy),
(G2) ¢p— HF_¢,
(H2) 9GPy,
(63) Go < —-F=o,
(H3) Hp < -P-g,
(N) Gi% and Hi% for all sentences ¢.
'In the original paper (Horsten and Leitgeb 2001, p. 260), there is a typo in the

formulation of this axiom: the occurrence of G there should be an H, too.



NO FUTURE

THEOREM (NO FUTURE PARADOX, HORSTEN AND LEITGEB 2001)
If E contains G1, H1, G2, H2, G3, and H3 and is closed under N, we have
E-HIAGL.



ProoF.
I shall only prove that there is no future, that is, E +~ GL. The first line
is obtained as in the proof of 23:

(5) EryoGP=y
E+ —|y<—>—|GP—|_y

E+ -y—>GP=y H2

(6) Ery preceding two lines

(7) E+ GP_—|_y from (5) and previous line
E+ Hy N and (6)
E+r -P=y H3

(8) E+ G-Py N

(9) E+ Gl (7), (8), and G1

The last line follows because, by N, we have Gg — (~¢ — 1) for all ¢
and in particular for P=y. O



Yablo and Visser



Kripke (1975) metioned something about illfounded hierarchies, but
said later in (2019) that this was not about the Yablo-Visser paradox.
Visser (1989) and Yablo (1985, 1993) presented similar paradoxes. See
also (Cook 2014).



Kripke (1975) metioned something about illfounded hierarchies, but
said later in (2019) that this was not about the Yablo-Visser paradox.
Visser (1989) and Yablo (1985, 1993) presented similar paradoxes. See
also (Cook 2014).

Some authors argued that these are paradoxes without self-reference.



VISSER & YABLO

Yablo (1993) presented his paradox as an infinitely descending list of

sentences.

(S) forall k > 1, S is untrue .
(Sz) forall k > 2, S is untrue .
(S3) for all k > 3, S is untrue .

(Sq) for all k > 4, Sy is untrue .



VISSER & YABLO

Yablo (1993) presented his paradox as an infinitely descending list of
sentences. Visser (1989) presented his paradox in a more formal way,
but it is Yablo’s paradox with typed truth predicates:

(S forall k > 1, S is untrue;.
(Sz) for all k > 2, S, is untrue,.
(S3) for all k > 3, S is untrues.

(Sq) for all k > 4, Sy is untruey.



The use of infinite lists is dodgy.

The paradoxes can be formulated in syntax theory.



The use of infinite lists is dodgy.

The paradoxes can be formulated in syntax theory.

Before we can formulate the paradoxes, I need to explain how we can
quantify into quotations.



The use of infinite lists is dodgy.

The paradoxes can be formulated in syntax theory.

Before we can formulate the paradoxes, I need to explain how we can
quantify into quotations.

I will present the paradox with very weak assumptions.



QUANTIFYING-IN

Assume O is read as ‘necessary’ and we want to say that every expression
is necessarily identical with itself, that is, we want to say that for all
expressions e the sentence e =e is necessary. We cannot do this by

writing Vx OX =X, but we can formulate our claim in the following way:



QUANTIFYING-IN

Assume O is read as ‘necessary’ and we want to say that every expression
is necessarily identical with itself, that is, we want to say that for all
expressions e the sentence e =e is necessary. We cannot do this by

writing Vx OX =X, but we can formulate our claim in the following way:

For all expressions e: if we replace in the formula x = x every

occurrence of x by the quotation constant for e, then the resulting
sentence is necessary.



This can be expressed in £ using the following formula:
Vx Dsub(x=x, X, q(x)).
From this we can derive, for instance, 0= == in E in the following way:

Vx Osub(X=X, X, q(x)) assumption

(5)) logic
) a

O—==- A3



Assume ¢(y) is a formula with no bound occurrences of the variable y,
then

¢(x) abbreviates sub( ¢(y), 7, q(x)).
In arithmetic the dot is placed above the variable; but we have already a

bar there.

Of course, we can still generalize this and stipulate that only free
occurrences of y are replaced; but we don’t need this.



The proof of the diagonal lemma yields the following:

DIAGONAL LEMMA WITH FREE VARIABLES
If (%, y) is a formula of £ with no bound occurrences of x, then one
can find a formula 6(y) such that the following holds:

E + vy (0(y) < 9(8(y),v))-

We want a dot under the overlined y.



UNIFORM DIAGONAL LEMMA, PARAMETRIZED DIAGONAL LEMMA

Let ¢(x,y) be a formula with the two free variables x and y that does
not contain a bound occurrence of y. Then there is a formula 6(y)
such that

E - ¥y (6(y) < 9(6(y).))-

Proor.

By applying the diagonal lemma above to the formula
p(sub(x v, a(y)), y),
I obtain a formula 6(y) such that the following holds:

E = vy (6(y) < ¢(sub(8(y), %> a(y)), ).

This is the claim, since 6(y) is defined as su b(6(y), ¥ a(y)). O



YABLO’S PARADOX

I prove Yablo’s paradox with weak assumptions.

The informal proof is based on an infinitely descending list of sentences
with a top element. But much less is needed, as Ketland (2005) has
shown.

I assume that the language £ contains a binary predicate symbol < that
satisfies the following conditions:

(SER) Vx3y x<vy,

(TRANS) VxVyVz (x<y - (y<z - x< z))

That’s an order of the entire universe. We don’t need it; but I don’t want

to relativize the quantifiers. We don’t need a primitive symbol for this.
You can think of < as a defined formula that satisfies these conditions.

Using a primitive symbol shows that nothing beyond sEr and TRANS is

needed in addition to



Of course, we need also a truth-theoretic assumption:

(uTs) vy (T (y) < o(y)).



THEOREM (YABLO’S PARADOX)

Assume that E contains all the following sentences:

(SER) Vx3dy x<vy,
(TRANS) VxVyVz(x<y - (y<z - x<z)),
(uTs) vy (0p(y) < o(y)).

Then E is inconsistent.



THEOREM (YABLO’S PARADOX)

Assume that E contains all the following sentences:

(SER) Vx3dy x<vy,
(TRANS) VxVyVz(x<y - (y<z - x<z)),
(uTs) vy (0p(y) < o(y)).

Then E is inconsistent.
I understand the disappointment: UTs is obviously inconsistent.

Bear with me...

The point is the proof.



PRrROOF.
I apply the diagonal lemma with a free variable to the formula

Vz>y -osub(v,y,q(z)),

which has exactly x and y as free variables. This yields a formula 0(y)
with the following property:

E+ Vy(@(y) « Vz>y ﬂDsub(Wy),y,q(z))).
That is
(10) E + Vy(6(y) < Vz>y ﬂD@).

The sentences 6(e) for arbitrary expressions e correspond to the
Yablo sentences. Priest (1997) defined the Yablo sentences in this way
in arithmetic, after Visser (1989) had used a similar method to obtain
his paradox. The contradiction can now be derived in the following

way in E: O



PROOF CONTINUED

E+ Vy(DWy) < 0(y)) UTS
« Vz>y -00(z) (10)
— dz>y —ﬂﬁ SER

— Jz>y Vw>z -00(w) second line and TRANS
- Jz>y 0(2) (10)

— Jz>y 06(z) UTS
From the second and last lines we get Yy ~06/(y).

E+ Vy-6(y) UTS
E + Vy3z>y 06(z) (10)

The last line contradicts the previously derived Vy -0 (y).



VISSER’S PARADOX

UTs is inconsistent by itself because of the liar paradox, but the same
proof strategy can be used to prove that the following typed schema is
sufficient.

(vuTs) vy (Oye(y) < o(y)),

where all terms occurring in index position in ¢(y) are variables x1, x,,
..., xi distinct from y (but not complex terms or constants) and all

quantifiers Vax;, Vxa, ..., Vxi in ¢(y) are restricted by x; >y, respectively.



VISSER’S PARADOX

UTs is inconsistent by itself because of the liar paradox, but the same
proof strategy can be used to prove that the following typed schema is
sufficient.

(vuTs) vy (Oye(y) < o(y)),

where all terms occurring in index position in ¢(y) are variables x1, x5,
..., xi distinct from y (but not complex terms or constants) and all

quantifiers Vax;, Vxa, ..., Vxi in ¢(y) are restricted by x; >y, respectively.

See the book for a proof. This schema is consistent by itself.



PARADOX AND INCONSISTENCY

I get proper inconsistencies, not just w-inconsistencies, because I

quantify over indicies.

There are other versions of these paradoxes. Some are mere

w-inconsistencies.



methodology



What do these results tell us?

(i) We cannot have a predicate with the mentioned properties. We
cannot combine predicates with certain mixed axioms.
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What do these results tell us?

(i) We cannot have a predicate with the mentioned properties. We
cannot combine predicates with certain mixed axioms.

(ii) We cannot define a predicate with certain properties, but could
add a typed predicate axiomatically.

(iii) There is some complexity or definability hierarchies hidden.

(iv) There are more limitative results than just plain inconsistencies:
internal inconsistencies, trivialities (e.g. predicates cannot apply to
anything), w-inconsistencies, and ‘unintended’ consequences of
various kinds.



The paradoxes that are not just plain inconsistencies teach us a lesson
about alleged solutions:

A mere consistency proof doesn’t tell us that there is no paradox.



The paradoxes that are not just plain inconsistencies teach us a lesson
about alleged solutions:

A mere consistency proof doesn’t tell us that there is no paradox.

The proposed strategy may still exclude the standard model, make the

notion trivial, or generate off consequences.
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What can go wrong?

outright inconsistency

w-inconsistency or no w-model

triviality: The modality applies to all (or no) sentence.
unacceptable consequences: The theory implies a contingent truth
or decides a question it should not decide.

and there thousand ways things can go wrong.



McGee’s w-inconsistency



For the paradox I require a modicum of arithmetic.

We use strings xxx . .. as natural numbers and call expressions Xxx. . .
numerals; they act as constants for numbers. Moreover, n, the numeral
of n, stands for

X..o. X,
—
n

For instance, 4, that is, XxxXx, is the numeral for 4.



DEFINITION
Nat(x) is defined as sub(x,%,0) = 0.



DEFINITION
Nat(x) is defined as sub(x,%,0) = 0.

LEMMA

E + Nat(n) for all natural numbers n.



I write Vn ¢(n) for Vx(Nat(x) - ¢(x)), for any variable x, and
similarly 3n ¢(n) for 3x (Nat(x) A ¢(x)). This abbreviation is used in

conjunction with the underdotting convention as in Vk ¢ (k), which is
short for

Vx(Nat(x) - sub(qx,%,(p(_x))),

where x is a variable with no bound occurrences in ¢.



LEMMA
Assume n, k, n+k, and n-k are numerals for n, k, n+k, and n-k,

respectively. Then the following holds:

(i) Ern"k=n+k,
(ii) E + sub(k,x,n) = n-k.

In particular we have E+n"1= n+1.



We expect that every number except 0 has a unique predecessor.
However, this relies on the linearity of expressions, which is expressed
by axiom A8.

LEMMA

E+ Vavk(n"1=k"1 > n=k).



DEFINITION

E is w-inconsistent if and only if there is a formula ¢(x) with the
following properties:

(i) E+ ¢(k) for all natural numbers k,
(i) E+ =Vne(n).



LEMMA

E+ Vx(Nat(x) - Nat(x”l)).

LEMMA

The theory E proves Vn ¢(n) — Vn ¢(n"1) for all formule ¢(x) of L.



The sentence (S) says that at least one of the following sentences is not

true:

(S)
(S) is true.
(S) is tru€’ is true.

““(S) is true” is true’ is true.

McGee’s w-inconsistency theorem can be obtained by formalizing (S).



Here is the theorem from (McGee 1985):

THEOREM (MCGEE’S W-INCONSISTENCY THEOREM)

Assume that E is closed under the rule in (i) and contains the
formula (v) and the schemas (ii)-(iv) for all sentences ¢ and y and all

formulee y(x) having at most X free.

(i) NEC,
(i) Gp=7 — (TF - O,
(iii) O-¢ — —-0O9,
(iv) Vxoyx(x) —» oVvxx(x),
(v) Vn(n=0 v 3k n=k"1) A -3k 0=k"L

Then E is w-inconsistent.

I only sketch a proof.
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