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In section 1, I summarise Sher's paper as a refresher or in case anyone hasn't had
a chance to read it; page references here are to Sher's article. Needless to say, the
summary is selective: I included the points I found of most interest. Most sentences
in this section are quotations, or light paraphrases, of Sher's text, though in a few
places I've put things a little di�erently � I haven't striven for complete �delity to
the text. Section 2 contains some miscellaneous points relating to the Tarski-Sher
Thesis, as a basis for class discussion.

1 Précis of Sher (2013)

1.1 Introduction (145-8)

In the introduction, Sher explains what she means by a foundation for logic. She
claims that systematic attempts to construct a philosophical foundation for logic
have been rare (145, 147). Frege and Russell, for example, aimed at giving a foun-
dation of mathematics, but o�ered no philosophical explanation of what logic is
(147). Before them, Kant took formal logic largely as given (148).

1.2 Methodology (149-157)

Sher characterises foundationalism as seeking to establish all human knowledge on
(i) basic knowledge and (ii) knowledge-extending procedures (149). Foundationalism
orders our system of knowledge in a tree-like fashion, in which non-basic items of
knowledge are grounded in basic ones. This means that the basic units themselves
cannot be grounded, thereby createing an inherent di�culty for a foundationalist
approach to logic (150). Foundationalists either cannot give a foundation for logic,
or cannot use knowledge-based resources to do so (150-1). Neither approach is
satisfactory.

An improvement on foundationalism is to adopt a holistic or anti-hierarchical
approach without abandoning the grounding project � in Shapiro's words, `Foun-
dations without Foundationalism' (152). Sher distinguishes her methodology from
`radical' coherentism. We can make unrestricted use of our entire system of knowl-
edge in veridical grounding of some area (153), where `veridical grounding' means
grounding or justi�cation centered on truth (153). She calls her preferred method-
ology foundational holism, and sees Neurath's boat as a good metaphor for it (154).
The use of logic in providing a theoretical foundation for logic is unavoidable, yet is
entirely compatible with the foundational project as she sees it (155). Circularity of



this sort need not be paradox-laden nor does it preclude the discovery of error (156).
Constructive circularity�circularity used to further epistemic goals�can be a boon
and is a constituent of many philosophical methods (157). Sher's explanation of
logic gives greater weight to considerations about the role logic plays in our overall
system of knowledge, in particular mathematics, than to its natural-language use
(157).

1.3 An Outline of a Foundation (158-196)

1.3.1 Logical Consequence and its veridicality (158-170)

We are in need of a powerful universal instrument for expanding our knowledge; a
method/system of inference that applies to all �elds and transmits truth with an
especially strong modal force. It is logic that plays this role. It also serves to remove
errors (158).

Logic is topic-neutral: it applies the same tests to inferences and sentences in
all areas (159). That's compatible with logic having a subject matter of its own,
namely logical inference, logical inconsistency, logical truth, etc. (158).

Logic is grounded in the world (160). A system that contains a law like a�rming

the consequent is not in sync with the work; in contrast, a system that contains a
law like a�rming the antecedent (MP) is. Just like a scienti�c theory, `working in
the world' is a serious constraint on the design of a logical system (160). The non-
existence of the universal class and non-classical logics' claim to work better in some
contexts than classical logic illustrate the point that factual considerations play a
role in choosing a logic. Another example is the putative law `Φ(x), x 6= y ` ¬Φ(y)',
which although it has a similar appearance to Leibniz's law, is objectionable because
objects can and do have properties in common (161).

Consequence may be characterised generically as the transmission/preservation
of truth from a set of sentences to a conclusion (162). Material, nomic and logical
consequence di�er in the modal force in which truth is thus transmitted. Logic
requires a grounding in reality because of its inherent connection with truth: conse-
quence relations must respect the connections or lack thereof in the world between
things being as the premisses say they are and as the conclusion says they are (163).
Facts about the world show that a logic which underwrites the consequence of a false
sentence from a true one is incorrect (164). Similarly, but less starkly, the absence
of a strong connection between a premise S1 and a conclusion S2 su�ces to show
that a logic that underwrites the consequence of S2 from S1 is incorrect. In sum: the
world limits the options open for logical theories; logic is constrained by the world
(165).

Nomic connections in the world justify claims of nomic consequence; a poten-
tial example might be something like Newton's laws and the entailment `The force
exerted by a on b is c; therefore, the force exerted by b on a is c' (166). More
strongly, the world might be governed by laws that connect conditions/situations
with a stronger than nomic force, a force appropriate for logic; an example might
be the connection `Non-empty A∪ (B∩C)⇒ Non-empty A∪B' between properties
A,B and C and the claim `∃x(Ax ∨ (Bx&Cx)) �L (∃x)(Ax ∨ Bx)' (166). So logic
is grounded in certain laws governing the world, possessing especially strong modal
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force (167). Although the mind can play a role in logical consequence, any logic
generated by our minds must ultimately answer to the world (168).

The question now arises: what kind of law connects conditions/situations with
the strong modal force logic is concerned with? Answer: a formal law (168). In the
previous example, the formal law connects non-emptiness, union and intersection. So
logical consequence is grounded in formal laws governing reality (169). The sentence
σ is a logical consequence of Σ i� the formal skeleton of the situation delineated by
Σ is related to the formal skeleton of the situation delineated by σ by a law that
guarantees that if the former holds then so does the latter (169). Something similar
can be said about commands, which can also be linked by logical implication (e.g.
the command to answer all the questions logically implies the command to answer
Q1). This account, then, explains why the model-theoretic semantics of logic is
sound and how it works (169).

1.3.2 Logical constants and the nature of logicality (170-177)

The role of logical constants is to designate relevant parameters of the formal struc-
tures, the laws connecting which ground logical consequence (170). To characterise
formality, we aim at an account that is general, informative as well as precise (171).
This will be done in a three-step manner.

Step 1. Formal or structural properties hold in all regions. Examples of such
properties and relations: being self-identical, transitive, being an intersection, etc.
(172). In our system, logical constants designate formal properties or operators and
logical forms designate formal structures of objects (formal skeletons of situations);
rules of proof encode laws; and models represent formal possibilities.

Step 2. Logical operators are formal in the sense that they distinguish only the
pattern delineated by their arguments. So if we replace an argument of a formal
operator by any other argument that is its image under some 1-1 replacement of
individuals by individuals of any type, the formal operator `will not notice', i.e.
the truth-value will be unchanged (172-3). Examples: the 2nd-level operator of
non-emptiness; the 1st-level identity operation; and the intersection operation. The
idea that the formality of logic consists in abstracting from di�erences has roots
in Kant and Frege (173-4), or at least a�nities with what they said about logic.
Sentential/propositional logic is also formal because its operators do not distinguish
between atomic sentences with the same truth-value (174).

Step 3. The conception of formality just delineated can be cashed out in terms of
the Boolean truth-functional criterion and the invariance under isomorphisms cite-
rion (174-5). An argument structure includes not just the extension of the operator
but the underlying universe (175). Sher's notions of structure, operator, argument
and argument-structure are all objectual, i.e. worldly rather than linguistic (175).
Two argument-structures are isomorphic i� each is the image of the other under
some bijection from the universe of one to that of the other. The formality crite-
rion for predicative operators can then be formulated more precisely: an operator is
formal i� it is invariant under all isomorphisms of its argument-structures. Identity
and both the universal and existential quanti�ers are formal in this sense (176). A
constant�a linguistic item whose objectual correlate is an operator�is then logical
i� (i) it denotes a formal operator, and (ii) it satis�es additional conditions that
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ensure its proper functioning in a given logical system: i.e. it is a rigid designator,
its meaning is exhausted by its extensional denotation, it is semantically �xed (its
denotation is determined outside rather than inside models and is built into the
apparatus of models), it is de�ned over all models, etc. (176). The formality crite-
rion licenses in�nite cardinality quanti�ers, the generalised quanti�er `Most Bs are
Cs', the well-ordering quanti�er and others as logical. There is some controversy as
to whether the logicality condition just given�which we can call LOGICALITY�
should be necessary and su�cient, or just necessary (177).

1.3.3 Red herrings and real problems (177-182)

Sher dismisses criticisms of LOGICALITY based on linguistic intuitions and the
like. She takes more seriously Feferman's three criticisms (178):

A. The thesis assimilates logic to mathematics, more speci�cally set theory.
B. The set-theoretical notions involved in explaining [the thesis] are not robust.

(Robustness here can be captured by absoluteness.)
C. No natural explanation is given by it of what constitutes the same logical

operation over arbitrary basic domains.
Sher's response to A, in brief (178-9): logic may have commitments and the

expressibility of CH (the Continuum Hypothesis) is merely an artifact of choosing
a particular mathematical theory in Step 3 above. Furthermore, ignorance of CH's
truth-value is a fact of life everywhere, logic included.

Sher's response to B, in brief (179-80): features of the background vocabulary
invoked in Step 3 like absoluteness have not been shown relevant to the foundational
problem of logic. Also, absoluteness is relative to a set theory: seeing as absoluteness
is not a robust notion, why should it be relevant here? Finally, Sher notes that non-
robustness is a symptom of using a relatively weak logic in which to couch set theory,
viz. �rst-order logic; formulating set theory in the stronger logic underwritten by
LOGICALITY promises to improve matters.

Sher's response to C, in brief (180-1): even in the case of logic, Feferman accepts
operators that intuitively lack unity of meaning, e.g. a 135-place truth-functional
connective with a gerrymandered truth table. Logical operators receive their inter-
nal unity, Sher insists, from their characteristic trait of distinguishing only formal
features of their argument-structures.

Returning to LOGICALITY, Sher claims that it demarcates a maximalist con-
ception of logicality under a uni�ed theme, formality. And on this conception, her
criterion provides necessary and su�cient conditions on logicality (182). The result-
ing expanded conception of logic leads to interesting formal results, as witnessed by
work on generalised quanti�ers, etc.

1.3.4 A structuralist foundation for logic and its connection to mathe-
matics (183-196)

Sher's theory of logic requires a background theory of formal structure � but which
one? Given that no individuals are formal under her criterion, Sher defends�
against the nominalist�the reality of formal features, though she does not defend
the existence of formal individuals (184). It would be unreasonable to deny the
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reality of formal features, for instance it would be unreasonable to deny the reality
of being self-identical, or of some students instantiating a re�exive, symmetric and
non-transitive relation. Even nominalists should �nd it hard to deny that individuals
have these formal features (184). When we look for a theory of the formal, we
inevitably turn, then, to mathematics. Accounting for universal and highly necessary
laws precisely and in full generality is a job that mathematics is excellently suited to.
In short, logic is grounded in the formal and the formal is studied by mathematics.

Mathematics and logic stand in a systematic and fruitful relationship to one
another, but di�er in subject matter and the formality of their objects (185). On
the �rst point: although logic is concerned with the world, it approaches it through
language, by studying inferences, theories and sentences; the direct subject mat-
ter of mathematics in contrast is objectual (186). Mathematical notions are logical
when construed as higher-level notions but non-logical when construed as lower-level
notions, as Tarski observed. You might wonder why mathematics, in studying the
formal, which consists of higher-level notions, turns it into a �rst-theory of individ-
uals. The answer is that we humans �nd it easier, in discovering regularities and
systematising, to work with lower-level concepts (186). Mathematics thus studies
formal reality in an indirect fashion (because it treats what are higher-level no-
tions as lower-level ones). If you connect it to reality as Sher has just described,
mathematics is true (187).

Mathematics studies the formal through an ontology of structures whose indi-
viduals represent formal features of objects through their role in structures, and the
laws governing these structures are the mathematical representations of the laws
governing formal features of objects (188). Sher's account of mathematics is thus
akin to struturalist conceptions. She o�ers a joint account of maths and logic, which
is not logicist, since it does not reduce maths to logic, and does not reduce logic
to maths (`mathematism') either. Instead, it grounds logic and maths in a third
element: the structural or the formal (189).

The interplay between logic and mathematics is as follows: mathematics pro-
vides logic with a background theory of formal structure, whereas logic provides
mathematics with an inferential framework for the development of theories (of for-
mal structure and possibly other things) (190). Sher concludes with a discussion of
three issues: the normativity of logic, the traits of logic, and error and revision in
logic.

Normativity. On the present account, the source of logic's normativity is its
truth (191). Cognitive truthfulness is a central value in the intersection of ethics and
epistemology, and every discipline that upholds this value is a normative discipline.
The normativity of logic, though, has a broader scope than that of physics (192).
It is also grounded in a di�erent type of truth than that of physics: formal truth.
Logic carries its normativity on its sleeve because it deals with assertions, theories
and inferences directly.

Traits. Logic has been traditionally characterised as formal, highly general, topic
neutral, basic, modally strong, highly normative, a priori, highly certain, and an-
alytic. Because Sher grounds logic not just in the mind or language, she rejects
analyticity as a trait. But with the slight exception of a priority, she accepts all
the other traits (192). Formality is logic's key trait. Because logical notions have
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the highest degree of invariance, they are the most general. As for topic neutrality,
logic's formality ensures that it abstracts from other disciplines' subject matters.
As a result, logical laws hold in a broader space of possibilities than e.g. physi-
cal laws, which means that logic has an especially strong modal force (193). For
this same reason, logic is more basic than other disciplines. Also connected to its
formality or its strong invariance is the fact that logic is more shielded from new
results than other sciences. As for a priority: traditional apriorism requires absolute
independence from empirical considerations. Sher's foundational holism, however
allows only relative independence. So logic is largely, but not completely, immune
to empirical considerations (194). It is quasi-apriori rather than absolutely apriori.

Error and revision in logic. We can go wrong in logic. The formal necessity
of the logical laws does not imply that logic is infallible any more than the nomic
necessity of physical laws implies that physics is infallible (194). We could, for
instance, get the background theory of formal structure wrong, by misdescribing
the laws governing formal con�gurations of properties and situations. Alternatively,
we might mischaracterise the logical constants, e.g. by taking `is taller than' or `is
a property of humans' as such. Or we might mischaracterise the formal structures
that exist (195). Pragmatic or methodological considerations might also be thrown
into the mix, when no veridical considerations are at stake. Empirical considerations
might also be relevant, and `new experiences of a very fundamental nature', as Tarski
put it, might lead us to change our logic. It should be borne in mind, however, that
due to its special nature, in logic theoretical considerations will always carry more
weight than experiential considerations (195). In her conclusion, Sher mentions
other forms of invariantism, owed to Feferman and Bonnay respectively.
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2 Miscellaneous related technical points

I mention a few technical points, to make sure everyone is on board with the technical
side of things. A more comprehensive recent textbook exposition of this material
may be found in chapter 16 of Button & Walsh (2018).

2.1 Tarski's Thesis and the Tarski-Sher Thesis

SupposeD is a domain of some objects. We may construct a hierarchy of classes over
this domain: subclasses of the domain, classes of ordered pairs from the domain,
..., subclasses of the previous classes, and so on. As we saw last week, Tarski in his
1966 lecture (published as Tarski 1986) proposed the following criterion for what it
is to be a logical class:

C is a logical class i� C is permutation-invariant on D.

A permutation on D, recall, is a function from D to itself that is one-one and onto
(in other words, injective and surjective, i.e. a bijection). A permutation π on D is
then lifted to the classes over D. For example, if F is a subclass of D then π(F ) =
{π(x) : x ∈ F}; if G is a class of subclasses of D then π(G) = {π(F ) : F ∈ G},
where π(F ) is as just de�ned; and so on. To say that C is permutation-invariant is
to say that C = π(C) for all permutations π on D. There was some discussion last
week as to what D should be: can it vary, or is it �xed as the class of all things?

What has come to be known as the Tarski-Sher Thesis involves a slight mod-
i�cation of this idea. To state it, we need a bit of terminology. Call a quanti�er

an expression whose arguments are a �nite number of predicates, each with its own
adicity. The extension of an n-adic quanti�er Q over a modelM with domain DM is
thus a subset of P(Di1

M)× · · ·×P(Din
M), where i1 is the �rst relation's arity, i2 is the

second relation's arity, and so on up to n. For example, the extension of the quanti�er
∃ in a modelM, which we may write as ∃M, consists of all and only the non-empty
subsets of the domain, i.e ∃M = {C : C ⊆ DM and C is non-empty}. The extension
Most

M of the quanti�er Most in a model M consists of all and only the ordered
pairs of subsets of the model's domain whose intersection is of greater size than the
�rst subset complement the second subset, i.e Most

M = {〈B,C〉 : B,C ⊆ DM and
B ∩ C > B \ C}.

The Tarski-Sher Thesis states necessary and su�cient conditions on what it is
for a quanti�er Q to be logical:

Q is logical i� Q is bijection-invariant.

To say that Q is bijection-invariant is to say that QN = π(QM) for all modelsM,
N and bijections π : M −→ N . For example, ∃ is logical under this de�nition,
because ∃N consists of all and only the non-empty subsets of DN ; if π is a bijection
from DM to DN , this is precisely the image under π of the set of non-empty subsets
of DM. A similar sort of argument shows that Most is logical under the criterion.

A subtlety in the statement of the Tarski-Sher Thesis is whether we formulate it
in terms of bijection-invariance or isomorphism-invariance. Actually, this distinction
makes no di�erence: the same quanti�ers turn out logical either way. So we can use
the notions of bijection-invariance and isomorphism-invariance interchangeably.
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2.2 McGee's result

The main technical result in McGee (1996) answers the question: exactly which
quanti�ers are logical? Let us say that an expression φ(R1, · · · , Rn) de�nes the
n-adic quanti�er Q just when:

in any modelM, the n-tuple 〈RM1 , · · · , RMn 〉 is an element of QM i�M
satis�es φ(R1, · · · , Rn)

where predicate Rk is interpreted in the model M as RMk (for k = 1 to n). For
example, the quanti�er ∃, which as we saw above is logical according to Tarski-
Sher, is de�nable in �rst-order logic by the formula ∃xRx (here n = 1): in any
model M, M satis�es the formula ∃xRx i� RM is non-empty. (This is hardly
surprising, of course, since �rst-order logic contains the existential quanti�er.)

McGee's result may then be stated as follows:

the quanti�er Q is isomorphism-invariant

m
for all cardinals κ, there is a formula φκ of L∞∞ such that for all

modelsM of cardinality κ (i.e. |DM| = κ), QM = (φκ)
M

Notice that the expression φκ that de�nes Q on models of size κ (where κ is any
cardinal, i.e. its range is 1, 2, · · · , n, · · · ,ℵ0,ℵ1, · · · ) need not be the same for dif-
ferent κ. So for instance an expression that acts as the universal quanti�er on some
domains and as the existential quanti�er on other domains counts as logical so long
as it acts in the same way on all domains of the same size.

2.3 Feferman's invariantism

In a series of publications, Solomon Feferman presented an invariantist account of
logical constants rival to the Tarski-Sher thesis. Restricting attention to quanti-
�ers as above, Feferman proposed a strong-homomorphism-invariance criterion of
logicality, which I now sketch.1

A strong homomorphism h between modelsM = 〈DM, RM1 , · · ·RMn 〉 andM∗ =
〈DM∗ , RM

∗
1 , · · ·RM∗

n 〉 is a map from DM to DM∗ that, in Feferman's application, is
stipulated to be onto and which is such that, for each i from 1 to n and any sequence
x1, · · ·xk of individuals drawn from DM, RMi (x1, · · ·xk) i� RM

∗
i (h(x1), · · ·h(xk)).

2

Given these de�nitions, the quanti�er Q is strong-homomorphism-invariant just
when, for any such homomorphism h, QM holds of the n-tuple RM1 , · · ·RMn in the
�rst model (with domain DM) i� QM

∗
holds of the n-tuple RM

∗
1 , · · ·RM∗

n in the
second model (with domain DM∗).3

1See Feferman (1999, 2010). Sher (2013, p. 196 fn. 50) reports that in 2011, �ve years before
he died, Feferman had given up this alternative form of invariantism, though still stood by his
criticisms of isomorphism invariance, reported in Sher (2013).

2Here k is Ri's adicity. The obvious clauses for function symbols and constants may be added.
3See Bonnay (2008) for some results relating to Feferman's proposal. I have skated over some

exegetical nuances that do not a�ect the philosophical thrust of the discussion. In particular,
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It is an immediate consequence of Feferman's invariantist criterion that cardi-
nality quanti�ers of size ≥ 2 are not logical, as Feferman himself and many others
have noted. As an illustration, let the domain DM be {a, b}, where a 6= b, and the
domain DM∗ be {c}. There is of course only one strong homomorphism from DM
to DM∗ , which maps each of a and b to c. Now suppose we consider the models
M = 〈DM, RM〉 and M∗ = 〈DM∗ , RM

∗〉 in which RM and RM
∗
are unary prop-

erties that hold of all the entities in their respective domains, i.e. RM = DM and
RM

∗
= DM∗ . Let ∃2 be the property of type ((i)) which holds of a property of

type (i) i� the latter holds of at least two individuals in the domain. It's easy to
see that RM ∈ ∃M2 although RM

∗
/∈ ∃M∗

2 . A similar argument shows that ∃κ is not
strong-homomorphism-invariant, where κ is any cardinal ≥ 2 and ∃κ applies to a
subset of the domain DM i� RM holds of at least κ individuals in the domain.

Equally noteworthy is the fact that identity is not strong-homomorphism-invariant.
Now since identity is a relation of type (i, i) and is therefore not a quanti�er as de-
�ned above, the criterion of logicality under discussion does not apply to it. But
we can concoct a homorphism-invariance criterion for entities of identity's type en-
tirely in the spirit of Feferman's original one. We may stipulate thatM is strong-
homomorphism-invariant toM∗ just when there is a map fromM's domain toM∗'s
that is onto and respects the interpretation of any constant and function symbols.
Then it is easy to see, using the same example as in the previous paragraph, that the
interpretation of identity under the homomorphism h : {a, b} → {c} is not preserved:
it is false that all pairs 〈x, y〉 with x, y ∈ DM stand in the identity relation in the
�rst model i� 〈h(x), h(y)〉 stand in the identity relation in the second model, since
a 6= b yet h(a) = h(b). Thus identity is not logical on the strong-homomorphism-
invariance account. Feferman is entirely clear about this consequence and accepts
it.

Feferman �rst proposed strong-homomorphism invariance as a criterion for operations of unary
type, i.e. of type ((i)), and considered their closure under λ-de�nability. It seems to me, as it
did to Feferman later, that there is no good reason to restrict invariantism to operations of this
particular type and no other. See Bonnay (2008, pp. 43-4) for detailed criticism of Feferman's
earlier proposal.
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