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I aim at a definition of logical validity as a formula x ⊧ y with two
variables where x is a set of formulæ and y a formula.

I am interested in formal languages.

For most of the time I confinemyself to sentences to avoid talk of
variable assignments.

A sentence φ is logically valid iff the argument with empty premiss set
and φ as conclusion is valid.

It’s important that we can quantify over x and y. Wemay want to
consider claims such as

∀x ∀y (x ⊧ y ⇒ x ⊢ y)
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Semantic definition of validity
An argument is logically valid if, and only if (whenever all premisses
are true under an interpretation of the non-logical vocabulary the
conclusion is true under that interpretation).

Thus, the definition of logical validity (logical consequence, logical
truth, etc) depends on the distinction between logical and non-logical
vocabulary.



preliminarymethodological remarks

More andmore philosophers of logic now doubt that there is a
systematic way to make the distinction.

Criteria for logicality are applied ‘hypothetically’: If we had an
expression with certain properties in our language would it be logical?
My goal is a precise reconstruction of our mathematical, scientific, and
philosophical reasoning in a formal language.

Wemight find that an infinitary conjunction operation is logical; but we
will never add such a corresponding ‘symbol’ to our language.
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preliminarymethodological remarks

I ammainly interested in a theory of logical consequence for my own
language, not just toy languages. At the very least, the theory of logical
consequence should apply to the language of first-order set theory with
urelements.

Themodel-theoretic definition of consequence affords this: This
definition applies to the language of set theory in which
model-theoretic consequence is defined.

Tarski’s (1936) theory defines logical consequence in a richer
metalanguage – e.g. in third-order logic for first-order languages.
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generality and invariance

Generality implies that logical constants behave on all objects in the
same way (but theremay bemore to generality). Connectives and
quantifiers should behave in the same way on all objects and formulæ.
Invariance is used to make this precise.

Invariance under permutations harks back at least to (Mautner 1946,
Tarski 1986) with roots in Kant & al.

There are numerous invariance criteria for logicality (Sher 1991,McGee
1996, Feferman 1999, 2010, Bonnay 2008, 2014, Casanovas 2007). . .

Most (all?) are inspired by algebraic logic, and objects and operations
are characterized as invariant, not expressions.

I start with one version similar to that in (McGee 1996).
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In what follows D is always some non-empty set. Dω is the set of all
sequences of length ω of elements of D, i.e., variable assignments
over D. For a ∈ Dω, an is the nth-member of the sequence (n-th
projection).

Definition

A permutation π of D is a bijection of D onto itself. Thus a
permutation is injective and surjective.

Abusing notation, for a ∈ Dω I write π(a) for the sequence b ∈ Dω with
elements bi = π(ai) for all i < ω.

Think of a predicate as the set of variable assignments that satisfy it.

Definition

A set A ⊆ Dω is permutation-invariant iff
for all a ∈ Dω: a ∈ A⇔ π(a) ∈ A.



In what follows D is always some non-empty set. Dω is the set of all
sequences of length ω of elements of D, i.e., variable assignments
over D. For a ∈ Dω, an is the nth-member of the sequence (n-th
projection).

Definition

A permutation π of D is a bijection of D onto itself. Thus a
permutation is injective and surjective.

Abusing notation, for a ∈ Dω I write π(a) for the sequence b ∈ Dω with
elements bi = π(ai) for all i < ω.

Think of a predicate as the set of variable assignments that satisfy it.

Definition

A set A ⊆ Dω is permutation-invariant iff
for all a ∈ Dω: a ∈ A⇔ π(a) ∈ A.



AssumeD is amodel with domain D.
Identity
The set {a ∈ Dω∶ D ⊧ x1=x2 [a]} is permutation-invariant. ‘Identity
is logical.’

If a1 = a2, then π(a1) = π(a2).



Connectives and quantifiers take formulæ and return new formulæ.
Think of the extension of a formula as the set of variable assignments
satisfying that formula inD.

For any formula φ set Aφ ∶= {a ∈ Dω∶ D⊧ φ [a]}.
Complication: There is no guarantee that for every set A ⊆ Dω there is a
φ such that A = Aφ. It depends on the language. People admit predicate
symbols with infinitary arities, infinite conjunctions, and infinite
quantifier blocks.

Let φ and ψ be formulæ. Then we have:

A¬φ = {b ∈ Dω∶ D ⊧ ¬φ [b]} = D ∖ Aφ

Aφ∧ψ = Aφ ∩ Aψ

A∃vnφ = {b ∈ Dω∶ ∃a ∈ Aφ∀k (k /=n → ak =bk)}

We consider unary operations from the power set of Dω into itself
f ∶ P(Dω)→ P(Dω) and binary operations
f ∶ P(Dω) ×P(Dω)→ P(Dω).
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Invariance

Permutation invariance for unary operators
f ∶ P(Dω)→ P(Dω) is permutation-invariant iff
for all permutations π and A ⊆ Dω: f (π(A)) = π( f (A)).

Permutation invariance for binary operators
f ∶ P(Dω) ×P(Dω)→ P(Dω) is permutation-invariant iff
for all permutations π and A, B ⊆ Dω: f (π(A), π(B)) = π( f (A, B)).

Example

f¬∶ A↦ D ∖ Aφ is permutation-invariant.
f∧∶ (A, B)↦ A∩ B is permutation-invariant.
f∃vn ∶ A↦ {b ∈ Dω∶ ∃a ∈ Aφ∀k (k /=n → ak =bk)} is
permutation-invariant.

We obtain these results for the operations on all sets A ⊆ Dω, not only
on the definable Aφ.
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The operations corresponding to ∃, ∀, ‘all As are Bs’ are logical; ‘Some
tiger is B’ isn’t, if D contains tigers and non-tigers..

∃vn (Tiger(vn) ∧ . . .) isn’t logical because tigers can bemapped to
non-tigers by π. We can make it and similar quantifiers logical by
permitting only permutations that map tigers to tigers and not mapping
non-tigers to tigers.

The same applies to second-order quantifiers.



Bold Thesis
The bold thesis is that permutation-invariance is logicality.

Problems:

(i) We have defined permutation invariance for sets of variable
assignments and operations thereon, not for linguistic expressions.
We need to explain what it means for an expression such as ∧ to
express f∧.

(ii) So far we have defined permutation-invariance only relative to a
non-empty set D. But logical constants behave in the same way on
all objects not just those in D.
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We have defined permutation invariance for sets of variable assignments
and operations thereon, not for linguistic expressions. We need to explain
what it means for an expression such as ∧ to express f∧.

‘A and B and water=H2O’ (McGee 1996) necessarily has the same
extension as ‘A and B’. Thus a permutation criterion cannot distinguish
between them.

Cf. also the sentence letter P and � (falsum). The latter should be a
logical constant, the former shouldn’t.

‘The expression is only logical if there is not anything else to its
meaning.’

At any rate, permutation invariance delivers a necessary criterion.
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We need a definition of logicality that is absolute, not relative to a
domain.

Solutions:

(i) Allow bijections between D1 and D2 in addition to permutations
(‘Sher–McGee’). This works if D1 and D2 have the same
cardinality; but, if their cardinalities differ there are no bijections.

(ii) Consider surjective functions instead (giving up injectivity). See
(Feferman 1999). Then non-identity, negation and conjunction are
no longer logical. Feferman solved this by using functional type
structures. See (Casanovas 2007).
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So far we have defined permutation-invariance only relative to a
non-empty set D. But logical constants behave in the same way on all
objects not just those in D.

Solution: Reformulate the permutation-invariance criterion by
considering permutations of all objects.

This is what Tarski (1986) may have had in mind, at least Williamson
(1999) did. Cf. also (Friedman 1999).

Both use higher-order logic. I think this requires new (higher-order)
objects (that cannot be in the domain of any permutation).
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