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There is something fishy about the liar paradox:

(1) (1) is not true.

Somehow the sentence ‘says’ something about itself, and when
people are confronted with the paradox for the first time, they
usually think that this feature is the source of the paradox.



However, there aremany self-referential sentence that are
completely unproblematic:

(2) (2) contains 5 occurences of the letter ‘c’.

If (1) is illegitimate because of its self-referentiality, then (2) must
be illegitimate as well. Moreover, the effect that is achieved via the
label ‘(1)’ can be achieved without this device. At the same time
one can dispense with demonstratives like ‘this’ that might be
used to formulate the liar sentence:

This sentence is not true.

In fact, the effect can be achieved using weak arithmetical axioms
only. And the axioms employed are beyond any (serious) doubt.
This was shown by Gödel.



In the following I describe a language L. An expression of L is an
arbitrary finite string of the following symbols. Such strings are
also called expressions of L.
Definition
The symbols of L are:

1. infinitelymany variable symbols v, v1, v2, v3,. . .

2. predicate symbols = and T ,
3. function symbols q,⌢and sub,

4. the connectives ¬,→ and the quantifier symbol ∀,
5. auxiliary symbols ( and ),

6. possibly finitelymany further function and predicate
symbols, and

7. If e is a string of symbols then e is also a symbol. e is called a
quotation constant.

All thementioned symbols are pairwise different.



In the following I shall use x, y and z as (meta-)variables for
variables. Thus x may stand for any symbol v, v1, v2, . . . It is also
assumed that x, y etc stand for different variables. Moreover, it is
always presupposed variable clashes are avoided by renaming
variables in a suitable way.

It is important that a is a single symbol and not a string ofmore
than one symbols even if a itself is a string built from several
symbols.

A string of symbols of L is any string of the above symbols.
Usually I suppress mention of L. The empty string is also a string.
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We shall now define the notions of a term and of a formula of L.
Definition
The L-terms are defined as follows:

1. All variables are terms.

2. If e is a string of symbols, then e is a term.

3. If t, r and s are terms, then q(t), (s⌢t), sub(r, s, t) are terms,
and similarly for all further function symbols
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Since the empty string is a string of symbols is a term. Since
looks so odd, I shall write 0 for .

What the empty string is for the expressions is the number zero
for the natural numbers. It is not hard to see that 0 is useful in
number theory.



Formulæ, sentences, free and bound occurrences of variables are
defined in the usual way.

Example

1. ∀v3(v3 = ∧∀ ∧ Tv3) is a sentence.

2. v12 = ¬T¬ is a sentence, i.e., the formula does not feature a
free variable.



The theoryA which will be described in this section is designed
in order to obtain smooth proofs. I have not aimed at a
particularly elegant axiomatization.

A simple intendedmodel of the theory has all expressions of L as
its domain. The intended interpretation of the function symbols
will become clear from the axioms A1–A4 except for the
interpretation of sub. I shall return to sub below.
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All instances of the following schemata and rules are axioms of
the theoryA:
Definition

A1 all axioms and rules of first-order predicate logic including
the identity axioms.

A2 (a⌢b) = ab, where a and b are arbitrary strings of symbols.

A3 q(a) = a

A4 sub(a, b, c) = d, where a and c are arbitrary strings of
symbols, b is a single symbol (or, equivalently, a string of
symbols of length 1), and d is the string of symbols obtained
from a by replacing all occurrences of the symbol b by the
strings c.



A2

(a⌢b) = ab, where a and b are arbitrary strings of symbols.

The concatenation of two expressions e1 and e2 is simply the
expression e1 followed by e2. For instance, ¬¬v is the
concatenation of ¬ and ¬v.

Therefore (¬⌢¬v) = ¬¬v is an instance of A2 as well as
(¬¬⌢v) = ¬¬v.

Concatenating the empty string with any expression e gives again
the same expression e. Therefore we have, for instance, (∀⌢0) = ∀
as an instance of A2.

Sometimes I forget the brackets.
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A3

q(a) = a

Instances of A3 are

q(¬) = ¬ and q(v¬) = v¬

Thus q describes the function that takes an expression and
returns its quotation constant.



A4

sub(a, b, c) = d, where a and c are arbitrary strings of symbols,
b is a single symbol (or, equivalently, a string of symbols of
length 1), and d is the string of symbols obtained from a by
replacing all occurrences of the symbol b by the strings c.

I have imposed the restriction that b must be a single symbol.
This does not imply that the substitution function cannot be
applied to complex expressions; just A4 does not say anything
about the result of substituting a complex expression.

The reason for this restriction is that the result of substitution of a
complex strings may be not unique. For instance, the result of
substituting ¬ for ∧∧ in ∧ ∧ ∧might be either ∧¬ or ¬∧. The
problem can be fixed in several ways, but I do not need to
substitute complex expressions in the following.
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A4

sub(a, b, c) = d, where a and c are arbitrary strings of symbols,
b is a single symbol (or, equivalently, a string of symbols of
length 1), and d is the string of symbols obtained from a by
replacing all occurrences of the symbol b by the strings c.

Here are instances of A4:

sub(v¬, v,∀) = ∀¬
sub(¬¬,¬,¬¬¬) = ¬¬¬¬¬¬
sub(q(v), v, q(v)) = q(q(v))



Of course, there is no such cheap way to Gödel’s theorems. Gödel
showed that the functions sub and q (and further operations) can
be defined in an arithmetical theory for numerical codes of
expressions. To this end he proved that all recursive functions can
be represented in a fixed arithmetical system. And then he
proved that the operation of substitution etc. are recursive. This
requires some work and ideas.



The diagonalization function dia is defined in the following way:

Definition
dia(x) = sub(x , v, q(x))

dia is merely an abbreviation, not a new symbol.

dia(x) expresses the function that substitutes v with the quotation
of x in x itself.

Example

A ⊢ dia(¬Tv) = ¬T¬Tv

Example
A ⊢ dia(v = v) = v = v = v = v



The diagonalization function dia is defined in the following way:

Definition
dia(x) = sub(x , v, q(x))

dia is merely an abbreviation, not a new symbol.

dia(x) expresses the function that substitutes v with the quotation
of x in x itself.

Example

A ⊢ dia(¬Tv) = ¬T¬Tv

Example
A ⊢ dia(v = v) = v = v = v = v



Lemma
Assume φ(v) is a formula not containing bound occurrences
of v. Then the following holds:

A ⊢ dia(φ(dia(v))) = φ(dia(φ(dia(v))))

proof.
InA the following equations can be proved:

dia(φ(dia(v))) = sub(φ(dia(v)), v, q(φ(dia(v))))

= sub(φ(dia(v)), v, φ(dia(v)))

= φ(dia(φ(dia(v))))

⊣
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A3: q(φ(dia(v))) = φ(dia(v))



Lemma
Assume φ(v) is a formula not containing bound occurrences
of v. Then the following holds:
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proof.
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This is an instance of A4.



Lemma (repeated)
Assume φ(v) is a formula not containing bound occurrences
of v. Then the following holds:

A ⊢ dia(φ(dia(v)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t
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t

)

Theorem (strong diagonalization)

For every formula φ(v) not containing bound occurrences of v
there is a closed term t such that

A ⊢ t = φ(t)

φ(t) is now a diagonal sentence γ of φ(v). We obviously have

A ⊢ φ(t)
°
γ

↔ φ(φ(t)
°
γ

)
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Theorem (diagonalization)

If φ(v) is a formula of L with no bound occurrences of v, then
one can find a formula γ such that the following holds:

A ⊢ γ↔ φ(γ)

proof.

Choose as γ the formula φ(dia(φ(dia(v))). Then one has by the
previous Lemma:

A ⊢ φ(dia(φ(dia(v)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

γ

↔ φ(φ(dia(φ(dia(v))))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

γ

)

⊣



Theorem (diagonalization)

If φ(v) is a formula of L with no bound occurrences of v, then
one can find a formula γ such that the following holds:

A ⊢ γ↔ φ(γ)

proof.

Choose as γ the formula φ(dia(φ(dia(v))). Then one has by the
previous Lemma:

A ⊢ φ(dia(φ(dia(v)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

γ

↔ φ(φ(dia(φ(dia(v))))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

γ

)

⊣



Theorem (liar paradox)

The T-scheme Tψ↔ ψ for all sentences ψ of L is inconsistent.

proof.
Apply the diagonalization theorem 11 to the formula ¬Tv. Then
theorem 11 implies the existence of a sentence γ such that the
following holds: A ⊢ γ↔ ¬Tγ. Together with the instance
Tγ↔ γ of the T-scheme this yields an inconsistency. γ is called
the ‘liar sentence’. ⊣
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Since the scheme is inconsistent such a truth predicate cannot be
defined inA, unlessA itself is inconsistent.

Corollary (Tarski’s theorem on the undefinability of truth)
There is no formula τ(v) such that τ(ψ)↔ ψ can be derived in
A for all sentences ψ of L, ifA is consistent.

proof.
Apply the diagonalization theorem 11 to τ(v) as above. If τ(v)
contains bound occurrences of v they can be renamed such that
there are no bound occurrences of v. ⊣
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The schema Tψ → ψ is inconsistent with the rule ψ
Tψ .

The rule ψ
Tψ is called NEC in the following.
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For the paradoxes of interaction the simple diagonal lemma is
often insufficient. I need also the following version:

Theorem
Let T and N be two unary predicate symbols in L. Then there is
a sentence γ such thatA ⊢ γ↔ ¬NTγ.

proof.

Apply the simple diagonal lemma to the formula ¬N(T⌢q(v)),
which gives a formula γ such that

A ⊢ γ↔ ¬N(T⌢q(γ))

We also have A ⊢ T⌢q(γ) = T⌢γ
= Tγ ⊣


