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Abstract. First-order formalisations are often preferred to propositional ones
because they are thought to underwrite the validity of more natural-language
arguments. We compare and contrast the ability of some well-known logics�
these two in particular�to formally capture valid and invalid natural-language
arguments. We show that there is a precise and important sense in which �rst-
order logic does not improve on propositional logic in this respect. We also prove
some generalisations and related results of philosophical interest. The rest of
the paper investigates the results' philosophical signi�cance. A �rst moral is
that the correct way to state the oft-cited superiority of �rst-order logic vis-à-
vis propositional logic is more nuanced than often thought. The second moral
concerns semantic theory; the third logic's use as a tool for discovery. A fourth
and �nal moral is that second-order logic's transcendence of �rst-order logic is
greater than �rst-order logic's transcendence of propositional logic.

1 Introduction

One of the main reasons to formalise is to capture implicational structure. Con-
sider the simple valid English argument `Felix is a cat, therefore there is a cat'.
Its propositional formalisation p ∴ q is not propositionally valid. In contrast, the
argument's �rst-order formalisation Fa ∴ ∃xFx is �rst-order valid. This exam-
ple illustrates an apparently well-established moral: �rst-order formalisations
underwrite the validity of more natural-language arguments than propositional
ones. Teachers of logic often invoke this moral when introducing �rst-order
logic to students who know only propositional logic. The history of logic also
illustrates the value of capturing natural-language consequence. Augustus de
Morgan, for example, pointed out that Aristotle's logic cannot capture the va-
lidity of the argument `All dogs are animals, therefore all heads of dogs are
heads of animals' whereas, as we now know, �rst-order logic can.

This paper compares and contrasts the ability of some well-known logics�
propositional and �rst-order in particular�to capture natural language's impli-
cational structure. Surprisingly, as we show, there is a precise and important
sense in which �rst-order logic does not improve on propositional logic in this
regard. Indeed, the moral is more general: propositional logic matches a wide
class of logics in this respect. The correct way to state the oft-cited superior-
ity of �rst-order logic vis-à-vis propositional logic is more nuanced, as we shall
discover.1

1This paper, though self-contained, is a sequel to my (2015). The quotations in §2 mostly
overlap with those in §2 of my (2015), and §3 redeploys an example related to the one in §3
of my (2015). In my earlier article, I spoke of the `inferential role' of a sentence; I now prefer



2 The importance of preserving implicational struc-
ture

Although logicians are able to formalise sentences of English (including techni-
cally augmented English) with ease, a theoretical account of what this ability
amounts to is hard to come by.2 As Graham Priest puts it, `[formalisation]
is a skill that good logicians acquire, but no one has ever spelled out the de-
tails in general' (Priest 2006, p. 170). Nonetheless, what is clear is that a key
constraint on (good) formalisation, if not the principal one, is that it should pre-
serve the implicational structure of natural language, or its relevant fragment
in the context at hand, as much as possible, subject to other constraints. This
uncontentious aim of formalisation is our topic.

Various philosophers have stressed the importance of preserving implica-
tional structure when formalising. Donald Davidson defends the methodology
behind his account of action sentences as follows:

...by rewriting or rephrasing certain sentences into sentences that
explicitly refer to or quantify over events, we can conveniently rep-
resent the entailment relations between the original sentences. The
entailments we preanalytically recognize to hold between the original
sentences become matters of quanti�cational logic applied to their
rephrasals. (Davidson 1967, p. 139)

The same applies to authors who have expanded Davidson's proposal to an
account of predication in general.3 In discussing the success conditions of for-
malisation programmes, Stewart Shapiro comments:

Although the `translations' [formalisations] typically do not preserve
anything like the grammatical form of the original natural language
sentences, it is claimed that they do preserve logical form .... A pro-
gramme is con�rmed if `intuitive consequences' among the natural
language sentences are translated as model-theoretic consequences
in the formal languages. (Shapiro 1998, p. 135 n.3)

W.V. Quine recommends that formalisation should reveal implicational struc-
ture, though no more than is required:

`implicational' to `inferential', since we are interested in what follows from what rather than
what can be deduced from what. The term `inferential' carries an agential connotation�it is
subjects who perform inferences�best avoided here; see ch. 1 (esp. pp. 3-4) of Harman (1986)
for a classic statement of the distinction between implication on the one hand and rational
inference on the other. We'll also not be concerned with the broader sense of `implication',
which covers e.g. inductive or Gricean implications.

2For recent discussions, see Baumgartner & Lampert (2008) and my (2015).
3Parsons (1990, pp. 7 & 10) for example explains his methodology as based on predicting

correct implications between English sentences. See also Higginbotham, Pianesi & Varzi
(2000).
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A maxim of shallow analysis prevails: expose no more logical struc-
ture than seems useful for the deduction or other inquiry at hand.
(Quine 1960, p. 160)

Mark Sainsbury puts the point as follows: `A traditional aim of logic has been to
render mechanical the determination of the validity of arguments.' (Sainsbury
2001, p. 99). To unfold this idea: formalising arguments so as to respect
their implicational structure might, in the ideal case, allow us to mechanically
determine whether they are valid or not. In the following extended passage,
Alex Oliver further articulates the general point:

Philosophers are trained to put natural language sentences into log-
ical form, i.e. to formalize them. What is this activity and what is
its point? As I see it, it is an exercise in translation. One translates
a sentence of English, say, into a sentence of a given logic, with the
result that some of the inferential properties of the original sentence
can be deduced from the logic of its translation. It is an incurably
relative process, since it depends both on the choice of a logic and
the particular translation into that logic. The point of the activity
is to model the meanings of English sentences. The meaning of a
sentence determines its inferential connections: what follows from it
(possibly in combination with others) and what it follows from. A
given formalization highlights particular connections. Choosing to
highlight di�erent connections results in di�erent translations into a
given logic, perhaps even a change of logic. (Oliver 2010, pp. 180-1)

Though they may disagree on details, these philosophers�and many others�
all agree on one thing: respecting natural-language implications is a key con-
straint on formalisation. Surprisingly though, the philosophical literature has
little systematic to say about this feature of formalisation. This paper attempts
to improve on this situation. We begin by comparing propositional logic with
�rst-order logic.4

3 Toy example

With virtually no loss of generality (see the end of §6), we take natural lan-
guage to be English, understood liberally so as to include its technical parts,

4Although I proved all the results in this paper independently, I expect that some of them
can be found in the algebraic logic literature or are recoverable from it. That said, I haven't
been able to discover a precise formulation of any of them, be it in the encyclopedia Monk &
Bonnet (1989) or elsewhere, partly because the abstract algebraic logic literature of the past
few decades is principally concerned with general results about the class of logics as a whole.
What is certainly without precedent is our focus on formalisation and natural language�the
results' philosophical context�and the philosophical morals drawn from them. For an entry
into the abstract algebraic logic literature, see Font, Jansana & Pigozzi (2003), Letwitzka
(2007) and Blok & Pigozzi (1989); Czelakowski (2001) is an extensive treatment. Barwise &
Feferman (1985) remains a classic collection on abstract model theory.

3



in particular mathematical and scienti�c language. English sentences here and
throughout are taken to be meaningful (interpreted).5 We generally assume
that the set Sen(E) of declarative English sentences is a countably in�nite set,
since the lexicon of English is �nite and the language's formation rules allow for
sentences of arbitrarily large �nite length.6 This is as standard an assumption
in philosophy as in linguistics. In contrast with English sentences, sentences of
a formal language are uninterpreted. If L is a formal language and Sen(L) its
set of sentences then any function Φ : Sen(E) → Sen(F ) is a formalisation of
English into L; no other structure is imposed on Φ in the general case.
Lmight for instance be propositional logic with a countable in�nity of atoms,

PLω, and Φ a function from Sen(E) into Sen(PLω). Or L might be countable
�rst-order logic FOLω and Φ a function with domain Sen(E) and codomain
Sen(FOLω). As well as a countable in�nity of atoms or sentence letters, PLω
has an expressively adequate (countable) set of truth-functional connectives,
say {¬,∧,∨}; the usual formation rules; and its standard consequence relation
�FOLω . FOLω is �rst-order logic with a countable in�nity of variables, constants,
predicate and function symbols of all arities, a (countable) and expressively
adequate set of truth-functional connectives, standard formation rules and its
standard consequence relation �PLω .

7

The paper's main theme is best introduced via a toy example. Take the
fragment of English consisting of the following three sentences:

(A) There are at least three people.

(B) There are at least two people.

(C) There is at least one person.

Since the set {A,B,C} consists of three sentences, there are 23 = 8 possible
choices of premise sets drawn from {A,B,C} (including the empty set) and
3 + 1 = 4 possible choices for the conclusion (including the empty conclusion).
So there are 8 × 4 = 32 possible arguments involving A, B and C, or 31 if we
ignore, as we will, the vacuous argument with empty premise set and empty

5Sentences thus understood are often called statements.
6The presence of context-dependent terms allows a countably in�nite language to express

uncountably many propositions. For example, if there could be (in the sense of metaphysical
possibility) uncountably many speakers, then `My name is Jo' could express uncountably many
propositions, one per metaphysically possible speaker who utters it. To preserve countability,
we restrict attention to a particular context. For example, the argument `I'm cold and tired,
therefore I'm cold' is valid, as long as the speaker who utters the premise is the same as
the speaker who utters the conclusion. This construal of logical consequence as applying
to interpreted sentences in a particular context is entirely standard; see for example Quine
(1982, p. 56) for an in�uential expression, or Rum�tt (2015, p. 33) for a more recent one. The
interest of analysing the logical relations, if any, between sentences made in di�erent contexts
is limited, since naturally-occurring arguments have a common context. Alternatively, one
can think of our discussion as applying to all and only meaningful English sentences uttered
or written in the past, present or future by human/human-like beings, of which it is safe to
suppose there are no more than a countable in�nity. In a few places below, we consider what
follows on the more stringent view that Sen(E) is �nite.

7Models of FOLω are assumed to have non-empty domains.
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conclusion. Of each of the 31 arguments, we can ask whether it is valid or
invalid. The most succinct description of our fragment's implicational structure
is that A implies B, B implies C, and B and C together do not imply A. The
full, 31-argument, implicational structure follows from this description.

Suppose now that Φ1 and Φ2 are the following formalisation functions, with
domain {A,B,C} and respective codomains Sen(PLω) and Sen(FOLω):

Φ1(A) = p
Φ1(B) = q
Φ1(C) = r
Φ2(A) = ∃x∃y∃z(Px ∧ Py ∧ Pz ∧ x 6= y ∧ x 6= z ∧ y 6= z)
Φ2(B) = ∃x∃y(Px ∧ Py ∧ x 6= y)
Φ2(C) = ∃xPx

We may abbreviate Φ2(A), Φ2(B), and Φ2(C) as ∃3, ∃2 and ∃1 respectively. As
mentioned earlier, the notions of PLω-validity and FOLω-validity are the usual
ones; so, for instance, ∃3 �FOLω ∃2 and {p, q} 2PLω r. We can now compare how
Φ1 and Φ2 respect validity for this fragment of English. For brevity, we use
(as above) the symbol ∴ as an inference marker, we denote validity by 1 and
invalidity by 0 (for each of the three notions: validity in English, FOLω-validity
and PLω-validity), we denote the empty set by ∅, and omit curly brackets around
set terms. The following 31-row table summarises the validity/invalidity facts.
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English argument valid? Φ1-formalisation PLω-valid? Φ2-formalisation FOLω-valid?

∅ ∴ A 0 ∅ ∴ p 0 ∅ ∴ ∃3 0
∅ ∴ B 0 ∅ ∴ q 0 ∅ ∴ ∃2 0
∅ ∴ C 0 ∅ ∴ r 0 ∅ ∴ ∃1 0
A ∴ ∅ 0 p ∴ ∅ 0 ∃3 ∴ ∅ 0
B ∴ ∅ 0 q ∴ ∅ 0 ∃2 ∴ ∅ 0
C ∴ ∅ 0 r ∴ ∅ 0 ∃1 ∴ ∅ 0
A,B ∴ ∅ 0 p, q ∴ ∅ 0 ∃3,∃2 ∴ ∅ 0
B, C ∴ ∅ 0 q, r ∴ ∅ 0 ∃2,∃1 ∴ ∅ 0
A, C ∴ ∅ 0 p, r ∴ ∅ 0 ∃3,∃1 ∴ ∅ 0
A,B, C ∴ ∅ 0 p, q, r ∴ ∅ 0 ∃3,∃2,∃1 ∴ ∅ 0
A ∴ A 1 p ∴ p 1 ∃3 ∴ ∃3 1
B ∴ A 0 q ∴ p 0 ∃2 ∴ ∃3 0
C ∴ A 0 r ∴ p 0 ∃1 ∴ ∃3 0
A,B ∴ A 1 p, q ∴ p 1 ∃3,∃2 ∴ ∃3 1
B, C ∴ A 0 q, r ∴ p 0 ∃2,∃1 ∴ ∃3 0
A, C ∴ A 1 p, r ∴ p 1 ∃3,∃1 ∴ ∃3 1
A,B, C ∴ A 1 p, q, r ∴ p 1 ∃3,∃2,∃1 ∴ ∃3 1

A ∴ B 1 p ∴ q 0 ∃3 ∴ ∃2 1
B ∴ B 1 q ∴ q 1 ∃2 ∴ ∃2 1
C ∴ B 0 r ∴ q 0 ∃1 ∴ ∃2 0
A,B ∴ B 1 p, q ∴ q 1 ∃3,∃2 ∴ ∃2 1
B, C ∴ B 1 q, r ∴ q 1 ∃2,∃1 ∴ ∃2 1
A, C ∴ B 1 p, r ∴ q 0 ∃3,∃1 ∴ ∃2 1
A,B, C ∴ B 1 p, q, r ∴ q 1 ∃3,∃2,∃1 ∴ ∃2 1

A ∴ C 1 p ∴ r 0 ∃3 ∴ ∃1 1
B ∴ C 1 q ∴ r 0 ∃2 ∴ ∃1 1
C ∴ C 1 r ∴ r 1 ∃3 ∴ ∃1 1
A,B ∴ C 1 p, q ∴ r 0 ∃3,∃2 ∴ ∃1 1
B, C ∴ C 1 q, r ∴ r 1 ∃2,∃1 ∴ ∃1 1
A, C ∴ C 1 p, r ∴ r 1 ∃3,∃1 ∴ ∃1 1
A,B, C ∴ C 1 p, q, r ∴ r 1 ∃3,∃2,∃1 ∴ ∃1 1

From the table, we see that Φ1 agrees with English validity/invalidity for 26 of
the 31 arguments, whereas Φ2 agrees with it for all 31 of the 31 arguments. It
is in this sense that Φ2 is a better formalisation than Φ1. More precisely, (i)
there is no argument in this fragment of English for which the values in the
second and fourth columns are identical but the values in the second and sixth
columns are distinct; and (ii) there is at least one argument in this fragment of
English for which the values in the second and sixth columns are identical but
the values in the second and fourth are distinct. The �rst-order formalisation
Φ2 is therefore better than the propositional formalisation Φ1�for this tiny
fragment of English and so far as respecting logical consequence is concerned.

Generalising to formalisation functions de�ned on all of English, suppose
that Φ1 : Sen(E) → Sen(L1) and Φ2 : Sen(E) → Sen(L2). We say that
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Φ2 ≥ Φ1 just when, for all subsets P of Sen(E) and all c in Sen(E) (or c = the
empty set),8 if the biconditional

P ∴ c is valid if and only if Φ1(P ) �L1 Φ1(c)

holds then so does the biconditional

P ∴ c is valid if and only if Φ2(P ) �L2 Φ2(c)

(Throughout this paper, we write Φ(P ) for {Φ(x) : x ∈ P} and similarly for
the setwise image of other maps.) This de�nition makes precise the previous
paragraph's more informal description. We write Φ2 ∼ Φ1 if both Φ2 ≥ Φ1 and
Φ1 ≥ Φ2. It is easily checked that ≥ is a preorder on the class of formalisation
functions;9 it is also easily checked that it is not a linear order.

On the basis of our toy example, one might conclude that, for the fragment
of English consisting of A, B and C, �rst-order formalisations are superior to
propositional ones as far as mirroring logical consequence is concerned. Yet
that conclusion would be too swift. We showed that one �rst-order formalisa-
tion, viz. Φ2, implicationally outperforms a particular candidate propositional
formalisation function, viz. Φ1. Yet how do we know that Φ2 implicationally
outperforms all propositional formalisations (for this fragment)? Could not
some other propositional formalisation match Φ2?

It could. The following formalisation Φ3 : {A,B,C} → Sen(PLω), does the
job:

Φ3(A) = p ∧ q ∧ r
Φ3(B) = p ∧ q
Φ3(C) = p

Φ3 perfectly captures the implicational structure of our fragment of English,
since Φ3(A) �PLω Φ3(B),Φ3(B) �PLω Φ3(C) and {Φ3(B),Φ3(C)} 2PLω Φ3(A).
Restricting to {A,B,C} we see that Φ3 ∼ Φ2. In fact, for any �rst-order
formalisation Ψ restricted to this fragment, Φ3 ≥ Ψ.

To sum up: a propositional formalisation is available for this toy example
that does just as well as or better than any �rst-order formalisation. What
about the general case? What if the implicational structure we are interested
in is not that of a small fragment of English, but all of it? Is it not plausible
that some �rst-order formalisation will be superior to all available propositional
formalisations?10

8Omitting the empty argument, i.e. the case in which P = ∅ = c.
9That is, ≥ is re�exive and transitive.

10To forestall misunderstanding, here and throughout we are looking for a single proposi-
tional formalisation that does just as well as Ψ. In other words, we �x the formalisation of each
sentence and then consider how well this formalisation respects the validity or invalidity (as
the case may be) of arguments involving these sentences compared to some other formalisa-
tion. If we were allowed to pick a di�erent formalisation function for each di�erent argument,
then trivially a propositional formalisation could not be improved upon, for an uninteresting
reason. In that case, if argument A is valid, we can simply formalise all A's premises and its
conclusion as p; if on the other hand A is invalid, formalise each of its premises as p and its
conclusion as q. The point is that, as standard, we do not allow the formalisation of a given
sentence to vary from argument to argument.
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4 Propositional vs �rst-order logic

Surprisingly, the answer is no, as we prove in this section. We assume for sim-
plicity that any given English argument is either valid or invalid. More precisely,
consider the set of English arguments, i.e. the arguments whose premise set is
a subset of Sen(E) and whose conclusion is an element of Sen(E) or empty.11

In §4, we assume that every argument in this set is valid or invalid, as the case
may be. In §5, we justify this assumption, explaining in detail why it holds
with little loss of generality. In §6 we compare propositional logic with other
logics than �rst-order logic. In §7, the paper's philosophical pay-o�, we draw
some philosophical consequences from our technical discussion. The appendices
generalise the §4 results and supply some further formal details.

Suppose that L1 and L2 are two logics, with respective sets of sentences
Sen(L1), Sen(L2) and respective consequence relations �L1

,�L2
. The map

j : Sen(L1) → Sen(L2) is a consequence homomorphism just when, for all
Γ ⊆ Sen(L1) and δ ∈ Sen(L1),12

Γ �L1
δ if and only if j(Γ) �L2

j(δ).

Equivalently, j : Sen(L1) → Sen(L2) is a consequence homomorphism when,
for all Γ ⊆ Sen(L1) and δ ∈ Sen(L2),

(i) if Γ �L1 δ then j(Γ) �L2 j(δ);

(ii) if Γ 2L1
δ then j(Γ) 2L2

j(δ).

A consequence isomorphism is a bijection j : Sen(L1)→ Sen(L2) which is also
a consequence homomorphism. Notice that if j is a consequence isomorphism
then so is j−1 : Sen(L2) → Sen(L1). A consequence embedding is an injective
consequence homomorphism.

The main fact we cite rather than prove is:

Fact Any two countably in�nite atomless Boolean algebras are iso-
morphic (as Boolean algebras).

This fact is very well known and the familiar back-and-forth argument for it will
not be rehearsed here; see for example chapter 16 of Givant & Halmos (2009) for
a painstaking presentation. We use Fact to establish the �rst result, probably
known to Tarski as early as the 1930s.13

11Excluding the empty argument, a quali�cation henceforth understood. For presentational
simplicity, we speak as if conclusions are non-empty. Strictly speaking, whenever we write say

Γ ∴ δ where Γ ⊆ Sen(L1) and δ ∈ Sen(L1),

this should be understood as saying either that Γ is empty and δ ∈ Sen(L1), or that Γ is
non-empty and the conclusion is either an element of Sen(L1) or is empty.

12From a model-theoretic perspective, we are thus treating � and 2 as relations. By de�ni-
tion, j(Γ) = {j(γ) : γ ∈ Γ}.

13Though I have not been able to identify an exact statement in his works or anyone else's.
Note in passing that uncountably in�nite atomless Boolean algebras of the same cardinality
need not be isomorphic (as Boolean algebras).
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Proposition 1 There is a consequence isomorphism j : Sen(FOLω)→ Sen(PLω).

Proof. Let FOLω/�FOLω be the Boolean algebra of FOLω quotiented by �FOLω -
equivalence; this is known as the Lindenbaum algebra of FOLω. Two elements
[γ1] and [γ2] of this Boolean algebra are equal if and only if �FOLω γ1 ↔ γ2.
Join, meet and complement are de�ned in FOLω/�FOLω as usual:

[γ1] ∨ [γ2] = [γ1 ∨ γ2]
[γ1] ∧ [γ2] = [γ1 ∧ γ2]
[γ] = [¬γ],

where we are using the symbols ∧,∨ ambiguously, as customary. Similarly de�ne
PLω/�PLω , the Boolean algebra of PLω quotiented by �PLω -equivalence.

14

Clearly, FOLω/�FOLω and PLω/�PLω are countably in�nite Boolean algebras,
since Sen(FOLω) and Sen(PLω) are countably in�nite, and the number of their
equivalence classes when quotiented by their respective logical consequence rela-
tions is in each case in�nite. Also, FOLω/�FOLω and PLω/�PLω are both atomless. To
see this, suppose that [γ] were an atom of FOLω/�FOLω , for some γ ∈ Sen(FOLω)
such that γ 2FOLω ⊥. Let δ be ∃xFx where F does not appear in γ.15 By
the Craig Interpolation Theorem for FOLω, γ 2FOLω δ and γ 2FOLω ¬δ. Thus
[⊥] < [γ ∧ δ] < [γ] in the Boolean algebra FOLω/�FOLω . An analogous argument
works for PLω/�PLω , using the Craig Interpolation Theorem for PLω (let δ be p
where p does not appear in γ). Note in passing that for any γ ∈ Sen(FOLω),
there are countably in�nitely many sentences �FOLω -equivalent to it; similarly
for PLω.

The up-to-isomorphism uniqueness of countably in�nite atomless Boolean
algebras, expressed in Fact, implies that there is a Boolean algebra isomorphism
i : FOLω/�FOLω → PLω/�PLω . Now de�ne j : Sen(FOLω) → Sen(PLω) so that j is
bijective and respects equivalence classes, i.e. for all γ1, γ2 ∈ FOLω,

[j(γ1)] = [j(γ2)] i� [γ1] = [γ2]

(The �rst identity is in PLω/�PLω and the second in FOLω/�FOLω .) Given the exis-
tence of a Boolean isomorphism i, the existence of such a j is pretty immediate,
since all the equivalence classes in both Sen(PLω) and Sen(FOLω) are countably
in�nite. In fact, if bk : [γ]→ [i(γ)] is a bijection with domain the kth element of
FOLω/�FOLω for k ∈ ω we may de�ne j =

⋃
k∈ω bk. j can be thought of as a lift

of i.
It remains to check that j is a consequence isomorphism. We �rst show this

for �nite premise sets before proceeding to the general case.
For γ1, · · · , γn, δ ∈ Sen(FOLω),

{γ1, · · · , γn} �FOLω δ
i� γ1 ∧ · · · ∧ γn ≤ δ in FOLω/�FOLω

14For a bit more detail on how to do this, see e.g. Hinman (2005, pp. 74-9).
15Recall that FOLω contains a countable in�nity of predicate and function symbols.
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i� i(γ1) ∧ · · · ∧ i(γn) ≤ i(δ) in PLω/�PLω
i� {j(γ1), · · · , j(γn)} �PLω j(δ)

by the construction of i and j and the meaning of ≤ in the Boolean algebras
FOLω/�FOLω and PLω/�PLω respectively.

Turning to the general case, suppose �rst that Γ ⊆ Sen(FOLω) and δ ∈
Sen(FOLω) with Γ �FOLω δ.

(1) Γ �FOLω δ assumption
(2) {γ1, · · · , γn} �FOLω δ from (1) by compactness of �FOLω , for some {γ1, · · · , γn} ⊆ Γ
(3) {j(γ1), · · · , j(γn)} �PLω j(δ) from (2) by the �nite-case argument
(4) j(Γ) �PLω j(δ) from (3) since {j(γ1), · · · , j(γn)} ⊆ j(Γ)

Suppose alternatively that Γ 2FOLω δ. In that case:

(1) Γ 2FOLω δ assumption
(2) for all {γ1, · · · , γn} ⊆ Γ, {γ1, · · · , γn} 2FOLω δ from (1) by {j(γ1), · · · , j(γn)} ⊆ j(Γ)
(3) for all {j(γ1), · · · , j(γn)} ⊆ j(Γ), {j(γ1), · · · , j(γn)} 2PLω j(δ) from (2) by the �nite-case argument
(4) j(Γ) 2PLω j(δ) from (3) by compactness of �PLω

We have shown that j is a consequence isomorphism. �

We now draw a corollary from the proposition just proved.

Proposition 2 Let Φ : Sen(E) → Sen(FOLω) be a formalisation function.
Then there is a formalisation function Φj : Sen(E)→ Sen(PLω) such that, for
any P ⊆ Sen(E) and c ∈ Sen(E), Φ(P ) �FOLω Φ(c) i� Φj(P ) �PLω Φj(c).

Proof. Given Φ : Sen(E) → Sen(FOLω) let Φj : Sen(E) → Sen(PLω)
be the composition of Φ with j as given in Proposition 1, i.e. Φj = j ◦ Φ.
Diagrammatically:

E

FOLω PLω

��

Φ

//j ��

Φj

The result follows since j is a consequence isomorphism. �

As a corollary of Proposition 2, we obtain:

Theorem 3 Let Φ1 : Sen(E)→ Sen(FOLω) be a formalisation function. Then
there is a formalisation function Φ2 : Sen(E)→ Sen(PLω) such that Φ2 ∼ Φ1.
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Proof. De�ne Φ2 as Φj1, i.e. Φ2 = j ◦ Φ1 where j is the above Boolean
isomorphism. Since 〈Sen(FOLω),�FOLω 〉 and 〈Sen(PLω),�PLω 〉 are consequence-
isomorphic structures, it is immediate that, for P ⊆ Sen(E) and c ∈ Sen(E),
the biconditional

P ∴ c is valid if and only if Φ1(P ) �FOLω Φ1(c)

obtains just when the biconditional

P ∴E c is valid if and only if Φ2(P ) �PLω Φ2(c)

does. The material equivalence of these biconditionals is exactly the condition
Φ2 ∼ Φ1. �

Consequently, for any �rst-order formalisation some propositional formali-
sation respects English implication as well as it. Since the converse of Theorem
3 is immediate, we also see that for any given propositional formalisation func-
tion there is a �rst-order formalisation that matches it in this same regard. To
put it less precisely but more strikingly: if all we are interested in is preserv-
ing the implicational structure of English�whatever it may be�then as a class
propositional formalisations are just as good as �rst-order ones.

Two observations are in order. First, a feature of the standard proof of Fact
is that the isomorphism between two atomless countably in�nite algebras B1 and
B2 may be recursively constructed given a recursive enumeration of the domains
of B1 and B2. So given a formalisation function Φ1 : Sen(E) → Sen(FOLω)
and a recursive speci�cation of Sen(E) and Sen(FOLω), can one recursively
specify a formalisation function Φ2 : Sen(E) → Sen(PLω) such that Φ2 ∼ Φ1?
No: the consequence isomorphism j in Proposition 1 is not recursive. The
reason is that j must map FOLω-tautologies to PLω-tautologies, since it maps
a sentence of FOLω entailed by any other FOLω-sentence to a sentence of PLω
entailed by any other PLω-sentence. So if j were recursive, one could apply
it to an arbitrary sentence α of FOLω to obtain a sentence j(α) of PLω whose
status as a PLω-tautology is decidable,16 and thereby decide whether α is an
FOLω-tautology. But by Church's Theorem, there is no decision procedure for
being an FOLω-tautology, contradicting the assumption that j is recursive.

This conclusion is compatible with the fact that the isomorphism between
two atomless countably in�nite algebras B1 and B2 is recursively constructible
given a recursive enumeration of their domains, as long as the enumeration of
the two domains' elements presents them in a canonical way, i.e. as strings
in the language of Boolean algebra. Sentences of FOLω however do not wear
their place in FOLω's Lindenbaum algebra on their sleeve. For example, no
recursive procedure exists for determining whether an arbitrary FOLω-sentence
corresponds to a top or bottom element of this algebra, that is, whether it
corresponds to the elements [∃xFx]∨[∃xFx] or [∃xFx]∧[∃xFx] thus or similarly
presented.

16As there is a decision procedure for the property of being a PLω-tautology, e.g. the truth
table test.
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A second observation is that PLω is the smallest propositional logic for which
Proposition 1 holds. This follows from the fact that PLn (i.e. propositional logic
with a �nite number n of atoms) has a �nite implicational structure, whereas
FOLω contains in�nite consequence chains; e.g. consider the sequence consisting
of the �rst-order formalisations of `There is at least one thing', `There are at
least two things', `There are at least three things', .... The same applies to
Theorem 3, since English also contains an in�nite consequence chain, as the
example in the previous sentence also illustrates.

5 Natural-language validity

In §4, we took the implicational structure of English as given and, taking English
as our representative natural language, assumed that every English argument is
valid or invalid.17 (For the equation of English with natural language, see the
last paragraph of §6. To repeat, `English' as understood here includes technical
English.) Two questions may be raised about the notion of validity used thus
far. First, does English really have a unique consequence relation? Second,
what notion of consequence do we have in mind? We take these questions in
turn.

5.1 The consequence relation?

It may be clear that `Felix is a cat, therefore there is a cat' is a valid argument,
whereas `Felix is a cat, therefore there is a dog' is not. But is every English
argument valid or invalid? Is there really such a thing as the implicational
structure of English, so that every English argument is valid or invalid?

The question is a deep and important one. Fortunately, we need not answer
it here, since we are interested in how well various logics fare at respecting
some target implicational structure or other. As long as there is some such clear
target notion, the discussion can get o� the ground and our results in§4 and
their extensions in Appendix A proved. We consider three views about validity
in English, which illustrate this point. (The views are not intended as exclusive
or exhaustive�though the �rst and second are in fact exclusive.)

According to the �rst view, every English argument is either valid or invalid
(but not both). On this view, the theorems of §4 and their generalisation in
Appendix A apply straightforwardly.

Naturally, di�erent theorists will disagree about what that consequence re-
lation is. Some argue that it's best modelled by �rst-order logic, others by a
free logic, and still others by second-order logic; some would impose a require-
ment of relevance whereas others wouldn't; and so on. On this view, all such
disagreements are about what the unique notion of English consequence is.

17By an English argument we mean a premise set consisting of declarative English sentences
and a conclusion that is also a declarative English sentence. As noted in §3, we also allow
empty premise sets and conclusions (though in §3 we omitted the argument with empty
premise set and concludion, for simplicity).
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According to the second view, for any given English argument A, either (i)
A is determinately valid, or (ii) A is determinately invalid, or (iii) A's validity
is indeterminate. In contrast to the �rst view, this second view insists that
the third category (iii) is instantiated. A formalisation respects English's im-
plicational structure if any formalisation of a valid argument is valid and any
formalisation of an invalid argument is invalid. In other words, as long as the
formalisation respects the determinate cases, the indeterminate cases can fall
either way. Our results in §4 (and Appendix A) apply to all such logics. The
recipe is simple: arbitrarily assign validity values (`valid' or `invalid') to all the
neither valid nor invalid English arguments.18

According to the third and �nal view, there is no such thing as the implica-
tional structure of English; there are only various implicational structures�note
the plural�that result from looking at English through a particular theoretical
lens, or that arise in a particular context, each of them as good as any other.
The debate between a model-theoretic and a proof-theoretic analysis is on the
�rst view a debate about the nature of the one true consequence relation. Yet
from this third perspective, each analysis could be seen as an equally compelling
account of natural-language consequence. Depending on how exactly it is un-
derstood, this third view is then tantamount to logical pluralism.19

Relatedly, some logicians stress the relativity of validity to prevailing con-
textual standards. For example, Rum�tt (2011 & ch. 2 of 2015) argues that
an implication such as `This body so accelerating, therefore a force is acting on
it' is valid according to one standard (that of theoretical physics) but not an-
other (the broadest standard, typically applied by logicians). As Rum�tt sees
it, there are a great many relations of consequence in natural language, and
logic is concerned with the general laws obeyed by all of them.

On the third view, then, the results proved in §4 (and those in Appendix

18Suppose that Φ1 agrees with Φ2 on all determinate cases of validity and invalidity, but
that Φ1 formalises some indeterminately valid arguments as indeterminate, whereas Φ2 for-
malises all arguments as determinately valid or invalid. One might conclude that Φ1 is a
better formalisation than Φ2. Since virtually all standard logics viewed from within a clas-
sical metatheory are `consequence-bivalent', meaning that for any given premise set Γ and
conclusion δ either Γ implies δ or Γ does not imply δ, we ignore this possibility in what fol-
lows. (Even standard many-valued logics have this feature, since they typically possess a set
of designated truth-values; an argument is valid if it preserves this set, and invalid otherwise.)
The most obvious example of a logic not assumed by its proponents to be consequence-bivalent
is intuitionistic logic. Although in intuitionistic logic viewed from a classical metaperspective

whether a premise implies a conclusion is a determinate fact, intuitionistic logic as under-

stood by an intuitionist herself cannot be assumed to be consequence-bivalent. That said,
intuitionistic logic is not an example of a logic to which one could apply the stronger success
condition just mooted. The reason is that intuitionists themselves cannot take any particular
argument to be neither valid nor invalid, on pain of contradiction; nor, by the same token,
can they claim that some unspeci�ed argument or other is neither valid nor invalid. Though
they refrain from asserting that every argument is determinate, intuitionists may not go so
far as to assert that there are indeterminate arguments.

19Beall & Restall (2006) and Shapiro (2014) defend di�erent versions of logical pluralism.
A slightly di�erent vein within analytic philosophy takes ordinary language to have no single
exact logic: for a relatively early defence, see Strawson (1950) and (1952, pp. 56-7 & 230-2);
for a more recent one, see Glanzberg (2015). For more monism versus pluralism, see Gri�ths
& Paseau (forthcoming)
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A) should be understood from within a particular theoretical or contextual
perspective. Suppose you adopt theoretical perspective T1 (alternatively, some
contextually-determined standard), so that your resulting notions of validity
and invalidity for English arguments are validityT1

and invalidityT1
. You may

run the arguments in §4 to convince yourself that propositional logic is just
as good as �rst-order logic at capturing the implicational structure of English,
understood à la T1. Another logician, looking at English implication from a
distinct theoretical perspective T2, will take the class of validities and invalidities
to be distinct from yours. Yet she too may run the same arguments from her own
perspective, to convince herself that propositional logic is no worse than �rst-
order logic at capturing the implicational structure of English, understanding
this structure according to her own precepts, that is, à la T2.

Although these three views do not exhaust all the possibilities, collectively
they represent the great majority of perspectives in contemporary philosophy
of logic.

5.2 The relation's nature

Having examined whether the results in §4 (and those in Appendix A) assume
a unique determinate notion of English validity, we turn �nally and much more
brie�y to whether they assume anything about its nature. The answer is that
they assume nothing about the nature of the consequence relation, other than
that its left-relata are sets of declarative English sentences and that its right-
relata are declarative English sentences. A consequence relation might for in-
stance be formal, in that it turns on the formal features of the sentences in-
volved, consequence being understood as formal necessitation. Or it might be
conceptual, in that it turns on the concepts expressed, consequence being un-
derstood as conceptual necessitation. Or it might be metaphysical, in that it
turns on metaphysical possibility or impossibility, consequence being understood
as metaphysical necessitation.20 Our results apply to all these conceptions of
consequence and more, as they make no substantive assumptions about its na-
ture.21 Even the assumption that logical consequence relates sets of declarative
sentences and a declarative sentence is not strictly necessary; for example plu-
ral logicians, who see consequence as relating declarative sentences (construed
plurally) and a declarative sentence may easily paraphrase our results.

This concludes our discussion of whether the technical results in §4 and their
generalisation in Appendix A assume a unique notion of English consequence
and whether they assume anything about its nature. The short answer to the
�rst question is that they don't. More precisely, our results are compatible with

20An argument such as `The ball is red, so it is coloured' is conceptually and metaphysically
valid but not formally valid; `Jack drank some water, so Jack drank some H2O' is metaphysi-
cally valid but conceptually and formally invalid; and `Donna ate and drank, so Donna drank'
is formally, conceptually and metaphysically valid.

21At the end of §4, we noted in passing that English contains in�nite consequence chains.
This holds on pretty much any conception of English consequence, and in any case does not
a�ect the main claims in §4.
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a great many (though not all) forms of logical monism and pluralism. The short
answer to the second question is that they assume virtually nothing about its
nature.

6 Incompactness

The argument in §4 applies to �rst-order logic because of the latter's com-
pactness and truth-functional completeness, as its generalisation in Appendix
A makes clear. The analogue of Proposition 1 fails for an incompact logic.
Whether the analogue of Theorem 3 obtains or fails depends on whether the
consequence relation in English is compact. This section's main concern is to
substantiate the last two claims.

We �rst show that the analogue of Proposition 1 fails for any incompact
logic. In fact, even the weaker claim that there is a consequence homomorphism
j : Sen(L) → Sen(PLω) fails. For suppose that L is an incompact logic with
set of sentences Sen(L). To say that L is incompact is to say that for some
Γ ⊆ Sen(L) and δ ∈ Sen(L),

Γ �L δ but Γfin 2L δ for all �nite Γfin ⊆ Γ

If j : Sen(L)→ Sen(PLω) were a consequence homomorphism, we would have

j(Γ) �PLω j(δ) but j(Γ)fin 2PLω j(δ) for all �nite j(Γ)fin ⊆ j(Γ),

thereby contradicting the compactness of PLω.
Turn next to the analogue of Theorem 3. We cannot here examine, still

less settle, whether the logical consequence relation of English is incompact.
As discussed in §5, this may not even be a well-posed question; the real issue
might be to determine, for each of the several possible precisi�cations of the
notion of logical consequence, whether consequence thus precisi�ed is compact
or incompact. Talk of `the' English consequence relation, used for brevity, should
be understood throughout this paper as discussed in §5. If, for instance, there
is more than one such relation then our discussion applies to each of them.
Maintaining neutrality on whether natural-language consequence (understood
as just prescribed) is compact or incompact, we consider each alternative in
turn.

6.1 English consequence is compact

If English consequence is compact, the arguments in §4, or more precisely their
generalisation in Appendix A, may be easily amended to apply to the set of
all English arguments. The only relevant features of English are: that logical
equivalence is an equivalence relation on the set of declarative English sentences,
Sen(E); that English is truth-functionally complete;22 that Sen(E) is countable

22It is perhaps moot whether the sentential connectives `it is not the case that' and `and'
are truth-functional in ordinary English. Taking English to include the technical vocabulary
of mathematics makes it clearer that English in this sentence is truth-functionally complete.
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(countably in�nite or �nite); and that its consequence relation is compact. Given
these assumptions, the argument set out in Appendix A can be applied to
English, resulting in:

Theorem 4 Assume that Sen(E) is countable, that logical equivalence is an
equivalence relation on Sen(E), that English is truth-functionally complete, and
that the consequence relation in English is compact. Then there is a propositional
formalisation Φ : Sen(E) → Sen(PLω) that perfectly mirrors the implicational
structure of English.

A minor modi�cation is needed if some English arguments are neither valid
nor invalid. In that case, there is a formalisation Φ : Sen(E)→ Sen(PLω) that
is best-possible in the following sense: if P ∴ c is valid then so is Φ(P ) �PLω
Φ(c), and if P ∴ c is invalid then Φ(P ) 2PLω Φ(c). As mentioned in §5, the
argument for this amended conclusion is a simple amendment of the argument
for Proposition 1.

6.2 English consequence is incompact

Alternatively, suppose that English logical consequence is incompact, so that
there exists at least one valid argument

{E1, · · · , En, · · · } ∴ E∞

where Ei ∈ Sen(E) for i ∈ {1, 2, · · · ,∞} , such that

{En1 , · · · , Enk} ∴ E∞

is not valid for any �nite k, n1, · · ·nk. In that case, Theorem 3's analogue fails
for any incompact logic. An argument many philosophers23 believe witnesses
the incompactness of English is:

E1 = `There is at least one thing.'
E2 = `There are at least two things.'

. . .
En = `There are at least n things.'

. . .
∴

E∞ = `There are in�nitely many things.'

We illustrate the failure of Theorem 3 under the assumption that English
consequence is incompact for the case of countably in�nite second-order logic
SOLω with standard (full) semantics, and more brie�y for the in�nitary logics
Lω1ω and PLω1

ω .24 The language of SOLω has a countable in�nity of: �rst-order

23See e.g. Oliver & Smiley (2013, p. 238), or Yi (2006, p. 262) for a similar example.
24There are other well-known incompact logics of course, e.g. �rst-order logic supplemented

with the generalised quanti�er `Most Φ are Ψ', or various plural logics, or other higher-order
logics.
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variables, second-order predicate and function variables of all arities, non-logical
predicates and function symbols of all arities (including arity 0, i.e. constants).
In interpreting SOLω, second-order n-place predicate variables range over all n-
tuples from the domain of interpretation, and similarly for functional variables.
Lω1ω extends FOLω by allowing countably in�nite conjunctions and disjunctions
of well-formed formulas, and extends FOLω's semantics in the obvious way. PLω1

ω

extends PLω by allowing countably in�nite conjunctions and disjunctions of well-
formed formulas, and extends PLω's semantics in the obvious way. SOLω, Lω1ω

and PLω1
ω thus understood are all incompact.

Now let γ1 be the second-order (indeed �rst-order) sentence ∃x(x = x), γ2
the sentence ∃x∃y(x 6= y), and so on for all �nite n, and let γ∞ be the second-
order sentence

∃R(R is functional ∧R is injective ∧ ¬R is surjective)

where `R is functional' abbreviates ∀x∃!yRxy, `R is injective' abbreviates ∀x∀y∀z((Rxz∧
Ryz)→ x = y) and `R is surjective' abbreviates ∀y∃xRxy.

Suppose next that Φ1 : Sen(E) → Sen(SOLω) is a formalisation function
such that Φ(Ei) = γi for i ∈ {1, 2, · · · , n, · · · ,∞}. Φ1 thus respects the validity
of the English argument

{E1, · · · , En, · · · } ∴ E∞

and the invalidity of all the English arguments

{En1
, · · · , Enk} ∴ E∞

for any �nite k, n1, · · · , nk. If there were a formalisation function Φ2 : Sen(E)→
Sen(PLω) such that Φ2 ∼ Φ1, we would have Φ2({E1, · · · , En, · · · }) �PLω
Φ2(E∞) and Φ2({En1 , · · · , Enk}) 2PLω Φ2(E∞) for all �nite subsets {En1 , · · · , Enk}
of {E1, · · · , En, · · · }, contradicting PLω's compactness. Thus the analogue of
Theorem 3, that if Φ1 : Sen(E) → Sen(SOLω) then there is a Φ2 : Sen(E) →
Sen(PLω) such that Φ2 ∼ Φ1, fails, on the assumption that English consequence
is incompact. Under the assumption of incompactness, English is implication-
ally too `capacious' for PLω.

Similarly for Lω1ω: formalise Ei as γi for i ∈ {1, 2, · · · , n, · · · } and E∞
as their conjunction, which exists in Lω1ω since this logic's set of sentences is
closed under countable conjunction. It is easy to see that the resulting Lω1ω-
formalisation perfectly captures the implicational structure of the English frag-
ment under consideration. Indeed, abstractly conceived, the fragment's conse-
quence structure is that of an `inverted ω-sequence plus limit', i.e. the structure

E1

E2

. . .
En
. . .
E∞
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in which if one sentence is below another, then the �rst is strictly logically
stronger than the second, and the sentences E1, · · · , En, · · · tend to E∞, in the
sense that no sentence logically implies all the En for �nite n but not E∞.

25

Similarly for PLω1
ω , formalising E1 as p, E2 as p∧q, ..., and E∞ as their in�nitary

conjunction.
We note in passing that Lω1ω and SOLω are not consequence-isomorphic,

nor are Lω1ω and SOLκ for any cardinal κ. (The language of SOLκ has κ �rst-
order variables, κ second-order predicate and function variables of all arities, κ
non-logical predicates and function symbols of all arities, and is interpreted in
the same way as SOLω.) This is because Lω1ω but not SOLκ has the following
property: for any countable subset Γ of the set of sentences of the language,
there is a sentence δ that is logically equivalent to Γ, i.e. Γ � δ and {δ} � γ
for all γ ∈ Γ. (In terms of models: Γ and δ share the same models.) That
this property is preserved under consequence-isomorphism is immediate. It is
equally evident that Lω1ω and PL

ω1
ω have the property, since given Γ we may

take δ to be the conjunction of Γ's countably many elements. SOLκ however
lacks the property, as Appendix C demonstrates.

Clearly, any logic closed under countable conjunction can play the role of
Lω1ω in the argument just given, including PLω1

ω . The analogue of the Schröder-
Bernstein theorem in this context would be that if L1 and L2 are consequence
isomorphic i� there is a consequence embedding from L1 to L2 as well as a
consequence embedding from L2 to L1. Without knowing whether such a re-
sult holds, one cannot conclude from the fact that Lω1ω and SOLω (or PLω1

ω

and SOLω) are not consequence-isomorphic that at least one of them does not
consequence-embed into the other.26

The argument for the failure of Theorem 3's analogue when FOLω is re-
placed by SOLω or Lω1ω or PLω1

ω applies to any incompact logic whose in-
compactness is witnessed by a countably in�nite premise set, in particular
any countable and incompact logic. For suppose {δ1, · · · , δn, · · · } �L δ∞ but
{δn1 , · · · , δnk} 2L δ∞ for all �nite {δn1 , · · · , δnk} ⊆ {δ1, · · · , δn, · · · }, where
δ1, · · · , δn, · · · , δ∞ ∈ Sen(L). Then no propositional formalisation can match
the formalisation function Φ1 : Sen(E) → Sen(L) given by Φ(Ei) = δi for
i ∈ {1, 2, · · · , n, · · · ,∞}. The argument however does not generalise to in-
compact logics whose incompactness is witnessed only by uncountably in�nite
premise sets. Such logics are hardly ever used as codomains of formalisation
maps, so perhaps little generality is lost here. The further claims that second-
order logic, Lω1ω and PL

ω1
ω perfectly capture the implicational structure of the

fragment of English consisting of arguments drawn from {E1, · · · , En, · · · , E∞}
depend on the particular example chosen�that is, on the fact that the English
argument at the start of §6.2 has the structure of an `inverted ω-sequence plus
limit'. The argument also generalises if we replace PLω with the propositional
logic PLκ for any cardinal κ (i.e. propositional logic with κ atoms), which is
compact. Moreover, it generalises to other codomains than PLκ, e.g. FOLκ for

25An alternative characterisation of the notion of `tending to' for formal languages is that
the sentence E∞ and the set {En : n < ω} have the same models

26See Gri�ths & Paseau (forthcoming) for more details.

18



in�nite κ. The upshot is that if natural-language consequence (or its appropri-
ate precisi�cation) is incompact then an incompact logic such as SOLω, Lω1ω or
PL

ω1
ω implicationally matches it better than propositional or �rst-order logic.
The only feature of English we relied on throughout the paper is that the set

Sen(E) of English sentences is countably in�nite. Any natural language with a
�nite lexicon and whose formation rules allow for sentences of arbitrarily large
�nite length shares this feature with English. Some of the results in this section
were conditional on English's truth-functional completeness and its compactness
or incompactness, as the case may be. As the reader may verify, the results in
§4 and in Appendix A go through easily on the assumption that |Sen(E)| is
�nite; the arguments only become simpler on this assumption. Some related
results also go through on other assumptions; for example, one may formulate
an analogue of Appendix A's Theorem 7 for PLκ in which κ > ω if English
is construed as a compact language of cardinality κ. But results along these
lines seem like academic exercises, since English is in fact a countable language.
Presumably, all languages humans have ever grasped or will ever grasp are
also countable. Of course, mathematicians investigate in�nitary languages; but
the language in which all of mathematics is ultimately done is countable: we
use a countable language�e.g. the language of ZFC�to investigate in�nitary
languages. This is why we have taken Sen(E) to be countable. (And note once
more that Sen(E) includes not just the sentences of ordinary English but of its
technical adjuncts as well, including mathematical language.)

7 Philosophical signi�cance

Several philosophical morals may be drawn from our discussion. I extract four,
the last of which is conditional. Collectively, the morals to reach a better under-
standing of how �rst-order logic improves on propositional logic and how these
two logics relate to others, including second-order logic in particular.

7.1 The platitude

First, the seeming platitude that �rst-order logic better respects the implica-
tional structure of English than propositional logic is simply not true. Theorem
3 in §4 puts paid to that thought. Many philosophers and logicians emphasise
the importance of preserving implicational structure in formalisations. See for
example, among many others, the quotation by Stewart Shapiro in §2 which
suggests that this is all there is to good formalisation (construing formal im-
plication model-theoretically), or Davidson's reply to Cargile (Davidson 1980,
pp. 137-146), which comes close to the same suggestion. If the suggestion
were true�if there were no more to formalisation than respecting implicational
structure�it would be impossible to justify the thought that �rst-order logic
improves on propositional logic as a formalisation tool.

Our discussion does not, however, preclude �rst-order logic from implica-
tionally outperforming propositional logic when other constraints are in place.
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There are other criteria of good formalisation (sometimes called criteria of ade-
quate formalisation) besides capturing implicational structure. One such might
be respecting grammatical form. To gloss this very roughly, a formalisation Φ
respects the grammatical form of an English sentence s if the syntax of the
formal sentence Φ(s) in some sense re�ects the syntax of the sentence s.27

Whatever exactly they might be, as soon as other constraints on formal-
isation are in play, �rst-order formalisations may implicationally outperform
propositional ones. Recall our opening example of an argument: `Felix is a cat,
therefore there is a cat'. This English argument is evidently valid. A grammat-
ical parsing of the argument might be:

Felix︸ ︷︷ ︸
Noun

is a cat︸ ︷︷ ︸
Predicate

, therefore︸ ︷︷ ︸
Inference marker

there︸ ︷︷ ︸
Quanti�er

is a cat︸ ︷︷ ︸
Predicate

.

yielding the �rst-order formalisation

a︸︷︷︸
Constant

F︸︷︷︸
Predicate

∴ ∃x︸︷︷︸
Quanti�er

Fx︸︷︷︸
Predicate

or Fa ∴ ∃xFx as it is more conventionally written. A �rst-order formalisation
grammatically constrained in this manner respects the original English argu-
ment's validity. Contrast a propositional formalisation. A propositional parsing
of the argument closest to its surface grammar is:

Felix is a cat︸ ︷︷ ︸
Sentence 1

therefore︸ ︷︷ ︸
Inference marker

there is a cat︸ ︷︷ ︸
Sentence 2

.

resulting in the propositional formalisation

p ∴ q,

which is not valid. This analysis unfolds an extremely familiar train of thought,
appreciated by all but the most callow student of logic. Yet the key here is
to see it in light of the above results. It is only because formalisations are
usually constrained to respect grammatical form that �rst-order formalisations
mirror the implicational structure of English more faithfully than propositional
ones. Although this conclusion may have the ring of logically informed common
sense, it had not prior to this article been proved. Philosophers who imagine that
formalisation is much less constrained in philosophy than in linguistics should
take note. The conclusion thereby raises a challenge for `�rst-orderists', who
take �rst-order logic to be their foundational logic of choice. If grammatical
constraints are important, why stop at FOL rather than the kind of extensions,
mooted by linguists, that cleave much more closely to the syntax of natural
language?

27How exactly to cash out this thought is tricky. It turns on whether by the grammatical
form of an English sentence we understand its surface grammatical form or something more
theoretical, such as the syntactic form attributed to it by the best theory(ies) of English
syntax.
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On the subject of grammar, an aspect of the usual grammatical routines
(such as the one in the previous paragraph) we employ when formalising into
�rst-order logic is worth highlighting. These routines cannot be divorced from
implicational concerns, for two reasons. First, in deploying the routines we are
often guided by pre-theoretic judgments about what follows from what in the
case at hand. We might well revise grammatically irreproachable formalisations
were they to disagree with entrenched pre-theoretic judgments. A paradigmatic
example is the Davidsonian programme of formalising action sentences, men-
tioned in §2. The programme consciously rejects grammatical appearances for
the sake of an implicationally accurate formalisation. Similarly for the older
Russellian programme which denies, for example, that the formalisation of neg-
ative existentials such as `Pegasus does not exist' is of subject-predicate form
(Russell 1905). Likewise, if most mathematicians were convinced that a mathe-
matical argument is valid (invalid), it would be a constraint on the argument's
formalisation in a su�ciently expressive logic that it be valid (invalid). In such
cases, grammar is secondary to preserving implicational structure.

The second reason is that grammatical formalisation routines have them-
selves been devised with an eye towards implicational structure. For example,
the �rst-order formalisation of `Horses are mammals' as ∀x(Hx → Mx) (to
adapt an example of Davidson's) is no mere matter of respecting surface gram-
matical form. For what in the surface grammar corresponds to the quanti�er
∀? to the variable x? to the material conditional →?28 Past experience with
handling sentences such as `Horses are mammals'�in particular past experience
with their implicational features�heavily in�uences our grammatical routines.
To sum up these two points: our formalisation routines are heavily in�uenced by
implicational considerations, both in particular applications and in their general
contours.

The correct way to understand the platitude that �rst-order logic implica-
tionally outperforms propositional logic is thus that it does so if�and only
if�other constraints on formalisation are in play. One of the ambitions behind
this paper and related work,29 is to try to better understand how one might as-
sess the di�erent desiderata in formalisation. A reasonable �rst step is to try to
isolate their respective contributions. What we have seen is that merely preserv-
ing implicational structure does not allow a line to be drawn between �rst-order
and propositional logic. A question to be pursued in future work is when ex-
actly the grammatical constraint kicks in: To what extent can a propositional
formalisation respect surface grammar and still retain implicational parity with
�rst-order logic?

28One could argue that this formalisation re�ects the theoretical grammatical form. But
theoretical construals of grammatical form are even more infused with implicational-role con-
siderations.

29See my (2015).
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7.2 Semantic theory

Suppose one uses �rst-order logic (or any compact and truth-functionally com-
plete logic�see Appendix A) to give an account of the truth-conditions of En-
glish sentences. Schematically, such an account might proceed as follows: use a
formalisation function Φ to map English sentences to those of FOLω; interpret
FOLω-sentences by means of the interpretation function I; and map the result-
ing interpretations to sets of possible worlds via the function Ext. Thus if s is
an English sentence, Φ(s) is an FOLω-sentence, I(Φ(s)) is its interpretation,30

and Ext(I(Φ(s))) is a set of possible worlds, i.e. a subset or subclass of W ,
where W is the set or class of worlds. Can a propositional logic play the role of
�rst-order logic in such accounts, without loss of theoretical power?31

The §4 results show that, extensionally speaking, propositional logic can
match �rst-order logic. For if we let j ◦ Φ be the formalisation from Sen(E) to
Sen(PLω), where j is a consequence isomorphism from Sen(FOLω) to Sen(PLω)
as in §4, and use I ◦ j−1 to interpret the sentences of Sen(PLω), the resulting
account of English sentences' truth-conditions is the same as the original one,
since I◦j−1(j◦Φ(s)) = I(Φ(s)). Typically, Ext◦I will be constrained to respect
Boolean operations; e.g. the conjunction of two formal sentences is mapped by
Ext ◦ I to the intersection of their conjuncts' Ext ◦ I-images. In that case, the
sets of worlds the �rst-order and propositional accounts associate with English
sentences consist of all the intersections, unions and W -complementations of
the Ext◦I-images of Sen(PLω)'s countably many atoms. From this extensional
point of view, a �rst-order logic-based semantics is no better than a propositional
one.

One might impose further constraints on a semantic theory to discriminate
between �rst-order and propositional accounts. One constraint might be gram-
matical or syntactic: the image under Φ of an English sentence should in some
sense be syntactically akin to the sentence itself. This syntactic/grammatical
desideratum would allow us to discriminate between a �rst-order and a propo-
sitional account, along the lines discussed in §7.1. Another constraint might
be that Ext ◦ I should recursively assign sets of worlds to sentences of the for-
mal language modelling English; or that I should recursively assign meanings to
such sentences. Since the consequence isomorphism j : Sen(FOLω)→ Sen(PLω)
is non-recursive, the recursiveness of the function Ext ◦ I from Sen(FOLω) to
subsets/classes of W is compatible with the non-recursiveness of the function
Ext◦I ◦j−1 from Sen(PLω) to the same codomain. Thus a FOLω-based formal-
isation might respect the recursiveness constraint whereas a PLω-based one fails
it.32 If philosophical semanticists wish to drive a wedge between semantic the-
ories based on �rst-order formalisations and those based on propositional ones,
they must develop arguments along these lines or others for the same conclusion.

30We retain neutrality on what this interpretation is.
31We are not claiming that all semantic accounts take this form; only that some do. For

a brief and accessible introduction to possible world semantics, see chapter 12 of Heim &
Kratzer (2008).

32What exactly it is for a function with codomain the set/class of worlds to be recursive
would have to be spelt out if this idea is to be substantiated.
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7.3 Logic as a tool for discovery and explanation

Our third moral relates our discussion thus far with the role of logic as a tool
for the discovery of consequence relations. When formalising, we often care not
just about preservation in the sense of setting down (however we get them) some
formulas standing in the right formal relations. We also care about elucidation
or discovery, meaning that we care about deploying formal representations that
enable us to learn more about implicational structure. Taking a logic in use as
a tool for discovery, it seems that �rst-order formalisations give us `more bang
for our buck', that is, they allow us to elucidate/discover implicational structure
better than propositional ones.

It seems to me that this observation is along the right lines. But the ob-
servation is best understood in light of the foregoing results. The §4 discussion
a�ords us a more precise understanding of �rst-order logic's superiority as a
tool for the discovery of implicational structure, as opposed to its re�ection
once discovered. We saw at the end of §4 that no consequence isomorphism
from Sen(PLω) to Sen(FOLω) can be recursive. So the mere existence of such
an isomorphism does not amount to our knowing one. In fact, we know that
such an isomorphism cannot be recursively speci�ed. The God's eye view in §4 is
distinct from our perspective as cognitively limited formalisers. Our result thus
shows why �rst-order logic's virtues should be understood in epistemic terms.

A second point is that in using a logic L to discover facts about English
consequence one thing you want to know, at the outset if possible, is whether L
is implicationally capacious enough to model any fragment of English. To take
a very simple example, if PL1 is the fragment of propositional logic with just one
sentence letter, p, then PL1 only has four sentences up to logical equivalence:
p, ¬p, p ∨ ¬p and p ∧ ¬p. Clearly, PL1 is incapable of capturing all but a
very limited set of English arguments: the sparseness of PL1's implicational
structure is an inherent limitation on its ability to model consequence. For
this reason, PL1 could never be an adequate tool for the discovery of all but
very simple small �nite fragments of English's implicational structure. English
simply won't �t into PL1 , so to speak. The general point is that you can use
a logic L as a tool for discovery only if you are con�dent that English (or its
relevant fragment) will �t into L. Such discovery, of course, happens in stages.
It is not as if we somehow intuit consequence facts prior to logical analysis and
thereby infer which logics' implicational structures the structure of English �ts
into. Rather, the process is gradual. We use formalisation procedures tested
on arguments about whose validity/invalidity there is widespread agreement
to discover further implicational facts, which in turn inform our formalisation
procedures. At any stage in this process we can ask whether, given what we
know so far, some logics (or sub-logics) are ruled out as too limited to o�er
an implicationally perfect model of English consequence. The results in §4 and
Appendix A speak to exactly this question.

A �nal epistemic point: suppose you believe that the validity of an English
argument can be explained by its �rst-order formalisation validity (and the ex-
planation of this fact itself). It does not follow that the validity of an English
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argument can be explained just as well by its propositional formalisation's va-
lidity. For all we have said, explanatoriness (or some degree thereof) might
be lost by transforming �rst-order formalisations into consequence-isomorphic
propositional ones, perhaps because proof-theoretic considerations are relevant
to explanation. For example, perhaps the validity of `Felix is a cat therefore
there is a cat' is better explained by the validity of its �rst-order formalisation
Fa ∴ ∃xFx than by that of p ∴ p ∨ q. Suppose for instance that the �rst-order
argument's validity is best explained by appeal to the rule of existential gen-
eralisation. Then this might form part of a better explanation of the original
English argument's validity than an explanation based in part on disjunction
introduction. Sen(PLω)'s ability to mimic Sen(FOLω)'s implicational structure
is thus compatible with a standpoint�requiring further elaboration of course�
that sees �rst-order formalisations as ultimately o�ering better explanations of
the implicational data than propositional ones.

7.4 Second-order logic's transcendence

Our fourth and �nal moral is conditional. Suppose the English consequence re-
lation is incompact (or if you like, following §5: the English consequence relation
seen through a particular theoretical lens, or according to some contextual stan-
dards, is incompact). As we saw in §6, under this assumption a second-order for-
malisation can implicationally outperform all propositional formalisations even
when no other constraints are in place. Proponents of second-order logic laud
its ability to satisfactorily formalise a range of arguments of apparently logical
character that �rst-order logic cannot.33 The satisfactoriness of a formalisation
here refers to its ability to respect English validity, widely regarded as the key
constraint on formalisation, as remarked in §2. We have shown that, under the
assumption of English's incompactness, second-order logic implicationally out-
strips both �rst-order and propositional logic even when no other constraints
are in place. Thus the sense in which second-order formalisations implication-
ally outperform �rst-order ones is stronger than the sense in which �rst-order
formalisations implicationally outperform propositional ones. To put it another
way, second-order logic's implicational structure is more capacious than �rst-
order logic's: the former embeds the latter (since �rst-order logic is a sublogic of
second-order logic) but not the other way round. We are familiar with the fact
that second-order languages' greater expressive richness is intimately connected
to their underlying logic's incompactness.34 Much less familiar, until now, is the
fact that second-order logic is implicationally more capacious than �rst-order
logic. This di�erence is also closely connected to the former being incompact
and the latter compact.

We see then that, implicationally speaking, the gulf between second-order

33A classic statement is by Boolos (1975/1998, p. 49): `...another reason for regarding
second-order logic as logic is that there are notions of a palpably logical character (ancestral,
identity), which can be de�ned in second-order logic (but not �rst-) and which �gure critically
in inferences whose validity second-order logic (but not �rst-) can represent'.

34Shapiro (1991) has an extended discussion.
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logic and �rst-order logic is wider than that between �rst-order and propositional
logic. It would perhaps be an overstatement to call the line of thought just
articuled a new argument for the superiority of second-order logic, even granted
the assumption that English is incompact. But it is certainly a striking feature
of second-order logic's strength.35

35I am grateful to Michael Baumgartner for asking the question that prompted this paper.
Thanks also to audiences at the MCMP, the Cambridge Logic seminar, the Oxford Philosophy
of Mathematics seminar, the Philosophy department at MIT and the universities of Glasgow
and Hambur, the IUSS in Pavia, and Unilog 2018 in Vichy for useful feedback. Particular
thanks are owed to Bruno Whittle, Felix Weitkamper, Matthias Jenny, Owen Gri�ths, Peter
Smith and Rob Leek.
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Appendices

Appendix A generalises §4's results. Appendix B raises a natural technical
question. Appendix C proves a result used in §6.

Appendix A: Generalisation of the §4 results

To generalise §4's Theorem 3, we relax the requirement of countability on FOLω,
and show that it depends only on the compactness of �rst-order logic plus the
fact that it contains the Boolean connectives.

Towards this generalisation, note �rst a consequence of Fact from §4. Though
regularly cited in the literature and easy enough to prove, this consequence is
seldom proved, so we provide its proof here for completeness. Recall that an em-
bedding of Boolean algebras is an injective homomorphism between two Boolean
algebras. Recall also that if B is a Boolean algebra then the Boolean algebra
generated by a set X ⊆ dom(B) is the intersection of all the subalgebras of B
with domain a (proper or improper) superset of X. It is easily veri�ed that the
subalgebra generated by X is countable if X is. (The word `countable' in this
article always means �nite or countably in�nite.)

Proposition 5 Any Boolean algebra B generated by a countable (i.e. �nite or
countably in�nite) set X may be embedded into a/the countably in�nite atomless
Boolean algebra.

Sketch Proof. As is easy to check, any �nite Boolean algebra (of size 2N

for some N) may be embedded into a/the countably in�nite atomless Boolean
algebra.

Suppose then that B is the Boolean algebra generated by the countably in-
�nite set X; B is countably in�nite because X is countable, as earlier observed.
Next consider the �rst-order language of Boolean algebras with the usual func-
tional symbols for join, meet and complement and augmented with constants
cb for each b ∈ B. Let T be the union of the set of axioms of atomless Boolean
algebras, which are all �rst-order expressible, together with the sets

{cb1 6= cb2 : b1, b2 ∈ B s.t. b1 6= b2}
{cb1 ∧ cb2 = cb3 : b1, b2, b3 ∈ B s.t. b1 ∧ b2 = b3}
{cb1 ∨ cb2 = cb3 : b1, b2, b3 ∈ B s.t. b1 ∨ b2 = b3}
{cb1 = cb2 : b1, b2 ∈ B s.t. b1 = b2}.

( 6=, ∧ and ∨ are being used ambiguously, both as function symbols of the formal
language and as operations on B.) Any �nite subset of T is satis�able, the reason
being as earlier that any �nite Boolean algebra may be embedded into a/the
countably in�nite atomless Boolean algebra. So by the compactness theorem
for �rst-order logic, T is satis�able, in a necessarily in�nite domain since B is
in�nite. By the Löwenheim-Skolem Theorem for �rst-order logic and the fact
that T is expressed in a countable language, T has a countably in�nite model
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M, which must be a countably in�nite atomless Boolean algebra. The mapping
b 7→ cMb is an embedding of B intoM. �

Next, call a logic truth-functionally complete if it can express ¬ and ∧; for
notational simplicity, we may assume that such a logic in fact contains ¬,∧ and
∨. If L is a truth-functionally complete logic and X ⊆ Sen(L), de�ne Xtf, the
truth-functional completion of X, as the intersection of all subsets Y of Sen(L)
with the properties (i) X ⊆ Y , (ii) if φ ∈ Y then ¬φ ∈ Y , and (iii) if φ, ψ ∈ Y
then φ ∨ ψ, φ ∧ ψ ∈ Y . (The notion of a truth-functional completion, though
it does not feature in the statement of the next result, is needed for a subtlety
in its proof.) As ever, Sen(E) is the set of sentences of English, including its
technical fragment, which is countably in�nite. In what follows, the cardinality
of Sen(L) is unconstrained.

The relevant analogue of §4's Proposition 1 is now:

Proposition 6 Let L be a compact and truth-functionally complete logic, and
Φ : Sen(E)→ Sen(L) a formalisation function. Write Φ(Sen(E)) for the image
of Sen(E) under Φ. There is then a consequence embedding j : Φ(Sen(E)) →
Sen(PLω).

Sketch Proof. We mimic §4's proof of Proposition 1 as much as possible.
Consider the Boolean algebra L/�L with the usual join, meet and complement
operations. Let S be the subalgebra generated by the set {[Φ(s)] : s ∈ Sen(E)}.
Since Sen(E) is countable, so is {[Φ(s)] : s ∈ Sen(E)}. By Proposition 5, there
is a Boolean algebra embedding i : S → PLω. As in the proof of Theorem 3, we
lift i to an embedding j : (Φ(Sen(E)))tf → Sen(PLω); we call this embedding
j because we will reserve the symbol j for a restriction of j. Observe that the

embedding j must be de�ned on (Φ(Sen(E)))tf rather than (Φ(Sen(E))), since
there may be elements in the domain of S that are not the image of any element
of {[Φ(s)] : s ∈ Sen(E)}. Observe further that j can always be chosen to be
an injection. Unlike in the proof of Theorem 3, however, j cannot always be
guaranteed to be a bijection. The reason is that some equivalence classes of the
domain of the Boolean algebra L/�L may be �nite, and in such cases are injectible
but not bijectible into the respective equivalence classes of PLω/�PLω . The proof
that j is a consequence embedding is the exact analogue of the Theorem 3
argument, here exploiting the compactness of �L. Finally, let j : Φ(Sen(E))→
Sen(PLω) be the restriction of the map j : (Φ(Sen(E)))tf → Sen(PLω) to the
domain Φ(Sen(E)). �

As in §4, we have, as a corollary of Proposition 6:

Theorem 7 Let L be a compact and truth-functionally complete logic, and Φ1 :
Sen(E) → Sen(L) a formalisation function. Then there is a formalisation
function Φ2 : Sen(E)→ Sen(PLω) such that Φ2 ∼ Φ1.

Proof. Analogous to the proof of Theorem 3. De�ne Φ2 as Φj1, i.e. Φ2 = j ◦
Φ1 where j is the consequence embedding in Proposition 6. Since 〈Φ(Sen(E)),�L
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〉 and 〈j(Φ(Sen(E))),�PLω 〉 are consequence-isomorphic structures, the result
follows. �

Thus for any formalisation function Φ into a compact and truth-functionally
complete logic L there is a propositional formalisation that matches it.

We note that the class of compact and truth-functionally logics is very large.
It includes in particular any truth-functionally complete logic with a sound and
complete deductive procedure, e.g. modal logics such as S5 or S4, since compact-
ness is of course an immediate consequence of soundness and completeness.36

Unlike the �rst-order case, however, some propositional formalisations may be
better than all formalisations into L, depending on L. If for instance |Sen(L)|
is a small �nite number then any L-formalisation will be implicationally out-
performed by some propositional formalisation. In contrast to Theorem 3, the
converse of Theorem 6 therefore fails: given Φ1 : Sen(E) → Sen(PLω), there
may be no Φ2 : Sen(E)→ Sen(L) that improves on Φ1.

Appendix B: ω-universal logic

Our paper raises a natural technical question: What is the size of the smallest
ω-universal logic? An ω-universal logic is a logic into which any logic with a
countable sentence set consequence-embeds. As we now show, an upper bound

for the smallest ω-universal logic is 22
ℵ0
.

To see this, let L be a logic such that |Sen(L)| = ℵ0. Since |P(Sen(L))| =
2ℵ0 , there are 2ℵ0 .ℵ0 = 2ℵ0 ordered pairs 〈S, s〉, with S ⊆ Sen(L) and s ∈
Sen(L). It follows that there are 22

ℵ0
possible consequence relations one might

put on the language of L, assuming no restrictions. We may without loss of
generality think of the sentences of L as elements of ω, i.e. Sen(L) = ω.
Enumerate the possible relations between P(ω) and ω under the identi�cation

just given as {�ξ: ξ < 22
ℵ0 }. More strictly, the left-relata of �ξ are subsets of

ω × {ξ} and its right-relata are elements of ω × {ξ}. Now de�ne an ω-universal
logic LU as follows:

Sen (LU ) =
⋃
{ω× {ξ} : ξ < 22

ℵ0 }; and for Γ ⊆ Sen(LU ) and φ ∈ Sen(LU ):

Γ �LU φ i� ∃ξ < 22
ℵ0

s.t. Γ ⊆ ω × {ξ}, φ ∈ ω × {ξ}, and Γ �ξ φ.

Informally, LU is obtained by pasting all the 22
ℵ0
-many possible consequence

structures for a countable logic into a single logic. No further consequence facts
obtain other than those for the individual logics thus collated. By construction,
any countable logic embeds into LU . The size of LU , i.e. the cardinality of its

sentence set, is 22
ℵ0
. An obvious question is whether this crude upper bound

can be improved upon.

36By de�nition/stipulation, a proof has �nitely many premises.
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Appendix C: More on Second-order Logic

The argument in §6 that Lω1ω and SOLω are not consequence-isomorphic as-
sumed that some countably in�nite set of SOLω-sentences is not equivalent to
any single SOLω-sentence. We now prove this fact.

Let α be the least cardinal with the property that SOLω cannot de�ne the
notion of being at least as large as α.37 Such an α exists for SOLω, and must
be the aleph of a countable ordinal, since Sen(SOLω) is countably in�nite (and
α is obviously in�nite).38 To show that α is a limit cardinal (i.e. the aleph of
a limit ordinal), suppose for contradiction that α = ℵβ+1, and that φ≥ℵβ (X)
with free second-order variable X is a formula de�ning the notion ≥ ℵβ . (If a
sentence ψ de�nes the notion of ≥ ℵβ then take φ≥ℵβ (X) as ψ ∧ X = X.) In
that case,

φℵβ+1
(X) =df ∃Y (φ≥ℵβ (Y ) ∧ Y < X)

would be a formula de�ning the notion of being at least as large as α = ℵβ+1,
and ∃Xφℵβ+1

(X) a sentence with the same property.
If we let (βi)i<ω be a co�nal sequence in the limit ordinal λ, where α = ℵλ

as just shown, and let

Γ = {φ≥ℵβi : i < ω},

then no SOL-sentence (or formula) δ can be equivalent to Γ. For such a sentence
δ would have to be equivalent to a sentence φ≥ℵλ de�ning the notion of being
greater or equal to α, and by assumption no such φ≥ℵλ exists.

37A sentence φ de�nes the notion of being ≥ α i� the models of φ are all and only those
of domain size ≥ α. In the argument to follow, we use the well-known facts that X < Y is
de�nable in second-order logic (there is an injection from X to Y but not vice-versa), as is
X ≤ Y (there is an injection from X to Y .

38We assume a background set theory strong enough to prove this claim. A detailed account
of the second-order de�nability of various cardinals may be found in Väänänen (2012).
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