
Notes, Definitions and Comments on
Logic for Prelims

for students in their first year before 2008/2009

N O T E S O N H O D G E S ’ S
L O G I C

Volker Halbach
New College, Oxford

version of
24th July, 2008

This text is to be used only by candidates sitting
Moderations in their second year, that is, Literae

Humaniores students, who have studied logic from
Hodges’s Logic. This text is not be used by candidates who

are in their first year in 2008/2009.

C O N T E N T

1 Preliminaries 4
1.1 Sets . 4
1.2 Ordered pairs and relations . 4
1.3 Arguments, validity and contradiction 6

2 Propositional logic 8
2.1 The syntax of the language of propositional logic 8
2.2 The semantics of propositional logic 9
2.3 Proofs . 12

3 Predicate logic 15
3.1 The syntax of the language of predicate logic 15
3.2 Proofs . 17
3.3 Interpretations and counterexamples 19

Appendix A: Rules for dropping brackets 23

Appendix B: tableaux rules 25

Appendix C: Quotation 26

version of 24th July, 2008 2

3

Preface

In these notes I aim to collect essential definitions and conventions as they
are used in (Hodges, 2001). I have tried to stick as closely as possible to this
book. I have also included material that goes slightly beyond Hodges’ book,
but which is usually treated in lectures and classes. In this case I have made
an attempt to stick to Hodges’ general approach and to follow widely accepted
conventions.

In the margin I have given numbers such has ‘H22’ that refer to the
corresponding page in (Hodges, 2001).

I am indebted to Stephen Blamey, Dave Leal and Hugh Rice for explaining
to me Hodges’ terminology and for suggesting numerous clarifications and
improvements. I also thank Stephen Blamey for making the tableaux proofs
more bearable by helping me with the macros.

Sebastian Sequoiah-Grayson (and some others) spotted several mistakes.
I thank them for the corrections.

This pdf file contains internal links. A click on text in a red or green frame
will send you to the corresponding definition or reference. These features get
lost when the Manual is printed on paper.

version of 24th July, 2008 3

1 Preliminaries

1.1 Sets

A set is a collection of arbitrary objects. Sets are identical if and only if they
have the same members. Therefore the set of all animals having kidneys
and the set of all animals having a heart are identical, because exactly those
animals that have kidneys also have a heart and vice versa.1 In contrast, the
property of having a heart is distinguished from he property of having kidneys.
Here we are only interested in sets, but not in properties.

The objects belonging to a set are its elements. a ∈ M expresses that a is
an element of the set M. If a is an element of M, one also says that a is in M.

There is only one set that contains no elements, namely the empty set Ø.
There are various ways to denote special sets. The set {New College,

Merton College} has exactly the two colleges as its elements. The set {Merton
College, New College} has the same elements. Therefore the sets are identical,
that is, we have:

{New College, Merton College}= {Merton College, New College}

Thus if a set is specified by including names for the elements in curly brackets,
the order of the names does not matter. The set {New College, Merton College,
St. Mary of Winchester College} is again the same set because ‘St. Mary of
Winchester’ is just another name for New College, and the set has therefore
the same elements as {New College, Merton College}.

Above I have been talking about the set of all animals with a heart. This
can be written more formally as:

{x : x is an animal with a heart}

1.2 Ordered pairs and relations

As pointed out above, the elements of a set are not ordered by the set. {Tony
Blair, George W. Bush} is the same set as´{George W. Bush, Tony Blair}.
Ordered pairs, in contrast, have an order on their components. One writes

1I have added this footnote because there are regularly protests with respect to this exam-
ple. For the example only complete and healthy animals are considered. I was told that
planarians are an exception, so we would have to exclude them for the sake of the example.

version of 24th July, 2008 4

5

〈George W. Bush, Tony Blair 〉 for the ordered pair with George W. Bush as
the first and Tony Blair as the second component. 〈George W. Bush, Tony
Blair 〉 and 〈Tony Blair, George W. Bush〉 are different ordered pairs, because
the former has George W. Bush as first component, the latter Tony Blair (the
second components are also different).

A set is a binary relation if and only if it contains only ordered pairs.2 In
particular, the empty set Ø is a relation, because it does not contain anything
but ordered pairs.

The relation that is satisfied by objects x and y if and only if x is smaller
than y is the following set:

{〈Munich, London 〉,〈 Oxford, London〉,〈Oxford, Munich〉,〈Munich,
Paris〉,. . . }

Here and in the following I’ll use ‘iff’ as an abbreviation for ‘if and only if ’.
In the following definition D is an arbitrary set. D may be empty.

Definition 1.1. A relation R is H146

(i) reflexive on D iff for all a in D 〈a,a〉 ∈ R.

(ii) irreflexive iff for no a 〈a,a〉 ∈ R.

(iii) non-reflexive iff R is neither reflexive nor irreflexive.
H147

(iv) symmetric iff for all a,b: if 〈a,b〉 ∈ R then 〈b,a〉 ∈ R.

(v) asymmetric iff for no a,b: 〈a,b〉 ∈ R and 〈b,a〉 ∈ R.

(vi) non-symmetric iff R is neither symmetric nor asymmetric.
H149

(vii) transitive iff for all a,b, c: if 〈a,b〉 ∈ R and 〈b, c〉 ∈ R, then 〈a, c〉 ∈ R.

(viii) intransitive iff for all a,b, c: if 〈a,b〉 ∈ R and 〈b, c〉 ∈ R, then not 〈a, c〉 ∈ R.

(ix) non-transitive iff R is neither transitive nor intransitive.
H150

(x) connected on D iff for all a,b in D either 〈a,b〉 ∈ R or 〈b,a〉 ∈ R or a = b.
H155

(xi) an equivalence relation on D iff it is reflexive on D, symmetric and tran-
sitive.

2There are also other notions of relations. According to another use of the term binary
relations relate to sets of ordered pairs in the same way as properties are related to sets.
Here a relation is identified with the corresponding set of ordered pairs. This is common
practice in mathematics.

version of 24th July, 2008 5

6

Note. Hodges (2001) does not refer explicitly to the domain in his definition
of reflexivity. If the domain is empty, for instance, the empty relation Ø is
reflexive; if the domain is not empty, then the empty relation Ø is not reflexive,
because by the definition on p. 146 every dot must have a loop. Here I have
made the reference to the underlying set explicit. The set D is Hodges’ domain.
The definition of connectedness suffers from a similar problem.

Definition 1.2. A relation is a function iff for all a,b, c: if 〈a,b〉 ∈ R and
〈a, c〉 ∈ R then b = c.

For instance the relation that is satisfied by those pairs 〈a,b〉 such that b
is the mother of a is a function, because nobody has two (different) mothers.

There are also three-place relations. These are sets of triples 〈a,b, c〉. Four-
place relations are sets of quadruples and so on. Unary (one-place) relations
are simply sets.

1.3 Arguments, validity and contradiction

In logic usually sentences are the objects that can be true or false. Of course
not every sentence of English can be true: a question like ‘Are there any
crisps with fish flavour?’ is neither true nor false. The following focuses on
declarative sentences, that is, sentences that can be true or false.

A sentence can be true in one possible situation and false in others.
An argument consists in premisses and one conclusion. Premisses and

conclusion are declarative sentences. The following is an example of an
argument:

There is no German who does not like crisps with paprika flavour.
Rebecca and Johannes are German.
Therefore Johannes likes crisps with paprika flavour.

The two sentences ‘There is no German who does not like crisps with paprika
flavour.’ and ‘Rebecca and Johannes are German.’ are the premisses of the
argument, while ‘Johannes likes crisps with paprika flavour.’ is its conclusion.
Usually the conclusion is marked by a phrase like ‘therefore’ or ‘it follows that’,
but it need not be. Sometimes the conclusion precedes the premisses:

Johannes likes crisps with paprika flavour. For there is no German
who does not like crisps with paprika flavour, and Rebecca and
Johannes are German.

An argument may feature just one premiss or, as a degenerate case, no premiss
at all. H38

An argument is valid if and only if there is no possible situation in which
all the premisses of the argument are true and the conclusion is false. The
arguments above are valid.

version of 24th July, 2008 6

7

An argument is invalid if and only if there is at least one possible situation
where all the premisses are true and the conclusion is false.

An argument with no premisses will be valid if and only if the conclusion
is true in all possible situations. A sentence is a necessary truth if and only if
it is true in all possible situations.

A sentence is consistent if and only if it is true in at least one possible
situation. A set of sentences is consistent if there is at least one possible
situation where all its elements are true. H1

A sentence is a contradiction, inconsistent or self-contradictory if and
only if there is no possible situation where it is true. A set of sentences
is inconsistent if and only if there is no possible situation in which all its
elements are true.

A sentence is contingent if and only if it is true in at least one possible
situation and false in at least one possible situation.

version of 24th July, 2008 7

2 Propositional logic

2.1 The syntax of the language of propositional logic
H97

This exposition deviates from section 26 in (Hodges, 2001) in taking ‘P ’,
‘Q’ and so on as sentence letters right from the beginning instead of ‘P0’,
‘P00’,. . . Hodges says later on that he uses ‘P ’, ‘Q’,. . . instead of ‘P0’, ‘P00’,. . . 1.

Definition 2.1 (sentence letters). ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘P1’, ‘Q1’, ‘R1’, ‘S1’,
‘T1’, ‘P2’ and so on are sentence letters (or, as some authors say, propositional
variables, parameters or constants).

Definition 2.2 (formula of L1).

(i) All sentence letters are formulae of L1.

(ii) If φ and ψ are formulae of L1, then ‘¬φ’, ‘[φ∧ψ]’, ‘[φ∨ψ]’, ‘[φ→ψ]’ and
‘[φ↔ψ]’ are formulae of L1.

Of course, nothing else is a formula. This could be added explicitly as
a further condition in the definition, but I introduce the convention that
the definition above and in the following have to be understood in the most
restrictive way. That is, I ask the reader to add the clause ‘and nothing else is
a formula of L1.’

The Greek letters ‘φ’ and ‘ψ’ in (ii) are not expressions of the language L1.
For instance, ‘[φ∧ψ]’ is not a formula of L1 and it only becomes a formula of
L1 if ‘φ’ and ‘ψ’ are replaced by formulae of L1, respectively.

Example 2.3. By (i), ‘P ’ is a formula of L1. Thus by (ii) ‘¬P ’ is also a formula
of L1. By (i) again ‘T4’ is a formula of L1. By (ii) and what has been said so
far, ‘[¬P∧T4]’ is a formula, and by (ii) again also ‘[[¬P∧T4]→ P]’ is a formula
of L1.

Hodges (2001) calls the symbols ‘¬’, ‘∧’, ‘∨’, ‘→’, ‘↔’ truth-functor symbols.
Most other authors call them connectives.

1For the use of quotation marks see Appendix C

version of 24th July, 2008 8

9

name in English symbol alternative symbols
conjunction and ∧ ., &
disjunction or ∨ +
negation it is not the case that ¬ -, ∼
arrow if—then— → ⊃
(material implication,
conditional)
biconditional if and only if ↔ ≡
(material equivalence)

The names in brackets and the symbols in the right column are used by other
authors; they will not be used in exams. But it is useful to know them when
you are reading other authors.

The expressions in the ‘in English’ column indicate how the connectives
are commonly read, rather than their precise meanings.

2.2 The semantics of propositional logic
H99ff

Definition 2.4. A L1-structure is a function that assigns a truth value (T or
F) to some sentence letters.

Definition 2.5. Let A be some structure that assigns either T or F to every
sentence letter in φ and ψ.

(i) If A assigns T to a sentence letter, then the sentence letter is true in A.

(ii) If φ is not true in A, then ‘¬φ’ is true in A.

(iii) If φ and ψ are true in A, then ‘[φ∧ψ]’ is true in A.

(iv) If φ or ψ (or both) is true in A, then ‘[φ∨ψ]’ is true in A.

(v) If φ is not true in A or ψ is true in A, then ‘[φ→ψ]’ is true in A.

(vi) If φ and ψ are both true or if φ and ψ are both false, then ‘[φ↔ψ]’ is true
in A.

(vii) If φ is not true in A, then φ is false.

The assumption that A assigns T or F to all sentence letters in φ is
important. If this condition is not satisfied, φ is neither true nor false in A.

The definition can be summarised in truth tables. These tables allow one
to calculate whether a sentence is true or false in a structure. For instance,
the first line of the table for ∧ tells you that ‘[φ∧ψ]’ is true in the structure iff
φ is true and ψ is true in this structure.

version of 24th July, 2008 9

10

φ ¬φ
T F
F T

φ ψ [φ∧ψ]
T T T
T F F
F T F
F F F

φ ψ [φ∨ψ]
T T T
T F T
F T T
F F F

φ ψ [φ→ψ]
T T T
T F F
F T T
F F T

φ ψ [φ↔ψ]
T T T
T F F
F T F
F F T

Definition 2.5 determines whether a formula is true or false in a structure,
if the structure assigns T or F to every sentence letter in the sentence. I
explain this by an example.

A structure A assigns T to the sentence letter ‘P ’ and F to the sentence
letter ‘Q’; and it is to be determined whether the formula ‘[¬[P →Q]→ [P∧Q]]’
is true in this structure or not.

Since A assigns T to ‘P ’, ‘P ’ is true in A; and since A assigns F to ‘Q’,
‘Q’ is false in A by Definition 2.5 (i). By Definition 2.5 (v), ‘[P → Q]’ is false
in A and thus ‘¬[P → Q]’ is true in A by Definition 2.5 (ii). By Definition
2.5 (ii) the formula ‘[P ∧Q]’ is false in A, and therefore the entire formula
‘[¬[P →Q]→ [P ∧Q]]’ is false in A according to Definition 2.5 (v) again.

This way of writing down the calculation is awkward. It becomes much
more perspicuous if written down in the following way:

P Q [¬ [P → Q] → [P ∧ Q]]
T F T T F F F T F F

The boldface F is the final value.
One can calculate the truth and falsehood of a formula for all possible

structures that assign T or F to all sentence letters of the formula in a single
truth table:

P Q [¬ [P → Q] → [P ∧ Q]]
T T F T T T T T T T
T F T T F F F T F F
F T F F T T T F F T
F F F F T F T F F F

Again the column that indicates the truth and falsehood of the entire formula
is in boldface letters. In the following definition I call this column the main
column.

version of 24th July, 2008 10

11

Definition 2.6.

• A formula is a tautology if and only if there are only Ts in the main
column of its truth table.

• A formula is semantically inconsistent if and only if there are only Fs in
the main column of its truth table.

• A formula is a propositionally contingent if and only if there are Ts and
Fs in the main column of its truth table.

Some authors call tautologies ‘logically necessary’ or ‘valid’ formulae.

Definition 2.7. Let X be a finite set of formulae of L1 and ψ be a formula of
L1.

(i) X Íφ iff there is no structure such that all formulae in X are true in the
structure and φ is false in it.

(ii) X Í iff there is no structure such that all formulae in X are true in it.

Hodges calls expressions of the form ‘X Í’ and ‘X Íφ’ ‘semantic sequents’.
These formal expressions are read in English in the following way:

Definition 2.8. (i) A set X of formulae is (semantically) inconsistent iff X Í. H102

(ii) An inference from the formulae in X to φ is valid iff X Íφ.

(iii) X semantically entails φ iff X Íφ.

More precisely, one should talk about inconsistency etc. in propositional
logic. When there is a danger of confusion this specification should be added.

Lemma 2.9. X Íφ iff X ,¬φÍ.

Here X ,¬φ is the set with φ and all elements of X as elements.

Proof. Assume X Íφ. Then there is no structure A such that all formulae in
X are true in the structure and φ is false in A. Therefore there is no structure
such that all formulae in X are true in the structure and ‘¬φ’ is true in A.
Hence there is no structure that assigns T or F to all sentence letters in X ,¬φ
such that all formulae in X ,¬φ are true in A.

Assume X ,¬φÍ. Then there is no structure A that assigns T or F to all
sentence letters in X ,¬φ such that all formulae in X ,¬φ are true in A. And
thus there is no structure that assigns T or F to all sentence letters in X ,¬φ
such that all formulae in X are true in A and φ is false in A; and therefore
X Íφ.

version of 24th July, 2008 11

12

2.3 Proofs
H115ff

A tree (of formula of L1) has some formula at the top and it is branching to
the bottom (it is not allowed that the branches of the tree merge again).

A branch in a tree is a sequence of formulae with a formula on the bottom
as the last element and the topmost formula as the first element and all
formulae in between (in their order) as further elements in between.

Example 2.10. In the following tree the bold-face formulae constitute a
branch in the tree.

X [P↔¬[Q→R]]
X [R→ [¬Q∧S]]

X¬[[Q∨P]→¬R]

[Q∨P]
X¬¬R

R

¬R X [¬Q∧S]

¬Q
S

P
X¬[Q → R]

Q
¬R

¬P
¬¬[Q→R]

�����
aaaa

((((((((((
@
@

The particular shape of the formulae does not matter at the moment. You
should just check that the sequence of formulae in boldface satisfies the
definition of a branch: ‘¬¬[Q → R]’ is the end point of the branch. Taking
this formula as the last formula and the topmost formula and all formulae in
between yields a branch within the tree.

There are several rules that can be used to extend an existing tree; they
allow one to write something at the end of one or several branches. A branch
is closed if and only if the there is a bar at the bottom of the branch; otherwise
the branch is unclosed (How branches can be closed will be explained below).

I pick one of the rules at random. Assume that a formula of the form
‘¬¬φ’ occurs in a tree and the formula is not yet ticked. Then there is a rule

version of 24th July, 2008 12

13

that allows one to write the formula φ at the end of any unclosed branch that
contains this occurrence of ‘¬¬φ’ and to tick the occurrence of ‘¬¬φ’.

You must write φ at the end of any unclosed branch that contains the oc-
currence of ‘¬¬φ’ in question. It is also mandatory that you tick the occurrence
of ‘¬¬φ’.

I have been talking about occurrences of formulae. The reason is that
a formula may occur several times in a tree. The rule focuses on just one
occurrence of the formula. If there is a second occurrence of ‘¬¬φ’ on another
branch you do not have to add φ to this branch.

In the following I shall abbreviate this rule by writing:

X¬¬φ

φ

Of course, there may be formulae on the branch between ‘¬¬φ’ and φ.
It is a common mistake to apply the rule not to the entire formula in a line,

but only to parts of a formula. For instance, the formula does not allow you to
pass from ‘[P ∧¬¬Q]’ to ‘[P ∧Q]’. The rule cannot be applied to ‘[P ∧¬¬Q]’ at
all, because this formula is of the form ‘[φ∧ψ]’ and not of the form ‘¬¬φ’.

Other rules allow you to add two formulae at the end of branches. Still
others allow you to add two formulae but on two different branches. Here is a
list of all rules:

X¬¬φ

φ

X [φ∧ψ]

φ

ψ

X¬[φ∧ψ]

¬φ ¬ψ
�� @@

X [φ∨ψ]

φ ψ

�� SS

X¬[φ∨ψ]

¬φ
¬ψ

X [φ→ψ]

¬φ ψ

�� @@

X¬[φ→ψ]

φ

¬ψ

X [φ↔ψ]

φ

ψ

¬φ
¬ψ

�� \\

X¬[φ↔ψ]

φ

¬ψ
¬φ
ψ

�� @@

You may draw a line
at the bottom of every
branch on which a for-
mula occurs together
with its negation.

version of 24th July, 2008 13

14

Definition 2.11. A tree is a tableau if and only if all its branchings follow one
of the above derivation rules.

A branch is closed if and only if there is a line at the bottom of the branch;
otherwise it is open. A tableau is closed if and only if all its branches are
closed.

Definition 2.12. Assume X is a finite set of formulae of L1. Then X ` if and
only if there is a closed tableau with all formulae in X at the top.

Definition 2.13. X `φ if and only if X ,¬φ`.

Thus we have X ` φ iff there is a closed tableau with all formulae in X
and ‘¬φ’ at the top. The elements of X are called premisses.

Instead of writing ‘{ψ1, . . . ,ψn}`φ’ one may also write ‘ψ1, . . . ,ψn `φ’. That
is, one may drop the set brackets around an enumeration of the premisses.
Below ‘X ,¬φ’ stands for the set of all formulae in X plus the formula φ.

‘X `φ’ is read as ‘X syntactically entails φ’ or as ‘φ is provable from the
premisses in X ’, and ‘`φ’ is read as ‘φ is a (syntactic) theorem’.

X is allowed to be the empty set Ø and the same conventions apply. Thus
`φ if and only if there is a closed tableau with ‘¬φ’ at the top. In this case φ
is called provable.

‘X `φ’ is called a ‘syntactic sequent’. H116
Finally I mention a result without proof that relates Í and `:

H118
Theorem 2.14 (Adequacy). For all sets X of formulae of L1 and formulae φ
the following holds:

X Íφ iff X `φ

The left-to-right direction is called the Completeness Theorem (for proposi-
tional logic); the right-to-left direction is called the Soundness Theorem (for
propositional logic).

version of 24th July, 2008 14

3 Predicate logic

3.1 The syntax of the language of predicate logic

Hodges (2001) does not specify the syntax of predicate logic.
In general Hodges does not carefully distinguish between the formal and

the natural language.

Definition 3.1 (predicate letters). All upper case Latin letters ‘A0’, ‘B0’, ‘C0’,
‘A0’, ‘B0

0’, ‘C0
0’,. . . ,‘A24

8 ’,. . . with an arbitrary natural number or no number as
subscript and with some number as superscript are predicate letters.

The value of the upper index of a predicate letter is called its arity. The
predicate letter ‘P3

4 ’, for example, has arity 3. A predicate letter of arity 3, for
example, is sometimes called a 3-place predicate letter.

Definition 3.2 (variables). ‘x’, ‘y’, ‘z’, ‘x1’, ‘y1’, ‘z1’, ‘x2’,. . . are variables.

Definition 3.3 (individual constants). ‘a’, ‘b’, ‘c’, ‘d’, ‘a1’, ‘b1’, ‘c4’, ‘d1’, ‘a2’,. . . are
individual constants.

Hodges calls the individual constants ‘designators’ and ‘proper names’.

Definition 3.4 (atomic formulae). If P is a predicate letter of arity n and
t1,. . . ,tn are variables or individual constants, then ‘Pt1 . . . tn’ is an atomic
formula. If t1 and t2 are variables or individual constants, then ‘t1 = t2’ is also
an atomic formula.

‘G3
5xd4 y’, ‘x = a’ and ‘G2xx’, for instance, are atomic formulae.

In an atomic formula the arity of a predicate letter is obvious: it is the
numbers of variables and individual constants following the predicate letter.
Therefore we adopt the following convention:

Superscripts of predicate letters may be dropped in atomic formu-
lae.

Definition 3.5. A quantifier is an expression ‘∀v’ or ‘∃v’ where v is a variable.

There are alternative symbols for ‘∀’ and ‘∃’ (which will not be used here or in
examinations). ‘

∧
v’, ‘Πv’ and ‘(v)’ are sometimes used instead of ‘∀v’, and ‘

∨
v’

and ‘Σv’ instead of ‘∃v’.
L1 was used for the language of propositional logic; the language of predi-

cate logic is labelled L2.

version of 24th July, 2008 15

16

Definition 3.6 (formula of L2).

(i) All atomic formulae are formulae of L2.

(ii) If φ and ψ are formulae of L2, then ‘¬φ’, ‘[φ∧ψ]’, ‘[φ∨ψ]’, ‘[φ→ψ]’ and
‘[φ↔ψ]’ are formulae of L2.

(iii) If v is a variable and φ is a formula with an occurrence of v but without
an occurrence of a quantifier ‘∀v’ or ‘∃v’, then ‘∀vφ’ and ‘∃vφ’ are formulae
of L2.

Examples of formulae of the language L2 of predicate logic are:

• ∀x[P2xa →Q1x]

• ¬[∀x∀y[P3
2 axx∧∃zP3

2 zyc]∧P0]

• P3xya

• [[∀z∃yRzy↔∃zRzz]∧∀zPz] This is a formula in accordance with De-
finition 3.6 (iii), although there are three occurrences of quantifiers
involving z.

Do not try to understand these expressions, just check that these expressions
are formulae of L2 according to the definition above.

The following two displayed formulae are not formulae of L2:

∀x[P y→Q y]

This is not a formula, because the variable x has no occurrence in ‘[P y→Q y]’.

∃x[Pxa∧∀x[¬Gx∨Qx]]

This is not a formula, because the quantifier ‘∀x’ occurs in ‘[Pxa∧∀x[¬Gx∨
Qx]]’, which is excluded in Definition 3.6 (iii).

Many other authors use a slightly different definition of a formula accord-
ing to which the two expressions above would be formulae.

Again superscripts of predicate letters may be skipped. So for the first
formula one would usually write ‘∀x[Pxa →Qx]’.

H176ff
Definition 3.7 (scope of a quantifier). The scope of a quantifier within a given
formula φ is the smallest formula within φ that contains this quantifier.1

1To be precise, I should talk about occurrences of quantifiers and formulae. In the formula
‘[∃xPx∧∃xQx]’ the quantifier ‘∃x’ occurs twice. The scopes of the two occurrences are
obviously different. However, I shall suppress the reference to particular occurrences if it is
clear which occurrence is discussed.

version of 24th July, 2008 16

17

Definition 3.8 (bound occurrence of a variable). An occurrence of a variable
v is bound if and only if it is in the scope of a quantifier ‘∀v’ or ‘∃v’.

An occurrence of a variable is free if and only if it is not bound.

Definition 3.9 (closed formulae). A formula is closed if and only if all occur-
rences of variables are bound in the formula.

I list some examples. The underlined occurrences of variables are free in
the respective formulae.

• [∀x[Pxy→Qax]↔ Pxy]

• ∃z¬[Pax∧¬[∃xPx∨Qzx]]

• [[Px∧ Axy]∧Rxy]

The occurrences of variables that immediately follow the quantifier symbols
‘∀’ and ‘∃’ are usually not considered. One can take all of them as bound
occurrences or as neither bound nor free.

3.2 Proofs

Most definitions of section 2.3 carry over from propositional logic. Formulae H190ff
of L1 are replaced by closed formulae of the language L2 of predicate logic.
Moreover, the formulae are not ticked and it is not necessary to extend every
branch containing the occurrence of the formula in question.

The rules for quantifiers look as follows:

¬¬φ

φ

[φ∧ψ]

φ

ψ

¬[φ∧ψ]

¬φ ¬ψ
�� @@

[φ∨ψ]

φ ψ

�
�
S
S

¬[φ∨ψ]

¬φ
¬ψ

[φ→ψ]

¬φ ψ

�
�
@
@

¬[φ→ψ]

φ

¬ψ

[φ↔ψ]

φ

ψ

¬φ
¬ψ

�
�
\
\

¬[φ↔ψ]

φ

¬ψ
¬φ
ψ

�
�
@
@

There are additional rules for identity:

version of 24th July, 2008 17

18

φ

D = E

ψ

provided that the individual constant
D occurs in φ, and ψ is the result of
replacing one or more occurrences of D
in φ by occurrences of E.

Here it is only required that φ and ‘D = E’ occur on the branch; it is not
required that ‘D = E’ has φ directly above it. It is also allowed that ‘D = E’
occurs before φ on the branch.

The following rule differs from the first only in the order of the individual
constants D and E.

φ

E = D

ψ

provided that the individual constant
D occurs in φ, and ψ is the result of
replacing one or more occurrences of D
in φ by occurrences of E.

The remaining rules concern the quantifiers:

∀vφ

ψ

provided that there is an individual con-
stant D which has already occurred in
the branch above ψ, and ψ is the result
of replacing every free occurrence of the
variable v in φ by D.

∃vφ

ψ

provided that ψ is the result of replacing
every free occurrence of v in φ by the
individual constant D and D has not
occurred anywhere in the branch above
ψ.

¬∀vφ

∃v¬φ

¬∃vφ

∀v¬φ

Hodges (2001) mentions a rule VII, but he does not allow it to be used. This
rule must not be used according to the examination regulations, unless you
are explicitly allowed to do so.

The rule for drawing bars at the end of branches is as follows:

You may draw a line at the bottom of every
branch on which a formula occurs together
with its negation or on which ‘¬D = D’ oc-
curs for some individual constant D.

The definition of a tableau, a closed tree and so on are as in section section
2.3.

version of 24th July, 2008 18

19

Definition 3.10. Assume X is a finite set of formulae of L2 and φ is a formula
of L2.

(i) X ` if and only if there is a closed tableau with all formulae in X at the
top.

(ii) X `φ if and only if X ,¬φ`.

Thus X `φ if and only if there is a closed branch with all formulae in X
and ‘¬φ’ at the top. The elements of X are called premisses. ‘X `φ’ is read as
‘φ is provable from the premisses in X ’.

3.3 Interpretations and counterexamples

In propositional logic the tableau method yields a decision procedure for
deciding whether a syntactic sequent is correct or not, that is, for deciding
whether a formula is provable from a finite set of formulae.2 If all complex
formulae are ticked and the tableau is not yet closed, we have done everything
we can do. Therefore the sequent cannot shown to be correct in this case. And
from Theorem 2.14 we know that the corresponding semantic sequent is also
not correct.

If a tree does not close in predicate logic, that doesn’t show anything (apart
from some special cases). It could still close within the next 100 steps. The
reason is that we could still try another individual constant.

For predicate logic Hodges does not define correctness for semantic se-
quents, that is, ‘X Í φ’ is not defined where φ and all elements of X are
sentences of L2. Counterexamples appeal to validity of arguments in English.
The idea is that a syntactic sequent ‘X ` φ’ (X a set of formulae of L2, φ a
formula of L2) is not correct if there is a translation of all the formulae into
English such that the resulting argument in English is not valid.

In Hodges’ terminology a (predicate) interpretation is a translation of some H187
predicate letters and individual constants into corresponding expressions in
English. Thus, e.g., a binary predicate letter will be translated as binary pred-
icate expressions of English (and similarly for predicate letters of arbitrary
arity), and individual constants will be translated as designators of English.
An interpretation is an interpretation for a particular formula if and only if the
interpretation comprises translations for all predicate letters and individual
constants occurring in the formula.

An interpretation specifies translations for the predicate letters and indi-
vidual constants, but not for the identity symbol because the identity symbol
is always translated in the usual way:

x = y : x is (identical with) y

2Here it is important that Hodges allows only finitely many premisses in a sequent.

version of 24th July, 2008 19

20

I give an example of an interpretation.

Example 3.11. The following is an interpretation for the formula ∀x[Px →
Rxa]:

Px : x is a tree on Christ Church meadow
Rxy : x is in y
a : Oxford

This example shows that a predicate letter might receive a fairly complex
predicate expression of English as translation.

Given the above interpretation one can translate the entire formula
‘∀x[Px → Rxa]’ into English as

All trees on Christ Church meadow are in Oxford.

Thus under the interpretation of Example 3.11 the formula ‘∀x[Px → Rxa]’
becomes a true English sentence. It is not hard to think of an interpretation
that renders ‘∀x[Px → Rxa]’ a false sentence.

A domain is some arbitrary set. An English sentence is true in a domain, if
and only if the sentence is true if only elements in the domain are considered.
For instance, in the domain {2,4} the sentence ‘All numbers are even’ is
true. If the domain is the set of all integers the sentence is false. However,
we must presuppose that the English sentence contains only designators
designating objects in the domain. For instance, you may not specify ‘Brazil’
as the translation of the individual constant c and then take the set of all
European countries as the domain of quantification. Thus the objects denoted
by the translations of the individual constants must be in the domain of
quantification. In the following it is always assumed that the interpretations
respect this restriction.

In order to refute X `φ, one can specify a domain D plus an interpretation
for φ and all formulae in X , such that all formulae in X are true under this
interpretation in D and φ is false under this interpretation in D.

A counterexample to the claim that X ` φ (or, for short, a coun-
terexample to ‘X `φ’) consists in a specification of the following:

• a domain of quantification (any set is allowed as domain of
quantification; in particular the domain can be the empty
set)

• translations of all predicate letters involved in the argument
to English predicates of the same arity.

• translations of all individual constants involved in the argu-
ment (the translations must designate only objects in D)

version of 24th July, 2008 20

21

where all formulae in X are true under this interpretation in the
domain and φ is false under this interpretation in the domain.

Of course some sort of justification is required for the claim that a coun-
terexample can be used to refute a claim like X ` φ. The claim cannot be
proved formally because it involves informal notions like the truth of English
sentences in a given domain. But an inspection of the tableau system should
show that the if all the translations of elements of X are true, then φ cannot
be false, if X `φ.

Example 3.12. The following is a counterexample to ‘∀x∃yGxy`∃y∀xGxy’:

Gxy : x is separated by the sea from y
domain: : {Canada, U.S.A., Germany, France}

The translation of the premiss ‘∀x∃yGxy’ is then ‘Everything is separated
by the sea from something’, which is true if we focus on the countries in the
domain: Canada is separated by the sea, e.g., from France. The translation
of the conclusion ‘∃y∀xGxy’ is ‘Something is separated by the sea from every-
thing.’ is clearly false, because, e.g., France is not separated from Germany by
the sea.

There are also simpler counterexamples like the following:

Gxy : x is identical to y
domain: : {1,2}

This is a counterexample because 1 and 2 are both identical to something
in the domain, respectively (namely to themselves); but neither 1 nor 2 are
identical to everything in the domain.

This means in practice that if one wonders whether an argument is valid
in predicate logic, one can try to prove X `φ by the tableau method in order
to prove that the argument is valid or one can try to find a counterexample in
order to show that the argument is not valid.

Example 3.13. There is a counterexample to

∀x[Px →∃yRxy],∀x[Rxa →Qx]`∀x[Px →Qx].

Px : is a European capital city
Rxy : x is the capital of y
a : Italy
Qx : is in Italy
domain: : the set of all capital cities and all European countries

The translations of the two premisses and the conclusion are then:

version of 24th July, 2008 21

22

1. Every European capital is the capital of something.

2. Every capital of Italy is in Italy.

3. Every European capital is in Italy.

Sometimes it may be easier to specify a structure rather than a translation
in order to refute the validity of an argument.

Basically the idea is this. Instead of providing a translation for each
predicate letter, one assigns a truth value to each 0-place predicate letter, a
set of objects to each 1-place predicate letter, and a set of ordered n-tuples to
each n-place predicate letter, where n > 1.

In the case of Example 3.13 one could write:

P : {Rome, Berlin}
R : {〈Rome, Italy〉}, {〈Berlin, Germany〉}
a : Italy
Q : {Rome}
domain: : {Rome, Berlin, Italy, Germany}

All the objects (Rome, Berlin, Italy, Germany) in the relations must be in
the domain. The structure follows the idea of the above translation with the
restriction to two capitals and two countries.

This approach is allowed and sometimes sensible.
It is possible to assign a predicate letter the empty relation (i.e., the empty

set). It is also possible to assign the same relation to two different predicate
letters of the same arity.

Note. In counterexamples you should not presuppose any particular knowl-
edge only you have. For instance, taking the set of the objects on your desk as
domain is not a good idea. It is unlikely that the examiner knows the objects
on your desk. Usually it is also sensible to choose a simple counterexample if
possible.

version of 24th July, 2008 22

Appendix A: Rules for dropping brackets

Most logicians employ certain rules for dropping brackets. For instance, they
do not write ‘[[P ∧Q]∧R]’, but rather simply ‘P ∧Q ∧R’. The conventions
explained here do not form part of the syllabus, but they should be useful
when reading texts not following Hodges’ somewhat idiosyncratic notation.

It is not recommended that you use these conventions. The bracketing
conventions introduce more possibilities for mistakes. If brackets are missing
from your formulae, the conventions below will be applied.

The conventions below concern the language L1 of propositional logic and
the language L2 of predicate logic.

The expression that is obtained from dropping brackets is not itself a
formula but rather a mere abbreviation of the original formula.

Bracketing Convention 1. Brackets surrounding the whole formula may be
dropped.

For instance, one may write ‘P → [Q∨P]’ instead of ‘[P → [Q∨P]]’. However,
this convention does not allow to drop any brackets from ‘¬[P → [Q ∨P]]’,
because only a part and not the whole formula is surrounded by the brackets.

This convention is a possible source for errors. Assume the formula ‘P ∧Q’
is to be negated. Then it seems natural to write ‘¬P ∧Q’. But the latter
formula is not the negation of the first. By Convention 1, ‘P ∧Q’ is short for
‘[P ∧Q]’ and thus its negation is ‘¬[P ∧Q]’. From the last formula no brackets
can be dropped.

Bracketing Convention 2. If ‘[φ∧ψ]∧χ’ is a part of a formula, the occur-
rences of the brackets may be dropped and ‘φ∧ψ∧χ’ may be written. An
analogous convention applies to ‘∨’.

According to this convention one may write ‘[Ga∧Gb∧Gc]’ instead of
‘[[Ga∧Gb]∧Gc]’, for instance. Using the Convention 1 this may even be
shortened to ‘Ga∧Gb ∧Gc’. Convention 2 also allows to write ‘∀x[Px →
[Qx∨Rx∨Sxa]]’ instead of ‘∀x[Px → [[Qx∨Rx]∨Sxa]]’.

In mathematics one may write ‘3 ·5+4’ instead of ‘(3 ·5)+4’, because ‘·’
binds more strongly that ‘+’. Similar conventions are adopted in logic.

We first fix which truth-functor symbol (connective) binds more strongly.
A connective ◦ binds more strongly than another connective • if and only if ◦

version of 24th July, 2008 23

24

stands further to the left than • in the following line:

∧ ∨ → ↔

The last bracketing convention allows one to drop brackets where the grouping
of the symbols is already clear from the above list.

Bracketing Convention 3. Assume ◦ and • are truth-functor symbols (con-
nectives). If a formula contains an expression of the form ‘[φ◦ψ]•χ’ (or ‘φ•[ψ◦χ]’)
and ◦ binds more strongly than •, one may write ‘φ◦ψ•χ’ (or ‘φ•ψ◦χ’ in the
latter case).

‘[P ∧Q]→ R’ (Convention 1 has already been used) may be shortened to
‘P ∧Q → R’ because ‘∧’ binds more strongly than ‘→’.

version of 24th July, 2008 24

Appendix B: tableaux rules

¬¬φ

φ

[φ∧ψ]

φ

ψ

¬[φ∧ψ]

¬φ ¬ψ
�
�
@
@

[φ∨ψ]

φ ψ

�
�
S
S

¬[φ∨ψ]

¬φ
¬ψ

[φ→ψ]

¬φ ψ

�
�
@
@

¬[φ→ψ]

φ

¬ψ

[φ↔ψ]

φ

ψ

¬φ
¬ψ

�
�
\
\

¬[φ↔ψ]

φ

¬ψ
¬φ
ψ

�
�
@
@

¬∀vφ

∃v¬φ

¬∃vφ

∀v¬φ

φ

D = E

ψ

provided that the individual constant D occurs
in φ, and ψ is the result of replacing one or more
occurrences of D in φ by occurrences of E.

φ

E = D

ψ

provided that the individual constant D occurs
in φ, and ψ is the result of replacing one or more
occurrences of D in φ by occurrences of E.

∀vφ

ψ

provided that there is an individual constant D
which has already occurred in the branch above
ψ, and ψ is the result of replacing every free oc-
currence of the variable v in φ by D.

∃vφ

ψ

provided that ψ is the result of replacing every
free occurrence of v in φ by the individual con-
stant D and D has not occurred anywhere in the
branch above ψ.

You may draw a line at the bottom of every branch on which a
formula occurs together with its negation or on which ‘¬D = D’
occurs for some individual constant D.

version of 24th July, 2008 25

Appendix C: Quotation

In logic one talks about expressions in natural and formal languages. By
enclosing an expression in quotation marks one obtains a term designating
that expression. For instance, the expression

‘Italy’

refers to the word that begins with an ‘I’ followed by ‘t’, ‘a’, ‘l’ and ‘y’.
When expressions are displayed, quotation marks are usually skipped.
Often in logic one does not only intend to talk about a single expression,

but about many expressions of a certain form simultaneously. For instance,
one tries to affirm the followiong claim:

A conjunction of two sentences is true if and only if both sentences
are true.

This can be more formally expressed in the following way:

(K1) If φ and ψ are sentences, then the expression beginning with φ followed
by ‘∧’ and ψ is true if and only if φ and ψ are true .

Here we do not talk about ‘φ’ and ‘ψ’, rather ‘φ’ and ‘ψ’ are used as variables
ranging over sentences. These variables belong to the language we are actually
using, that is, in English enriched by some symbols. Therefore there is no
need for quotation marks enclosing ‘φ’ and ‘ψ’, respectively. But we talk about
the conjunction symbol ‘∧’, so it has to be enclosed in quotation marks.

We adopt a convention for abbreviating claims like (K1). According to this
convention (K1) can be rephrased in the following way:

(K2) If φ and ψ are sentences, then ‘φ∧ψ’ is true if and only if φ and ψ are
true .

We still do not intend to talk about the Greek letters ‘φ’ and ‘ψ’, but rather
about sentences of a language that obtained by replacing sentences for the
Greek letters ‘φ’ and ‘ψ’ in ‘φ∧ψ’.

The convention has been introduced here only by way of example, and this
should be sufficient for the understanding of the text here and Hodges’ book.
The details of this convention are tricky and quotation has puzzled logicians
and philosophers. There are ways to avoid quotation marks altogether, but
this is usually on he cost of readability.

version of 24th July, 2008 26

B I B L I O G R A P H Y

Hodges, Wilfrid (2001), Logic: An Introduction to Elementary Logic, second
edn, Penguin Books, London.

version of 24th July, 2008 27

	1 Preliminaries
	1.1 Sets
	1.2 Ordered pairs and relations
	1.3 Arguments, validity and contradiction

	2 Propositional logic
	2.1 The syntax of the language of propositional logic
	2.2 The semantics of propositional logic
	2.3 Proofs

	3 Predicate logic
	3.1 The syntax of the language of predicate logic
	3.2 Proofs
	3.3 Interpretations and counterexamples

	Appendix A: Rules for dropping brackets
	Appendix B: tableaux rules
	Appendix C: Quotation

