
Logic and Philosophical Logic

Inferentialism and Meaning Underdetermination

A.C. Paseau

alexander.paseau@philosophy.ox.ac.uk

28 January 2019

In the �rst half of today's class, we looked at Tarski's account of logical constants.
His fundamental idea, that the logical constants denote invariant relations, is the
basic premise within the semantic ormodel-theoretic tradition. The main alternative
approach to the logical constants goes by the name of inferentialism. In the second
half of today's class we'll look at inferentialism and an important problem for it.
As with earlier sets of notes for this class, what follows is a springboard for class
discussion.

1 Inferentialism

Inferentialism is broadly speaking the idea that meaning is use. It is an orientation in
the philosophy of language that takes inferential relations to determine the meaning
of an expression. In the philosophy of logic, more narrowly, inferentialists take the
meaning of the logical constants to be given by the rules characterising them. A
typical inferentialist, for example, would maintain that the meaning of the sentential
connective `and' is given by its introduction and elimination rules.1

To refresh our memories, let's lay out the usual (classical) introduction and
elimination rules for the four propositional connectives ∨,¬,→ and ∧. In the case
of disjunction, these are:

Γ ` φ ∨-Intro1Γ ` φ ∨ ψ
Γ ` φ ∨-Intro2Γ ` ψ ∨ φ

Γ ` φ ∨ ψ Γ, φ ` χ Γ, ψ ` χ
∨-Elim

Γ ` χ

The rules for negation are:

Γ, φ ` ψ Γ, φ ` ¬ψ
¬-Intro

Γ ` ¬φ
Γ,¬φ ` ψ Γ,¬φ ` ¬ψ

¬-Elim
Γ ` φ

The conditional rules are:

Γ, φ ` ψ
→-Intro

Γ ` φ→ ψ

Γ ` φ Γ ` φ→ ψ
→-Elim

Γ ` ψ

Finally, here are the conjunction rules:

Γ ` φ Γ ` ψ
∧-Intro

Γ ` φ ∧ ψ
Γ ` φ ∧ ψ ∧-Elim1Γ ` φ

Γ ` φ ∧ ψ ∧-Elim2Γ ` ψ
1Murzi & Steinberger (2017) is an excellent introduction to inferentialism. Some writers prefer

the term `Inferential Role Semantics'.



Suppose now we take propositional logic PL to consist of a countable in�nity of
sentence letters P,Q,R, · · · , and the four connectives ∨,¬,→ and ∧. The above
introduction and elimination rules de�ne a deductive system for PL that is sound
and complete with respect to the usual semantics. Very brie�y, this semantics is
speci�ed as follows:2 an assignment is any function from the set of PL's sentence
letters to {T, F}; a standard valuation is any function v from the set of PL-sentences
(de�ned in the usual recursive manner) that extends some assignment and respects
the usual rules for the connectives, i.e. v(φ∧ψ) = T i� v(φ) = T and v(ψ) = T , and
so on; and semantic consequence is de�ned as truth-preservation over all standard
valuations (i.e. Γ � δ i� for all standard valuations v, if v(γ) = T for every γ ∈ Γ
then v(δ) = T ).3 Of course, to put it this way is to adopt the usual `semantics �rst'
perspective: a good proof system is one that perfectly matches the semantics. As
the inferentialist sees it, however, it is the proof system that comes �rst. Rather
than being prior to it, semantics is ultimately determined by the proof system.

2 Carnap's categoricity problem

We now consider a prima facie problem for inferentialism. In a nutshell, the problem
is that the usual introduction and elimination rules do not determine the correct
(classical) semantics for PL. In particular, we cannot recover the usual truth tables
for the connectives from our proof system. We'll show that the system does not
settle the truth-tables of the four PL connectives save ∧.

To see this, we need some more terminology. A generalised valuation w is any
function from the set of PL-formulas to the set {T, F} of truth-values. NB We do
not assume that w is a standard valuation, so that its value for complex sentences
is determined by its value on atomic sentences; for instance we don't assume that
w(p0 ∨ p1) = T i� w(p0) = T or w(p1) = T (or both). We use the symbol w, rather
than v, to mark the di�erence between generalised valuations and standard ones;
standard valuations are thus a proper subset of generalised ones. The point, then,
will be to try to recover standard truth clauses from our deductive system. That's
why such problems are sometimes said to belong to `inverse logic'.

We say that w is an admissible generalised valuation just when, for any set of
PL-sentences Γ and PL-sentence δ such that Γ ` δ, either w assigns F to at least
one member of Γ or w assigns T to δ. Alternatively, w is an admissible generalised
valuation just when w does not assign T to all members of Γ and F to δ when Γ ` δ.
Finally, say that generalised valuation w con�icts with the usual truth-table for a

connective if it does not assign the expected truth-value to a compound sentence
given the truth-values of its parts; for example w con�icts with the usual truth-table
for ∨ if, for some φ and ψ, w(φ) = F and w(ψ) = F but w(φ ∨ ψ) = T .

The formal result we now prove is:4

There are admissible generalised valuations w that con�ict with the usual
truth-tables for ∨,¬ and →.

2Our terminology is a little unusual, for reasons that will become clear.
3From now on, we abbreviate `for every γ ∈ Γ, v(γ) = T ' by `v(Γ) = T '.
4The result is owed to Carnap (1943); my exposition is based on later presentations.
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2.1 The argument

We argue for the result by displaying some admissible generalised valuations. Taken
together, these show that the deductive system does not pin down the truth-tables
for ∨,¬ and → uniquely.

Notice �rst that any standard valuation is admissible. To see this, simply invoke
the soundness theorem for PL, viz. f Γ ` δ then Γ � δ. Suppose then that Γ ` δ; by
soundness, if v(Γ) = T then v(δ) = T , for v any standard valuation.

Consider next the generalised valuation wT which maps all PL-sentences to T .
`All' here really does mean all : not just all PL-sentence letters but all PL-sentences
of any complexity. It is easy to show that this generalised valuation is admissible,
whatever the proof system. For the conditional `if wT (Γ) = T then wT (δ) = T '
holds for any Γ and δ, since the antecedent is true for all Γ and the consequent is
likewise true for all δ. Observe in passing that wT 's admissibility does not turn on
speci�c features of the proof system.

Finally, consider the generalised valuation wProv which maps all PL-theorems
from our earlier deductive system to T and all non-theorems to F . A theorem,
recall, is anything that is provable from no assumptions; and a non-theorem is
anything that's not a theorem. The generalised valuation wProv is also admissible.
For suppose Γ ` δ and wProv(Γ) = T . Then by de�nition, all the elements of Γ
are theorems of our system. Since Γ ` δ, it follows that δ is a theorem too. Hence
wProv(δ) = T . So wProv is an admissible generalised valuation. Observe in passing
that wProv's admissibility, like wT 's, similarly does not hinge on speci�c features of
the proof system.

On this basis, one can show that a standard deductive system does not determine
the usual truth-tables for ∨,¬ and→. Take negation to start with. Since a standard
valuation and wT are both admissible, the �rst row of negation's truth table is not
determined by the system. In a bit more detail: there's an admissible generalised
valuation w1 such that w1(P ) = T and w1(¬P ) = F , namely any standard one
that assigns T to P ; and there's an admissible generalised valuation w2 such that
w2(P ) = T and w2(¬P ) = T , namely wT . To see that the second row of negation's
truth table is not determined by the system either, consider any standard generalised
valuation w2 that maps P to F and wProv. Observe that w2(P ) = F and w2(¬P ) =
T , whereas wProv(P ) = F = wProv(¬P ), since neither P nor ¬P is a theorem of the
system.

A similar argument shows that the last line of disjunction's truth table is not
determined either. For if w1 is a standard valuation and w1(P ) = w1(Q) = F then
w1(P ∨ Q) = F ; but wProv(P ) = wProv(¬P ) = F , since neither P nor ¬P is a
theorem, yet wProv(P ∨ ¬P ) = T , since P ∨ ¬P is a theorem.

The same type of argument works for the conditional's fourth line. If w1 is a
standard valuation and w1(P ) = w1(Q) = F then w1(P → Q) = T ; but wProv(P ) =
wProv(Q) = F , since neither P nor Q is a theorem, yet wProv(P → Q) = F , since
P → Q is also not a theorem.

Interestingly, the introduction and elimination rules for conjunction do determine
conjunction's truth tables. Its introduction rule determines the table's �rst row and
its elimination rules determine the second, third and fourth rows.
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2.2 Summary

The above considersations create a prima facie problem for inferentialists. For they
seem to show that inference rules do not determine the meaning of the logical con-
stants, at least not the classical ones.

Inferentialists may be able to argue that various non-standard yet admissible
valuations should be ruled out. But making that case for wProv and wT seems
di�cult. It's hard to see what is wrong, inferentially speaking, with a subject who
accepts all propositions, and with a subject who accepts all and only theorems.

To spell out the latter claim, consider a subject S who accepts all and only
theorems of our interpreted PL system and reasons hypothetically using its rules. For
example, she accepts P → P (a theorem of her system) but not P (a non-theorem),
and reasons hypothetically from acceptance of P to acceptance of P∨Q (seeing as P∨
Q follows from P in her deductive system). S's inferential dispositions are captured
by wProv, which assigns T to all propositional theorems and F to all non-theorems,
which as saw does not respect the classical truth-tables for disjunction, negation and
the conditional. Our imagined subject S, who is disposed to accept φ i� wProv(φ) =
T i� ` φ, is epistemically extremely conservative: she accepts only propositional
theorems and does not accept any non-theorems.5 But there does not seem to
be anything logically or inferentially amiss with her. Her inferential practice�her
dispositions to accept certain sentences given others6�seems conceivable. If so,
inferential practice underdetermines the propositional connectives' meaning.

In closing this section, we note that the categoricity problem is likely to persist
when we move to stronger classical logics than PL. For the analogues of the valua-
tions wProv and wT can also be given there. They will be admissible in these contexts
too, and promise to create analogous problems for the recovery of the correct clauses
for these logics' connectives.

In class, we'll consider some responses by the inferentialist. These include: reject
classical semantics; take a `bilateral' approach; adopt multiple-conclusion logic. I'll
brie�y introduce each in class before throwing open the discussion. To discuss the
last two in an informed way, you need to know what bilateral rules and multiple-
conclusion rules look like, so I append a version of each below in case you haven't
seen them before.

3 Bilateral Rules

A key reference for bilateralism is Smiley (1996). The rules and explanation below
are taken from Rum�tt (2002, pp. 800-2).

When A is a declarative sentence, the signed sentence +A abbreviates the
question-answer pair `Is it the case that A? Yes', whereas −A abbreviates the
question-answer pair `Is it the case that A? No'. The positively signed formula +A
is correct if A is true and incorrect if A is not true; the negatively-signed formula
−A is correct if A is not true and incorrect if A is true. NB It is important not to
confuse the sentential operator ¬, which can be iterated inde�nitely, with the force

5`Under an interpretation' understood throughout.
6Including as a special case her dispositions to accept certain sentences given no others.
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operator −, which cannot be iterated. A set of correctness-preserving bilateralist
rules may then be given as follows:

+A +B
+ ∧ I

+(A ∧B)
+(A ∧B)

+ ∧ E1
+A

+(A ∧B)
+ ∧ E2

+B

−A − ∧ I1−(A ∧B)
−B − ∧ I2−(A ∧B)

−(A ∧B)

[−A]

...
φ

[−B]

...
φ
− ∧ E

φ

+A
+ ∨ I1

+(A ∨B)
+B

+ ∨ I2
+(A ∨B)

+(A ∨B)

[+A]

...
φ

[+B]

...
φ

+ ∨ E
φ

−A −B − ∨ I−(A ∨B)
−(A ∨B)

− ∨ E1−A
−(A ∨B)

− ∨ E2−B

[+A]

...
+B

+→ I
+(A→ B)

+(A→ B) +A
+→ E

+B

+A −B − → I−(A→ B)
−(A→ B)

− → E1
+A

−(A→ B)
− → E2−B

−A
+¬I

+(¬A)
+(¬A)

+¬E−A

+A −¬I−(¬A)
−(¬A)

−¬E
+A

A relatively straightforward argument shows that any valuation compatible with
the positive and negative rules for constant c must respect the usual truth-table for
c.
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4 Multiple-Conclusion Logic

A key reference for the multiple-conclusion approach to the logical constants is
Hacking (1979). The rules below are taken from Garson (2013, p. 164).

We say that a generalised valuation (de�ned as any map from the set of PL-
formulas to the set of truth-values, as above) satis�es a multiple-conclusion sequent
Γ ` ∆ just when it either assigns F to a member of Γ or it assigns T to a member
of ∆. (Alternatively, just when it does not assign T to all members of Γ and F
to all members of ∆.) A generalised valuation v is compatible with some multiple-
conclusion sequent rules on condition that it satisfy the sequent(s) below the line if
it satis�es the sequent(s) above the line.

Multiple-conclusion sequents usually contain two sorts of rules: structural rules;
and a pair of left and right rules for each logical constant, the analogues of opera-
tional rules. The structural rules are usually taken to be:

Hypothesis: Γ ` ∆, whenever some formula is in both Γ and ∆

Γ ` ∆
Left Dilution:

Γ,Γ∗ ` ∆

Γ ` ∆Right Dilution:
Γ ` ∆,∆∗

Γ ` φ,∆ Γ∗, φ ` ∆∗
Cut:

Γ,Γ∗ ` ∆,∆∗

The left and right rules for the four constants mentioned are:

Γ, φ ` ∆ Γ, ψ ` ∆
∨-Left

Γ, φ ∨ ψ ` ∆

Γ ` φ, ψ,∆ ∨-Right
Γ ` φ ∨ ψ,∆

Γ ` φ,∆
¬-Left

Γ,¬φ ` ∆

Γ, φ ` ∆ ¬-Right
Γ ` ¬φ,∆

Γ ` φ,∆ Γ, ψ ` ∆
→-Left

Γ, φ→ ψ ` ∆

Γ, φ ` ψ,∆ →-Right
Γ ` φ→ ψ,∆

Γ, φ, ψ ` ∆
∧-Left

Γ, φ ∧ ψ ` ∆
Γ ` φ,∆ Γ ` ψ,∆ ∧-Right

Γ ` φ ∧ ψ,∆

A relatively straightforward argument shows that any valuation compatible with the
right and left rules for constant c must respect the usual truth-table for c.
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