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Abstract

We discuss the interplay between the axiomatic and the semantic
approach to truth. Often, semantic constructions have guided the de-
velopment of axiomatic theories and certain axiomatic theories have
been claimed to capture a semantic construction. We ask under which
conditions an axiomatic theory captures a semantic construction. Af-
ter discussing some potential criteria, we focus on the criterion of N-
categoricity and discuss its usefulness and limits.

1 Introduction

In recent years formal theories of truth have seen increased attention within
the philosophical community. These formal theories of truth can be divided
into two camps. Axiomatic theories of truth, on the one hand, attempt to
characterize a concept of truth by stating axioms and rules for the truth
predicate. Semantic theories of truth, on the other hand, attempt to char-
acterize truth by defining a suitable interpretation of the truth predicate
in a semantic metalanguage. These two camps, although very different in
character, are intimately linked. Axiomatic principles are often used to mo-
tivate and justify semantic theories and semantic constructions have often
guided the development of axiomatic theories. In particular, it is sometimes
claimed that a certain axiomatic theory of truth captures or axiomatizes a
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semantic theory of truth. Such a claim, however, is in need of clarification
because most semantic theories of truth characterize a set of sentences that
is not recursively enumerable, i.e. they characterize a non-axiomatizable set
of sentences. In this paper we provide three possible explanans of the claim
that an axiomatic theory axiomatizes a semantic theory of truth.

The paper is structured as follows. We start by explaining how the inter-
play between the axiomatic and the semantic approach has shaped formal
work on truth (Section 2). Then, we introduce and discuss three different cri-
teria as to when an axiomatic theory may be said to capture a given semantic
theory (Section 3). The first criterion is based on the idea of structural sim-
ilarity between the axiomatic and the semantic theory of truth. The second
criterion requires the axiomatic and the semantic theory to be of the same
proof-theoretic strength. Our last criterion is based on a specific notion of
categoricity to be specified. In Section 4 we focus on this last criterion, and
discuss its merits and limitations in connection with Kripke style theories
of truth. Finally, in the last section of this paper we briefly discuss the
philosophical relevance of our results.

We assume the reader to be broadly familiar with axiomatic theories
of truth. As to terminology and notation, we will largely follow Halbach
(2014).

2 The Interplay of Axiomatics and Semantics

Since the inception of modern formal truth theory in Tarski’s Concept of
Truth, axiomatic and semantic theories have been methodologically linked
and have therefore often been developed in tandem. This claim is not only
intended as a systematic claim, but also as a historical observation: Ax-
iomatic theories have played a crucial role in the development of semantic
theories, and semantic theories have motivated many axiomatic theories. To
substantiate the historical claim, we begin with the origin of modern formal
theories of truth in Tarski. We merely highlight the relevant aspects of his
account. Details are given in Halbach (2014, ch.3) and Patterson (2012).

Tarski’s main objective is to define truth of object-language sentences in
an essentially richer metalanguage.1 Before he sets out to do this, however,
he specifies an adequacy condition, which is known as Convention T : A
definition of ‘T ’ as a predicate of truth is declared adequate2 if and only if
certain sentences follow from the definition: first, the sentences Tpφq ↔ φ

1Notice that Tarski used the term “metalanguage” in a way that differs from the
modern terminology. For Tarski a language does not only specify the vocabulary but also
contains axioms and rules. To this extent, Tarski’s usage of ‘language’ conflates language
and theory. For more on this see Halbach (2014, p. 16f).

2We omit the specification ‘material’ as it has mislead readers of the English translation.
For discussion, see Patterson (2012).

2



(known as the ‘T-sentences’), for every object language sentence φ; second,
a sentence stating that only sentences of the object language are true.3

Tarski’s definition of truth initiated the semantic approach to truth, and
has become its paradigm. However, at a closer look, Tarski’s perspective is
not wholly semantic, but incorporates elements of the axiomatic approach,
too. The starting point of his discussion are the T-sentences. These in turn
are introduced like axioms. More precisely, Tarski takes the T-sentences as
evidently correct, in the same way as, say, mathematicians take the axioms
of PA as evidently correct. After all, Tarski does not see a need to argue for
them. Thus, Tarski employs postulates or axioms in order to motivate and
justify his semantic theory of truth.

However, he does not see his semantic theory merely as a technical vehicle
for carrying out the reduction of truth to a mathematical theory. Instead, he
uses his semantic theory to assess axiomatizations of truth. So he reverses
the relation of axiomatics and semantics: The semantic theory of truth is
used to evaluate the axiomatization.

This happens when later in the Concept of Truth, Tarski considers taking
truth as a primitive notion and using the principles from Convention T as
axioms. However, he rejects such an axiomatic approach. The reason he
gives for this is puzzling (Tarski, 1956, p. 257). Tarski observes that his
definition of truth satisfies desirable principles not stated in Convention T.
These are general principles such as the law of contradiction or the law of
excluded middle. The observation that they should be consequences of a
good theory of truth but are not derivable from the principles laid down
in Convention T should have prompted Tarski to reconsider Convention T
and ask whether it needs augmentation with those desirable principles. He
merely considers them briefly as candidate axioms and as such evaluates
them against his semantic definition. However, because the resulting system
does not fully capture his semantic definition, Tarski quickly abandons this
axiomatic approach Tarski (1956, p. 258).4

Taking a step back, we find Tarski’s methodology to be characteristic
of much work on formal truth theories, in the following sense. Semantic
and axiomatic theories are developed in close connection. Axiomatic the-
ories lead to semantic theories as Tarski’s T-sentences guided his semantic
definition. Conversely, semantic theories also lead on to further axiomatic
theories. In Tarski this is the step just considered, when he realizes certain
generalizations to be consequences of the semantic theory, but not to be

3Our presentation of Tarski is not intended to be a historically precise account and we
skip many details. For instance, Tarski famously used structurally descriptive names for
sentences and pφq should be understood accordingly.

4The account here is very condensed. For more details see (Halbach, 2014, ch.3). How-
ever, the tension between Tarski’s use of Convention T and the rejection of the axiomatic
approach deserves to be discussed in more detail than, to our knowledge, has been done
so far.
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proved from the T-sentences. Axiomatic theories are evaluated against se-
mantics and semantic theories are judged by the truth-theoretic principles,
that is, axioms and rules, that they validate.

The dialectics of Tarski’s approach on which semantic and axiomatic
theories are developed together, has shaped much work on truth to the
present day.

Various authors have developed semantic theories; nowadays the seman-
tic constructions are usually carried out in set theory, although they can be
formalized in much weaker theories for arithmetic languages. Perhaps the
most prominent semantic theory is due to Kripke (1975). As a matter of
fact, Kripke does not specify a single semantic theory but rather a general
method for obtaining semantic theories of truth. In particular, Kripke con-
sidered different logics for dealing with truth-value gaps and did not commit
himself to a particular way of carrying out his construction.

Different axiomatic theories have been developed that are supposed to
capture different instantiations of Kripke’s theory. Most notably, Feferman
(1991) proposed an axiomatization of the fixed points of Kripke’s semantic
theory with Strong–Kleene logic in its ‘closed-off’ variant, which has come
to be called the Kripke-Feferman theory, or KF for short. ‘Closed-off’ here
means the following. KF’s intended model is classical. In it, ‘T ’ is inter-
preted by a Strong–Kleene fixed point. All other sentences are declared
not true, those false in Kripke’s model as well as those without truth value.
Cantini (1990) tried to do the same for supervaluational Kripke fixed points.

Building on Feferman’s work, Burgess (2009) suggested an axiomati-
zation of the minimal fixed point with Strong Kleene logic.56 All these
axiomatic theories suffer from the problems diagnosed by Tarski for his own
theory: They are supposed to capture a semantic theory, but they obviously
are deductively too weak to prove all sentences that are validated by the se-
mantic theory. So the question arises in which way these axiomatic theories
are supposed to capture the semantic constructions.

The main competitors of Kripke-style semantic theories come from revi-
sion semantics, as advanced by Herzberger (1982), Gupta (1982) and Gupta
& Belnap (1993). It proved much harder to devise axiomatizations of these
theories and ‘capture’ stable or nearly stable truth and related constructions.
An attempt by Turner (1990b) proved unsound.7 The theory of Halbach

5There have also been attempts to axiomatize versions of Kripke’s theory directly
without ‘closing off’ the partial model. To this end Kremer (1988), Halbach & Horsten
(2006) and others have tried to provide axiomatization of Kripke’s theory in nonclassical
logics.

6The research programme initiated by Field in his 2008 monograph Saving Truth From
Paradox is also well understood along those lines. Although most work on Field’s pro-
gramme for languages containing an additional conditional focuses on semantic construc-
tions, he himself seems inclined to view an “effectively generable” set of principles as the
ultimate goal (Field, 2008, p. 277).

7See (Cantini, 1996, p. 394).

4



(1994) is meant to axiomatize revision semantics for finite levels. Horsten
et al. (2012) advanced theories supposed to capture stable and nearly stable
truth.

As we have argued, truth theorists go back and forth between axiomatic
and semantic theories. We do not intend to discuss or defend this method-
ology any further. We have outlined it in order to explain why authors have
come up with claims that a certain deductive theory axiomatizes a seman-
tic construction and we believe, that such axiomatization claims gain their
importance from the methodology of developing semantic and axiomatic
theories of truth in connection with each other. In what follows, we are
concerned solely with this latter aspect of the back and forth methodology.
We will focus on the transition from a semantic to an axiomatic theory. In
particular, we would like to ask in what sense an axiomatic theory of truth
can be said to capture a semantic theory.

Tarski wanted an axiomatic theory to prove those general principles of
truth, such as the law of excluded middle, which are consequences of his se-
mantic theory. It mattered for him that the axiomatic theory thus matches
the semantic theory or is complete with respect to it. Later authors have
been much more explicit: theories such as Feferman’s KF have been explic-
itly advocated as axiomatizating some given semantics. In the remainder
of this paper we will investigate what exactly could be meant by such ax-
iomatization claims and whether, once made precise, they are correct. We
will then focus on one criterion which we think particularly suits the case of
theories of truth: N-categoricity. Moreover, we will restrict our attention to
theories of truth inspired by Kripke (1975) and apply the criterion to them.

3 Criteria

In this section we provide different criteria for determining whether an ax-
iomatic theory axiomatizes a semantic theory of truth. Semantic theories
can be conceived in an extensional or intensional way. On the extensional
understanding, a semantic theory is merely a specific class of models of the
language of truth. On an intensional understanding, the definition of the
class forms part of the semantic theory, that is, the specific way the class is
determined belongs to the semantic theory. For the main Criterion 3.3 an
extensional understanding will suffice. In some cases, for example Criterion
3.1, the intensional understanding will also be of interest.

Of course, an axiomatic theory of truth can only be said to axiomatize
a certain semantic theory, i.e.a class of models, if it is sound with respect
to these models. That is, the axiomatic theory must be true in any model
of the semantic theory. Soundness ensures consistency, and ω-consistency
if, as it often is the case, the semantic theory is based on the standard
model of arithmetic. However, soundness is at best a necessary criterion for
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an axiomatic theory to capture a given semantic construction, even if the
axiomatic theory of truth is proof-theoretically strong. To convince oneself
that soundness alone is insufficient it is enough to consider examples like the
minimal fixed of the Kripke construction with the strong Kleene evaluation
scheme. There are a variety of axiomatic theories, such as PUTB, that are
sound in the minimal fixed point, however they are not considered good
axiomatizations of the minimal fixed point.

In this section we will seek a way of supplementing soundness by a suf-
ficient condition. We will introduce and discuss criteria other than mere
soundness, as to when an axiomatic theory of truth captures a semantic
theory.

3.1 Similarity

One idea that may guide the theorist in axiomatizing a semantic theory is
similarity between the axiomatic and the semantic characterization. Recall
that in the present context, a semantic theory is a class of models. Having
said that, in most cases these semantic theories are definable in some set
theory or second order arithmetic. Although there are different possibilities
to define a class of models, in some cases one definition appears particularly
natural. In these cases, we assume a canonical definition.

Criterion 3.1. An axiomatic theory Σ is an adequate axiomatization of a
semantic theory M if and only if the axioms resemble the canonical defini-
tion of M.

Of course, as it stands, the criterion is as imprecise as the notions of
resemblance. However, at least in some cases it can be explicated in terms
of translations. One example is Tarski’s definition of truth and its axiomatic
counterpart CT.8

According to Donald Davidson, an early proponent of the axiomatic
approach, the clauses of Tarski’s definition should be turned into axioms
(Davidson, 1996, p.277). Davidson suggested to follow Tarski’s inductive
definition but omit the last step of turning it into an explicit definition.
Although he did not explicitly commit himself to a specific formal axiomatic
theory, arguably CT would have been a viable candidate for him if the
language of arithmetic were used as object language.9

As is well known, Tarski’s definition of truth for first-order arithmetic
can be carried out in second-order arithmetic. Following Davidson’s sug-
gestion, we can consider it as an inductive definition turned into an explicit
definition. An inductively defined set is the least set closed under a certain

8For a precise definition of CT, and other axiomatic theories of truth referred to in this
paper, consult Halbach (2014).

9 Keep in mind that Davidson was of course interested in languages much more com-
prehensive than that of arithmetic.
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monotone operator. In many cases, however, there are other such fixed point
sets. In second-order arithmetic we can single out the least fixed point, our
inductive set, by universal quantification over all sets closed under the op-
erator. This can be understood as turning the inductive definition into an
explicit definition.

In the case of arithmetical truth the closure conditions can be formulated
by an arithmetical formula Φ(X, y), that is a formula without second-order
quantifiers.10 Hence, Φ(X, y) can be translated into the language of truth
by replacing all occurrences of X by T . This allows us to derive axioms for
truth. We only need to observe that the conjunction of the CT axioms is
equivalent to the following, universally quantified sentence in the language
of truth.

∀y(T (y)↔ Φ(T, y)) (3.1)

Thus, the axiomatic theory CT can be viewed as the result of translating
Φ from the language of second-order arithmetic into the language of first-
order arithmetic supplemented by a truth predicate. It is in this precise
sense that Tarski’s definition and the axioms of CT resemble one another.11

CT satisfies the Criterion 3.1.
The theory TB, however, does not satisfy Criterion 3.1 because its ax-

ioms, the T-sentences, do not resemble the compositionality of Tarski’s def-
inition. Arguably, this is the correct outcome. As we pointed out in the
previous section, Tarski himself observed that his T-sentences do not suffice
to prove generalizations which ought to hold in a Tarskian theory of truth.

So far we have given two examples, one in which the criterion is satisfied
and one in which it is not. Is it possible to apply the similarity criterion,
regimented in terms of translation, to other cases? We could apply the
criterion to candidate axiomatizations of Tarski’s theory partly because this
semantic theory can be given by an arithmetical formula Φ, as in Equation
3.1. In fact, this formula Φ determines the extension of the truth predicate
uniquely – there is only one fixed point over the standard model that satisfies
Tarski’s closure conditions: the Tarski truth set.12 Therefore, the minimality
condition in the explicit definition is not necessary.

If we consider an inductive definition as for example in the case of
Kripke’s fixed point construction based on Strong Kleene, we still have a
positive inductive definition by means of an arithmetical formula Ψ(X, y).

10In Tarski’s original inductive definition X does not only occur positively, but it is
possible to define the set of arithmetical truths via some X-positive formula Φ(X, y) and
we take this to be the canonical definition. Compare also Footnote 11.

11In fact, the case of CT is somewhat more involved. For a positive inductive definition of
the set of arithmetical truths we have to use different closure conditions that differ slightly
from Tarski’s original version Halbach (2014). A formulation of the positive inductive
definition is found in McGee (1991, p.109). However, we also have a positive inductive
definition of the complement. Combining these we get the axioms of CT.

12 Again, see (McGee, 1991, p. 109).
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Replacing ‘X’ in ∀x(T (x) ↔ Ψ(X, y)) with ‘T ’ we arrive at an axiom that
can easily be broken down into the usual axioms of Feferman’s theory KF (p.
4 above).13 This gives us a translation between Kripke’s semantic clauses
and KF, just like that between Tarski’s clauses and CT. Thus, we can apply
the similarity criterion. However, in this case refraining from a minimality
condition does make a difference. The inductive definition Ψ(X, y) has sev-
eral fixed points and therefore several possible extensions. The minimality
condition, however, picks out a unique solution, namely the least fixed point.
Since minimality is neglected in the proposed translation, none of the KF
axioms expresses that the intended interpretation of ‘T ’ is the least fixed
point. Hence, KF satisfies the similarity criterion, but only with respect to
the semantic theory of arbitrary Strong Kleene fixed points and not with
respect to the least fixed point theory.

Thus, we have found two instances for which the criterion of similar-
ity seems to work fine. In general, however, the criterion is rather limited.
One serious problem is that the criterion only applies to theories that are
characterized by an arithmetically definable operator, and therefore not al-
lowing any second-order quantifiers in the (positive) inductive definition.
This restriction enabled a translation into the language of truth and thus
to sharpen the similarity criterion. However, already in the case of Kripke’s
theory based on supervaluation the operator is defined in terms of a univer-
sal second-order quantifier (see p.16 below) and as we will see the operator
is no longer arithmetically definable. This basic feature of Kripke’s super-
valuational theories blocks the translation of their semantic clauses into the
language of truth. Hence, we can no longer sharpen the imprecise notion
of similarity as we could in the simpler cases of CT and KF. Moreover,
there are semantic theories are not even positive inductively definable and
for those theories, such as Revision theory, the criterion is not applicable.

3.2 Proof-theoretic strength

Axiomatic theories of truth with Peano arithmetic as base theory have often
been compared to extensions of Peano arithmetic. In particular, there are
many results that show that a certain truth-theoretic system is intertrans-
latable or proof-theoretically equivalent in some other sense, such as proving
the same arithmetical sentences or proving the same amount of transfinite
induction with a system of inductive definitions or a subsystem of second-
order arithmetic. It might be asked whether proof-theoretic strength could
also function as a useful criterion for axiomatizing semantic theories of truth.
The guiding idea would be that the axiomatic theory should be at least as
strong as a theory sufficient to carry out the semantic construction.

Before we try to render precise the criterion let us take a look at a

13See Halbach (2014).
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motivating example. Kripke’s fixed-point construction is a special case of
an inductive definition. However there are “formal theories which directly
axiomatize the crucial properties of i.d. [inductively definable] classes of nat-

ural numbers”,14 such as the theory ID1 and ÎD1. The first axiomatizes the
minimal fixed point and the latter arbitrary fixed points for arithmetically
definable positive monotone operators. These theories are formulated in
an expansion of the arithmetical language by new predicates. For each X-
positive arithmetical formula F (X,x) (without second order quantifiers), a
new predicate PF (x) is introduced.

For ID1 we have two different kinds of axioms. The first of those is
∀x(F (PF , x) → PF (x)) and states that IF (x) is closed under F . The sec-
ond is the scheme ∀x(F (G, x) → G(x)) → ∀x(PF (x) → G(x)) stating the

minimality of PF (x). In contrast ÎD1 has only the characteristic axioms
∀x(PF (x) ↔ F (PF (x), x)) and unlike ID1 it contains no minimality claim.

ÎD1 is a proper subtheory of ID1. Moreover ÎD1 is a predicative theory and
thus proof-theoretically significantly weaker than the impredicative theory
ID1.

Accepting our guiding idea that the axiomatic theory should be at least
as strong as a theory sufficient for the semantic construction motivates that
an axiomatization of a minimal fixed point of Kripke should be able to in-
terpret ID1. Let us evaluate KF from a proof-theoretic perspective. Cantini
(1989) observed that KF interprets ÎD1. However KF is just a special case of

ÎD1 and therefore interpretable in it. This shows that KF does not interpret
ID1. For Burgess 2009, this limited proof-theoretic strength of KF is the
main reason for rejecting it as an adequate axiomatization of the minimal
fixed point.15 So KF is proof-theoretically not sufficiently strong to axiom-
atize the Strong Kleene minimal fixed point theory, but it is adequate as an
axiomatization of arbitrary fixed points.

An extension of KF that interprets ID1 has been proposed recently by
John Burgess (2009). His theory KFB extends KF by a scheme to the
effect that the intended interpretation of ‘T ’ is minimal with respect to the
KF axioms.16 KFB is proof-theoretically equivalent to ID1. From a proof-
theoretic perspective, therefore, KFB is a more adequate axiomatization of
Kripke’s minimal fixed point theory based on Strong Kleene.

We take the example as supporting a proof-theoretic criterion. However,
it is not obvious how precisely to formulate such a criterion. A problem
we encounter is that there is not always directly a theory axiomatizing the
semantic construction, as in the case of ID1. For example, for monotone
operators that are not arithmetically definable we have no obvious corre-

14See (Feferman & Sieg, 1981, p. 33).
15Compare Burgess 2009, p. 17.
16KFB extends the well-known theory KF (Halbach, 2014, 15.2) by a schema saying

that whenever a formula φ(x) is ‘upwards’ closed under the KF-axioms, then ‘∀x(T (x)→
φ(x))’.
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sponding axiomatic theory. In those cases we would have to look for a more
general way to make sense of the criterion. The guiding idea could be to con-
sider theories that guarantee that the semantic theory is nonempty, i.e. that
there is a set in the relevant class of models.

Usually some set theory is used to build models for the semantic theories
and we could ask for our axiomatic theory of truth to be proof-theoretically
as strong as a set theory sufficient to construct a model.17 However, in
many cases we can conceive of a semantic theory as a class of models M
that can be characterized by a formula ΨM of second-order arithmetic. One
simple example are the fixed points for a monotone operator Γ given by the
formula Γ(X) = X. Then, we determine the means necessary to carry out
the semantic construction by asking for the weakest fragment of second-order
arithmetic that guarantees the existence of some set satisfying ΨM(X).18

Our axiomatic theory of truth should then be proof-theoretically at least as
strong as this fragment of second-order arithmetic. As for our motivating
example we have that ID1 and KFB are proof-theoretically equivalent to
Π1

1-CA−0 , i.e. the second-order arithmetic extending ACA0 by parameterfree
Π1

1 comprehension.19 Π1
1-CA−0 is sufficient to prove the existence of minimal

fixed points for arithmetically definable monotone operators.
This suggests to complement soundness with respect to the models in

M by the following criterion of proof-theoretic strength,

Criterion 3.2. An axiomatic theory Σ is an adequate axiomatization of a
semantic theory M if and only if a theory that proves the existence of some
extension satisfying ΨM is reducible to Σ .

Of course this criterion is still vague. In particular, we should be more
specific on what reducible means. As a first suggestion we take it to mean
that the proof-theoretic ordinal of the theory proving the existence of an
extension is smaller or equal to the proof-theoretic ordinal of the axiomatic
theory. However, other notions of reducibility may be used as well, such as
proof-theoretic reducibility or relative interpretability. In the latter case, the
additional requirement may be imposed that the arithmetical vocabulary is
not affected by the interpretation. It might well be that the plausibility of
the motivating example relies on this specific notion and is closer in spirit
to the similarity criterion.

One of the positive aspects of the criterion of proof-theoretic strength is
that its range of applicability is wide. In contrast to the two other criteria, it
is not only applicable to relatively simple semantic theories but also to more
complex cases. On the negative side, the criterion is too coarse grained.

17Compare Cantini’s remark after establishing that VFp is proof-theoretically as strong
as ID1: ‘Conversely, VFp has a model in a set theory, which is proof-theoretically equiva-
lent to ID1’ (Cantini, 1996, 356).

18 The existence of such a set guarantees that M is nonempty.
19For a proof see Pohlers (2009), p. 351.
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Some theories satisfy Criterion 3.2 with respect to a given semantic the-
ory and are sound, but intuitively fail to axiomatize it. Consider the theory
PUTB of positive type-free Tarski-biconditionals (Halbach, 2014, p. 276ff).
PUTB is proof-theoretically equivalent to KF, in the sense that both theo-
ries prove the same arithmetical statements. This implies that ÎD1 and the
relevant second-order arithmetic are not only reducible to KF but also to
PUTB.

Moreover, PUTB is sound with respect to Kripke’s theory in the same
sense as KF; in fact PUTB is a subtheory of KF. So PUTB should be
an adequate axiomatization of Kripke’s theory in the same way that KF is.
Intuitively, though, PUTB does not axiomatize Kripke’s theory of truth with
respect to the Strong Kleene evaluation scheme. The axioms of PUTB do
not reflect the compositional structure of Kripke’s theory with the strong
Kleene schema; in fact one can prove that the compositional clauses, for
instance the axiom that truth commutes with conjunction, cannot be proved
in PUTB. Even worse, PUTB does not prove the truth of a single non-
positive sentence. But it is an important feature of Kripke’s theory that it
can also handle non-positive sentences, for example ¬T (p0 = 1q). Thus, KF
seems much better at capturing the main traits of Kripke’s theory, even if
it has the same proof-theoretic strength as PUTB. We conclude that proof-
theoretic strength is at best a necessary condition of an axiomatization, but
not a sufficient condition.

3.3 Categoricity

Taking a step back, the claim that an axiomatic theory of truth captures
a semantic construction is naturally phrased in terms of categoricity: An
axiomatic theory Σ of truth captures a classM of models if and only if the
models of Σ are exactly those in M, at least up to isomorphism. However,
no recursively axiomatized theory of truth will ever capture an interesting
class of models based on the standard model for arithmetic for obvious rea-
sons: Any first-order theory that has infinite models, has models of different
cardinalities.

The impossibility of a categorical syntax or base theory, however, should
not cause us to abandon the categoricity approach. It does not rule out
that the theory of truth may capture a certain semantic theory. This is
obvious if the base theory contains contingent vocabulary and sentences
such as Snow is white. Even if it does not decide such contingent sentences,
an axiomatic theory may still fully capture, e.g., Tarski’s semantic theory
of truth. Equally, the failure of categoricity of truth theories based on
Peano arithmetic should not be taken to mean that such an axiomatic theory
cannot capture Tarski’s semantic theory.

There are different ways to separate the problem of categoricity for the
base theory, from the problem of categoricity of the truth theory. A straight-
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forward way which we shall adopt consists in keeping the standard model
fixed. More precisely, we focus on structures that extend the natural num-
ber structure N by an interpretation of the truth predicate S. Let LPA be
the language of arithmetic, and let LPAT be LPA augmented by a one-place
predicate T . For every set S ⊆ ω there is an LPAT-model (N, S) that is
obtained from the standard model N by interpreting T as S. In analogy
to subsystems of second-order arithmetic (Simpson, 2009, p. 244), we call
such a structure an ‘N-model’. Restricting the categoricity requirement to
N-models, we arrive at the following adequacy criterion:

Criterion 3.3. Let Σ be an axiomatic and M a semantic LPAT-theory. Σ
is an adequate axiomatization of M if and only if for all S ⊆ ω

(†) (N, S) |= Σ⇔ (N, S) ∈M

Thus, an axiomatic theory Σ is deemed adequate if it is categorical with
respect to N-models and, in this case, we call Σ an N-categorical axiom-
atization of M.20 For example, Feferman’s theory KF (p. 4 above) is
N-categorical with respect to the class of Strong Kleene fixed point models
(Theorem 4.2 below). In fact, its N-categoricity appears to underlie the
acceptance of KF as an axiomatization of this version of Kripke’s semantic
theory (McGee, 1991, p.93).

There are other examples of axiomatic theories N-categorical with re-
spect to their target semantic theory of truth. Recall from section 6 the
theory CT. It is true in a model (N, S) just in case S is closed under the
clauses of Tarski’s definition of truth, that is, just in case S is the Tarski
truth set (p. 7 above). In fact, already TB, the theory of T-sentences, is
N-categorical with respect to Tarski’s theory. Some remarks of Davidson’s
can be interpreted as motivating the T-sentences in Convention T from this
fact.21

Due to this important role of N-categoricity we will henceforth focus
on this criterion and subject it to further examination. For this, we re-
strict our attention to one specific family of semantic theories, and ask
for N-categorical axiomatizations of Kripke’s theory of truth. We will re-
hearse well-known positive results, most prominently the fact that KF is
N-categorical with respect to the Strong Kleene fixed point models. Our fo-
cus, however, will be on limitative results that have not yet been discussed
in detail. We will show that for a wide range of interesting semantic theories
of truth an N-categorical axiomatization cannot be found.

20The criterion as it stands has two assumptions. On the one hand we assume classical
axiomatic theories. The criterion might be adapted to non-classical settings, compare
Section 4.3. On the other hand we assume a standard model for the base theory, which
might be more problematic for nonarithmetical base-theories.

21 Thus, in Davidson (1990, p. 299) he speaks of ‘[. . . ] the key role of convention-T
in determining that truth, as characterized by the theory, has the same extension as the
intuitive concept of truth[. . . ]’.
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4 Axiomatizing Kripke’s Theory of Truth

We concentrate on axiomatizations of semantic theories of truth which were
laid out in Kripke’s Outline of a Theory of Truth. There are at least two
reasons for focusing on Kripke’s theories. First, various axiomatic theories
have been developed with the explicit intention of capturing one of Kripke’s
semantic theories. Some of the axiomatic theories have been advocated as
important and promising axiomatic theories of truth. Second, as will become
apparent, only some versions of Kripke’s semantic theory of truth allow for
an axiomatization in the sense of Criterion 3.3 whereas others do not.22

In his paper Kripke defines models for a language with type free truth.
Kripke expands a model of the base language L to a model of the language
LT with truth predicate. For our purpose it will be sufficient to take the
natural number structure N as the base model and to assume LPA to be the
base language. If we are given a suitable set of sentences that have been
declared as true—possibly the empty set—Kripke showed how to transform
this initial model of LPAT to a model where the truth predicate has certain
desirable properties. Kripke’s idea was to work with partial models for the
language LPAT , that is models in which an extension and an antiextension
of the truth predicate is provided and where a sentence ‘Tt’ is true iff the
denotatum of ‘t’ is in the extension of ‘T ’ and false if the denotatum is
in the antiextension of ‘T ’ though undefined otherwise. As a consequence
of allowing so-called truth value gaps into the picture one has to give an
account of how one can compute the truth value of complex propositions,
that is one has to say, e.g., whether the conjunction of a sentence with
undefined truth value and, say, a false sentence is itself false or undefined.
Although Kripke used the Strong Kleene scheme, he remained neutral as to
which evaluation scheme is preferable. What matters to Kripke’s proposal
is that an evaluation scheme e gives rise to a monotone operator Γe, the
“Kripke jump”.23

Definition 4.1 (Kripke Jump). Let (N, S+) be a model for LPAT, e an
evaluation scheme where (N, S+) |=e φ denotes that φ is true in the model
(N, S+) according to e. The operation Γe : P (ω)→ P (ω) such that

Γe(S
+) = {#φ : (N, S+) |=e φ}

is called a Kripke jump iff it is monotone, i.e. for all S, S′

S ⊆ S′ ⇒ Γe(S) ⊆ Γe(S
′)

22There is further reason for focusing on Kripke’s theories of truth which is that only
few axiomatization have been suggested for alternative semantic theories of type-free truth
such as the revision theory.

23To simplify matters, we suppress mention of the truth predicate’s antiextension. It
can be recovered from the extension by negation: S− = {#φ : #¬φ ∈ S+} where #φ
denotes the Gödel number of φ.
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The monotonicity of the Kripke jump guarantees the existence of fixed
points, that is sets S for which Γe(S) = S and, moreover, the existence of a
least fixed point IΓe . A Γe-fixed point S contains all sentences true according
to the evaluation scheme e and thus counts as a suitable interpretation of
the truth predicate in Kripke’s theory of truth based on the evaluation
scheme e. Kripke’s theory of truth may therefore be taken to advocate
the fixed points of the Kripke jump as the suitable interpretations of the
truth predicate in the standard model. Accepting all the fixed points of
Kripke’s construction for a given scheme e means that Kripke’s theory Me

consists of those standard models (N, S) for which Γe(S) = S. Reconsidering
our Criterion 3.3 we therefore say that a recursively enumerable theory Σ
axiomatizes Kripke’s theory of truth spelled out using a scheme e, if and
only if for all S ⊆ ω:

(N, S) |= Σ⇔ Γe(S) = S

Instead of working with all fixed points, one may also restrict attention
to some designated fixed points. The minimal fixed point stands out in this
respect as it is thought to single out all and only the sentences whose truth
value is grounded. If we understand Kripke’s theory in this sense, then a
recursively enumerable theory Σ will axiomatize Kripke’s theory based on a
scheme e according to Criterion 3.3 if and only if Σ uniquely singles out the
least fixed point IΓe , i.e. if (N, IΓe) will be the only standard model of Σ.

After this short introduction to Kripke’s theory of truth we will ask for
the prospects and limitations of axiomatizing Kripke’s semantic theory of
truth based on some scheme e in the sense of Criterion 3.3. We begin with
Kripke’s theory based on the Strong Kleene evaluation scheme sk.

4.1 Axiomatizing Strong Kleene Truth

As already mentioned, Kripke himself concentrated on the Strong Kleene
scheme when discussing his theory of truth; and the Strong Kleene jump
operation is a Kripke jump according to our Definition 4.1. By a well-
known result of Feferman we know that the axiomatic theory of truth KF
is an N-categorical axiomatization of the Strong Kleene fixed points:24

Theorem 4.2 (Feferman 1991). For all S ⊆ ω

(N, S) |= KF⇔ Γsk(S) = S

(N, S) |= KF + Cons⇔ Γsk(S) = S&S is consistent

(N, S) |= KF + Comp⇔ Γsk(S) = S&S is complete

S is called consistent iff for every φ it is not the case that #φ ∈ S and
#¬φ ∈ S, and complete iff for every φ, #φ ∈ S or #¬φ ∈ S.

24For a proof of the following theorem see e.g. Halbach (2014). Note that in contrast
to Halbach we think of KF as including the axiom ∀x(Tx→ Sent(x)).
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KF axiomatizes the theory of the Strong Kleene fixed points in the sense
of Criterion 3.3, because the fixed point property S = Γsk(S) guarantees
that (N, S) is amongst the models of Kripke’s theory.

This positive result contrasts with our negative findings if we ask for an
N-categorical axiomatization of the least fixed point. In this case Kripke’s
theory requires the axiomatic theory Σ to uniquely determine the interpre-
tation of the truth predicate on the standard model to be the least fixed
point IΓsk

. It turns out that there will be no axiomatic theory Σ satisfying
Criterion 3.3.

To see this recall that the least fixed point IΓsk
of the Strong Kleene

jump is Π1
1-complete.

Fact 4.3 (Kripke). IΓsk
is Π1

1-complete.

Theorem 4.4. There is no recursively enumerable first-order theory Σ such
that

(N, S) |= Σ⇔ S = IΓsk

Proof. The classical satisfaction relation is ∆1
1 in the parameter S. Assume,

for contradiction, that Σ axiomatizes IΓsk
in the sense of Criterion 3.3. In the

remainder of the proof we use this assumption to provide a Σ1
1-definition of

IΓsk
—which is absurd by Fact 4.3. Notice that since the classical satisfaction

relation is ∆1
1 we know that there is a quantifier free arithmetical formula

Ψ such that we can rewrite (N, S) |= Σ as

∀x(Prσ(x)→ ∃S′(Ψ(S′, S, x)))

where σ is a standard representation of the axioms of Σ. Now S′ does not
occur in the antecedent of the conditional and we can therefore pull the
existential quantifier in front. But by a theorem of Kleene25 we also know
that there is a quantifier free arithmetical formula Φ such that

∀x∃S′(Prσ(x)→ Ψ(S′, S, x)))⇔ ∃S′∀x(Φ(S′, S, x))

Given this equivalence we can define IΓsk
as follows

y ∈ IΓsk
⇔ ∃S(∃S′∀x(Φ(S′, S, x)) ∧ y ∈ S).

However, since S′ does not occur in the second conjunct we can pull the
existential quantifier in front of the conjunction and thereby obtain a Σ1

1-
definition of IΓsk

.

Thus if we focus on the least fixed point there will be no N-categorical
axiomatization of Kripke’s theory. An N-categorical axiomatization is im-
possible because the semantic theory of truth provides a unique interpre-
tation for the truth predicate, which is too complex for a characterization

25See, for example, (Rogers, 1967, p. 375), Theorem III.
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via the classical satisfaction relation. This shows that the theory KFB pro-
posed recently in Burgess (2009) (see (Halbach, 2014, p. 17)) cannot be an
axiomatization of the least fixed point in the sense of Criterion 3.3 although
KFB is clearly intended to be an axiomatization of the least fixed point.

Before we move on to Kripkean theories based on supervaluational eval-
uation schemes, we note that under certain qualifications everything we just
said with respect to Kripke’s theory of truth based on the Strong Kleene
scheme carries over to the Weak Kleene scheme. First, there exists an N-
categorial axiomatization of the fixed points of Kripke’s theory based on the
Weak Kleene scheme: the system WKF.26 Moreover, if the base language has
symbols for certain recursive functions, the least Weak Kleene fixed-point
is also Π1

1 complete and we know that there cannot be an N-categorical
axiomatization of it.27

4.2 Axiomatizing Supervaluational Truth

We now turn to versions of Kripke’s theory of truth based on supervalua-
tional evaluation schemes. The idea behind supervaluation is that given an
interpretation S+ of the truth predicate, we consider arbitrary extensions S
of S+, each of which induces a classical model (N, S). Then we determine
which sentences come out true in all these models and fix the new interpre-
tation of the truth predicate to consist of (the codes of) these sentences.

Of course, the more extensions S we consider, the less agreement will
there be between the models (N, S). Usually, therefore, further conditions
are imposed on the range of extensions S considered. In the literature,
various such admissiblity conditions have been discussed. We focus on the
following supervaluation schemes:

Definition 4.5 (Supervaluational Evaluation). Let (N, S+) be an LPAT

model where S+ is consistent, i.e. there exists no φ ∈ SentLPAT
such that

#φ ∈ S+ and #¬φ ∈ S+. Then for all φ ∈ SentLPAT

(i) (N, S+) |=sv φ :⇔ ∀S(S+ ⊆ S ⇒ (N, S) |= φ)

(ii) (N, S+) |=vb φ :⇔ ∀S(S+ ⊆ S&S ∩ S− = ∅ ⇒ (N, S) |= φ)

(iii) (N, S+) |=vc φ :⇔ ∀S(S+ ⊆ S&S is consistent⇒ (N, S) |= φ)

(iv) (N, S+) |=mc φ :⇔ ∀S(S+ ⊆ S&S is maxcons⇒ (N, S) |= φ)

S− in item (ii) is the antiextension of the model and is given by {#φ :
#¬φ ∈ S+}. S is called ‘maxcons’ iff S is consistent and complete.

26For more on the theory WKF see Feferman (1991) and Fujimoto (2010). To our
knowledge no proof of the N-categoricity of WKF has been published so far, but a minor
modification of the proof of Feferman’s Theorem 4.2 yields the desired result.

27As Cain & Damnjanovic (1991) show, in the absence of certain function symbols from
the base language LPA the least fixed point may already be attained at ω and therefore
be simpler than Π1

1. We thank Thomas Schindler for pointing out to us that things are
not as simple as we had expected.
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It is straightforward to verify that all these supervaluation schemes give
rise to a Kripke jump in the sense of Definition 4.1. The restriction to
consistent S+ proves necessary for e ∈ {vb, vc, mc}. To see this, note
that for inconsistent S+ there will be no admissible superset S. Then the
definiens is trivially satisfied, i.e. for all #φ ∈ SentLPAT

, (N, S) |=e φ for
e ∈ {vb, vc,mc}.28

The restriction to consistent sets S+ does not make the resulting theory
of truth less general. For every supervaluational scheme e with admissibility
condition Ψ given by

∀S(S+ ⊆ S& Ψ(S)⇒ (N, S) |= φ).

the fixed points of Γe will always be generated starting from consistent sets
S+. In other words, the supervaluational Kripke jump can only be sound
with respect to consistent sets S+.29 For suppose there was an inconsistent
S+ such that S+ ⊆ Γe(S

+). Then there must be a sentence φ such that

∀S(S+ ⊆ S& Ψ(S)⇒ (N, S) |= φ ∧ ¬φ)

which is absurd. Consequently, every fixed point of Γe can be reached start-
ing from a consistent set S+ — except for, of course, the fixed point which
arises from the trivialization of the satisfaction relation of a given superval-
uation scheme e.

The following lemma collects some useful facts concerning the superval-
uational Kripke jumps.

Lemma 4.6. Let e, f be supervaluation schemes and Fe the set of Γe-fixed
points {S+ : Γe(S

+) = S+}. Moreover let Γe ⊂ Γf denote that for all S ⊆ ω,
Γe(S) ⊂ Γf (S). Finally, let λ ∈ SentLPAT

such that PAT ` ¬Tpλq↔ λ.

(i) if e, f ∈ {sv, vb, vc,mc} with e 6= f , then Fe ∩ Ff = ∅;

(ii) Γsv ⊂ Γvb ⊂ Γvc ⊂ Γmc;

(iii) let e, f ∈ {sv, vb, vc,mc}, Γe ⊂ Γf with e 6= f and S ⊂ ω such that
S ⊂ Γe(S), then Γe(S)  Γf (S);

(iv) let e ∈ {sv, vb, vc,mc} and S a consistent subset of ω then #λ 6∈ Γe(S).

28The scheme vb was discussed by Burgess (1986) and our results heavily rely on his
work. Yet, Burgess does not assume the consistency of S+ but requires S+ not to intersect
with the antiextension S−. This equally prevents triviality. By the reasoning in the main
text Burgess’ scheme generates the same fixed points as our variant. vc is the scheme used
by Cantini (1990).

29For a given set S the jump operation Γe is sound with respect to S if and only if
S ⊆ Γe(S). S is called a Γe -sound set.
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Proof. We only give a proof of item (i). The remaining items are straight-
forward consequences of the definition of a supervaluational Kripke jump
Γe or follow from the previous items. For (i) we need to show that there
is no S+ such that S+ ∈ Fe and S+ ∈ Ff . Suppose S+ ∈ Fmc. Then
#∀x(Sent(x)→ (Tx ∨ T ¬. x)) ∈ S+ but for X+ ∈ Ff with f ∈ {sv, vb, vc}
we have #∀x(Sent(x)→ (Tx∨T ¬. x)) 6∈ X+ as we always consider supersets
S which are not maximal.

Now suppose S+ ∈ Fvc . Then #∀x(Sent(x) → (¬Tx ∨ ¬T ¬. x)) ∈
S+ but for X+ ∈ Ff with f ∈ {sv, vb} we have #∀x(Sent(x) → (¬Tx ∨
¬T ¬. x)) 6∈ X+ as we always consider inconsistent supersets S.

Finally, suppose S+ ∈ Fvb. Then ¬Tp0 = 1q ∈ S+ but for X+ ∈ Fsv

we have ¬Tp0 = 1q 6∈ X+ for we always consider supersets S such that
#0 = 1 ∈ S.

Notice that Lemma 4.6 implies that the minimal fixed point of the scheme
sv, Isv, is a subset of every supervaluational fixed-point. We now use a recent
result of Welch (2014) to show that all supervaluational fixed-points are Π1

1-
complete.30

Lemma 4.7 (Welch). Let X ∈ Π1
1. Then there exists a 1-1 recursive func-

tion f such that for every Γe-sound set S ⊂ ω, e ∈ {sv,mc}

n ∈ X ↔ f(n) ∈ Γe(S).

Proof. Save some minor tweaks the proof is due to Welch (2014). Let X be
Π1

1 and Seq the set of codes of finite sequences. Then we know that there
exists a recursive relation R(u, n) ⊆ Seq × N such that

(†) n ∈ X ↔ ∀f ∈ ωω ∃k0 ∀k ≥ k0 (¬R((f � k), n)),

where (f � k) is short for the code of the finite sequence (f(0), ..., f(k)).31

Since the set Γe(S) is supposed to consist of Gödel numbers of sentences
we now introduce an alternative coding of finite sequences. A sequence
u = (u0, . . . , un) will now be coded by

#((λ ∧ . . . ∧ λ︸ ︷︷ ︸
u0+1-times

) ∨ . . . ∨ (λ ∧ . . . ∧ λ︸ ︷︷ ︸
un+1-times

))

30Welch’s argument is devoted to showing that Leitgeb’s dependence operator (cf. Leit-
geb (2005)) is Π1

1. He attributes the observation that his argument generalizes to the
supervaluation case to Toby Meadows.

31This follows from the following normal-form theorem by Kleene (cf. (Rogers, 1967,
§16.1, Corollary V)). Let A be Π1

1-set and A a recursive relation. Then

n ∈ A⇔ ∀f ∈ ωω ∃k(R((f � k), n)).

See Welch (2014) for further explanation.
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where λ denotes a standard liar sentence. We denote this deviant coding
by ∗. The resulting set of sequence numbers Seq∗ remains recursive and we
can replace R by a recursive relation R∗ in (†) such that

(‡) n ∈ X ↔ ∀f ∈ ωω ∃k0 ∀k ≥ k0 (¬R∗((f � k)∗, n))

Next let σn be the LPAT -sentence expressing

[∃u ∈ Seq∗ ∩ Tr ∧ ∀u, v ∈ Tr(u, v ∈ Seq∗ →
((u ⊆ v ∨ v ⊆ u) ∧ ∃u′ ∈ Seq∗ ∩ Tr(u ⊂ u′)))]→ ∃u ∈ Seq∗ ∩ Tr(¬R∗(u, n))

where Tr stands for the interpretation of the truth predicate. We now show
that

(C) n ∈ X ↔ #σn ∈ Γe(S)

For the left-to-right direction we assume n ∈ X and S ⊆ S′ for some set
S′. We need to show (N,S′) |= σn. If S′ does not contain the codes of the
finite initial segments of some infinite sequence then there is nothing to show
because the antecedent of σn will be false. Assume otherwise, i.e. for some
function f , (f � k)∗ ∈ S′ for infinitely many k. By n ∈ X and (‡) it follows
that there must be an k ∈ ω such that ¬R∗((f � k)∗, n). This establishes
the left-to-right direction for e ∈ {sv,mc}.

For the converse direction assume n 6∈ X. We need to show that #σn 6∈
Γe(S). We have to construct a set S′ such that

S ⊆ S′ ∧ S′ is maxcons ∧ (N,S′) 6|= σn

From n 6∈ X we know that there exists a function f such that ∀kR∗((f �
k)∗, n). Define S0 = S ∪ {(f � k)∗ : k ∈ N}. The set S0 is consistent since
neither the liar sentence λ nor any sentence equivalent to λ can be a member
of a Γe-sound set. Since S0 is consistent we can extend it to a maximally
consistent set S′ for which by construction S ⊆ S′ and (N, S′) 6|= σn. This
establishes the converse direction for e ∈ {sv,mc} and hence completes our
proof.

Welch’s result in combination with Lemma 4.6 allows us to determine
the lower bound of the complexity of the fixed points of a wide range of
supervaluation schemes, namely for all supervaluation schemes between sv
and mc.32 As mentioned by Welch his argument establishes that already one
application of the operator Γe to a Γe-sound set results in a Π1

1-complete
set.

32This result might suggest that the different supervaluational schemes we consider
coincide. But Lemma 4.6 shows that this is not the case. Indeed none of the four schemes
we consider share a single fixed point. Moreover, even the unions over the lattice of fixed
points of the respective supervaluation schemes do not coincide as the proof of Lemma
4.6 shows.
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Theorem 4.8. Let e be an evaluation scheme with Γsv ⊆ Γe ⊆ Γmc and
S ⊂ ω. If Γe(S) = S then S is Π1

1-complete.

Proof. We need to show that for all X ∈ Π1
1 there exists a recursive 1-1

function such that

n ∈ X ⇔ f(n) ∈ S

By Lemma 4.6 we know that there exists an S′ such that Γmc(S
′) = S′ and

Isv ⊆ S ⊆ S′

By Lemma 4.7 we obtain

n ∈ X ⇒ f(n) ∈ Isv ⇒ f(n) ∈ S ⇒ f(n) ∈ S′ ⇒ n ∈ X

which establishes the claim.

As a consequence of Theorem 4.8 there will be no N-categorical axioma-
tization of any fixed point of the supervaluational schemes under considera-
tion. In particular there will be no N-categorical axiomatization of the least
fixed point.

Theorem 4.9. Let e be an evaluation scheme with Γsv ⊆ Γe ⊆ Γmc. Then
there is no recursively enumerable first-order theory Σ such that

(N, S+) |= Σ⇔ S+ = IΓe

Proof. By Theorem 4.8, following the outlines of the proof of Theorem 4.4.

This theorem is analogous to Theorem 4.4, which establishes that no
N-categorical axiomatization of the minimal Strong Kleene fixed point is
possible. In the case of the Strong Kleene scheme this negative finding
contrasts with the positive result that KF satisfies Criterion 3.3 (Theorem
4.2 ). It is often stated that Cantini’s theory VF

[...] stands to the Supervaluation construction as Feferman’s the-
ory [i.e. KF] stands to the Strong Kleene model.(Leitgeb, 2007,
p. 287)

Thus apparently VF is considered as an axiomatization of Kripke’s theory
based on the evaluation scheme vc. But we will show that Kripke’s the-
ory of truth based on (most) supervaluational evaluation schemes cannot
be axiomatized in the sense of Criterion 3.3 and consequently VF does not
stand in the same relation to the supervaluation construction as KF stands
to the Strong Kleene model. The reason is that the complexity of the fixed-
point property, i.e. Γe(S) = S, of the supervaluational schemes is Π1

1 in a

20



parameter S (and not Σ1
1). But if there were an N-categorical axiomatiza-

tion, we would have a ∆1
1 definition of this property. The upper bound of

the fixed-point property can be directly computed from the definition of the
Kripke jump Γe. For the lower bound we shall appeal to a Basis Theorem
by Gandy.33 Again our findings are robust in the sense that they hold for
any supervaluation scheme in between sv and mc.

Lemma 4.10. Let e be an evaluation scheme with Γsv ⊆ Γe ⊆ Γmc. Then
Γe(S) = S is not Σ1

1.

Proof. By a corollary of a theorem of Gandy34 we know the class of all
functions of hyperdegree less than the hyperdegree of T , i.e. the set of all
index numbers of the characteristic functions of a finite path tree35, forms a
basis for Σ1

1. For our case this means that every nonempty Σ1
1-set of functions

contains a function of hyperdegree less than the hyperdegree of T .36 Now
suppose that we have a Σ1

1-definition of Γe(A) = A, then the set F = {cA :
Γe(A) = A} is Σ1

1 where cA is the characteristic function of A.Then, by the
Basis Theorem there exists some cA ∈ F which is of hyperdegree less than
T . However by Theorem 4.8 we know that each supervaluational fixed-point
X is Π1

1-complete. And if X is Π1
1-complete then the hyperdegree of cT is

less or equal to the hyperdegree of cX since T is hyperarithmetical in X,
contradicting our assumption.

We thus know that the fixed point property Γe(S) = S is Π1
1 (and not

Σ1
1) and hence not ∆1

1. This implies that there will be no N-categorical
axiomatizations of Kripke’s theory based on most supervaluation schemes.

Theorem 4.11. Let e be an evaluation scheme with Γsv ⊆ Γe ⊆ Γmc. Then
there is no recursively enumerable first-order theory Σ such that

(N, S) |= Σ⇔ Γe(S) = S

Proof. Assume for reductio that there exists a Σ such that for all S ⊆ ω

(N, S) |= Σ⇔ Γe(S) = S

But (N, S) |= Σ is ∆1
1 in S and we could thus give a ∆1

1-definition Γe(S) = S
which contradicts Lemma 4.10.

In particular, Cantini’s theory VF is not N-categorical with respect to
Kripke’s theory of truth based on the scheme vc.37

33A set of functions F is a basis for a family of sets of functions P if for all P ∈ P the
following holds: there is a function f in P iff there a function f with f ∈ F and f ∈ P .
Thanks to Sean Walsh for drawing our attention to Gandy’s Theorem.

34See (Rogers, 1967, p. 421,Corollary XLIII(a))).
35For the definition of T see (Rogers, 1967, p. 395).
36Note that we are now talking about a Σ1

1-set of functions and not of numbers.
37This specific observation can be obtained independently of our theorem. (Cantini,
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4.3 Axiomatizing Kripke’s Theory of Truth in Partial Logic

So far we have shown that there is no hope for providing an N-categorical
axiomatization of the fixed points of the supervaluational Kripke jump, at
least for the more reasonable schemes. In a nutshell the reason for this fail-
ure was that the complexity of the fixed point property for the supervalua-
tional schemes e with Γsv ⊆ Γe ⊆ Γmc was non-reducible Π1

1 in a parameter
whereas the classical satisfaction relation is hyperelementary, that is ∆1

1 in a
parameter. In general this implies that fixed point theories of truth can only
be axiomatized in classical logic if the corresponding fixed point property is
at most ∆1

1.
Now in the case of Kripke’s theory of truth the complexity of the fixed

point property seems to depend on the complexity of the satisfaction rela-
tion of the evaluation scheme under consideration. The Strong Kleene and
the Weak Kleene satisfaction relation are of complexity ∆1

1, which allowed
for a characterization of the fixed property using the classical satisfaction re-
lation. The supervaluational satisfaction relation is Π1

1 and no N-categorical
axiomatization of the fixed-point property was possible. This analysis points
towards a solution that the friend of the supervaluational approach might
explore, if she is interested in an N-categorical axiomatization of her seman-
tic theory. Instead of axiomatizing Kripke’s theory of truth in classical logic
she might try to axiomatize the theory in partial logic. In particular, she
might explore axiomatic theories based on a supervaluational logic. In this
case our criterion of N-categoricity for the special case of Kripke’s theory of
truth would boil down to the following requirement. Let e be an evaluation
scheme. A theory Σ axiomatizes Kripke’s theory of truth using the scheme
e, if and only if, for all S ⊆ ω

(N, S) |=e Σ⇔ Γe(S) = S

Note that spelled out in this way the argument we have used to show that
there is no N-categorical axiomatization of Kripke’s supervaluational theory
of truth breaks down. The supervaluational satisfaction relation is Π1

1 in a
parameter S and thus of the same complexity as the fixed point property
Γe(S) = S. Surprisingly, this also implies that an N-categorical axiomatiza-
tion of the least fixed point version of Kripke’s supervaluational theory of
truth is no longer ruled out by our complexity considerations because the
complexity of the least fixed point is also Π1

1, hence of the same complexity

1996, p.400) showed that the set of stable truths of a revision sequence with Herzberger’s
limit rule and the empty hypothesis (Gupta & Belnap, 1993, 5C) is a suitable interpre-
tation of the truth predicate of VF in the standard model. Yet, due to an argument of
(Burgess, 1986, p. 673) we know that this set is no fixed point of Γvc. While this shows
that VF is not an N-categorical axiomatization of Kripke’s theory of truth based on vc,
our observation implies that there cannot be an N-categorical axiomatization of Kripke’s
theory based on a wide range of supervaluation schemes. We thank Toby Meadows and
Philip Welch for the pointer.

22



as the supervaluation satisfaction relation. Of course, this does not show
that there exists an N-categorical axiomatization of Kripke’s supervalua-
tional theory in partial logic but at least such an axiomatization is not ruled
out in principle.

In the case of Strong Kleene evaluation scheme such an N-categorical
axiomatization of Kripke’s theory of truth in partial logic has been provided,
namely the theory PKF developed by Halbach & Horsten (2006).

Theorem 4.12. For all S ⊆ ω

(N, S) |=sk PKF⇔ Γsk(S) = S

Halbach and Horsten only show the soundness of the theory PKF with
respect to Strong Kleene fixed point models, but the converse direction
proves to be straightforward.38 Note, however, that there will not be an N-
categorical axiomatization of the least fixed point version of Kripke’s theory
in Strong Kleene logic. Such an axiomatization is excluded by an argument
parallel to the one we used in the classical case (Theorem 4.4). The Strong
Kleene satisfaction relation is of complexity ∆1

1. Thus, if there were an N-
categorical axiomatization of the least fixed point version of Kripke’s theory,
we would have a ∆1

1 definition of the least fixed point – this, however, is
impossible by Fact 4.3.

5 Discussion

Tarski’s work on truth initiated two paradigms: the semantic and the ax-
iomatic approach to truth. However, already in his Concept of Truth we
find that they stimulate one another (section 2). We believe that gener-
ally, formal work on truth has benefited from this interplay of semantics
and axiomatics. In the present paper we focused on one aspect of it and
asked when an axiomatic theory captures a semantic theory of truth. More
precisely, under which conditions has a theorist succeeded in axiomatizing
a given semantic theory?

Without attempting to give a conclusive answer we examined three pos-
sible such criteria of adequacy. Although initially plausible, both similarity
(3.1) and proof theoretic strength (3.2) proved to have their limitations.
In the remainder of the paper we therefore concentrated on N-categoricity
as a plausible candidate (3.3). We applied it to the question of axiomatiz-
ing Kripke’s semantic theory of truth (Section 4) and collected positive, as
well as, limitative results. On the one hand, we found that no N-categorical
first-order axiomatization can be obtained for all evaluation schemes we have

38A small qualification, however, is necessary. As far as we can see it is not sufficient to
assume that all theorems of PKF are true in (N, S) according to the Strong Kleene scheme,
but the model also needs to preserve truth with respect to all PKF derivable sequents.
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discussed (Theorem 4.4 and Theorem 4.9) if we are only interested in the
minimal fixed point. On the other hand, we have found that the superval-
uational theories of truth do not allow for an N-categorical axiomatization,
even if all we ask for is truth in some fixed point (Theorem 4.11).

What are we to make of our findings? We expect that the conclusions
drawn will be guided by an author’s broader outlook on truth, and consider
some possible responses. First, if N-categoricity is accepted as a necessary
condition for an adequate axiomatization, the negative results of section 4
are problematic for some theories of truth. On the axiomatic side, friends
of KFB or VF are put under pressure. On the semantic side, authors who
think truth ought to be grounded, in the sense of Kripke, or authors who
prefer a supervaluational approach to truth, may find it troublesome that
there is no adequate axiomatization of their preferred semantic theory.39

Second, N-categoricity may be considered to be a merely desirable fea-
ture. From this point of view, our results shows that KF, WKF and PKF
are more closely linked to their corresponding semantic theory than the the-
ory VF is to the supervaluational fixed points, or KFB to the least Strong
Kleene fixed point.

Finally, even for authors who do not sympathize with the criterion of
N-categoricity our findings may still be found interesting, to the extent that
they distinguish between the various existent axiomatic systems each of
which claims to axiomatize a semantic theory of Kripkean design. Whereas
we do not claim that grounded truth or supervaluational fixed points cannot
be axiomatized nor to have shown that VF and KFB fail to capture their
intended models, we think that our findings shift the burden of proof and
require the friend of these axiomatic theories to explicate in what sense an
axiomatization is supposed to capture the semantic theory.

Yet, these positive aspects of N-categoricity are relativized by the fact
that it needs supplementation by other criteria of adequacy. To realize that
N-categoricity is not a sufficient criterion it is enough to recall from p. 12
that the theory TB is N-categorical with respect to the Tarski truth set, but
was considered inadequate with respect to his semantic theory by Tarski
himself (see p. 3).

Independently of whether N-categoricity is the best criterion of adequacy
available, we believe that the results of section 4 shed light on the interplay
of axiomatics and semantics. If we see ourselves in the tradition outlined in
section 2, and move back and forth between a semantic and an axiomatic
theory of truth, we should seek balance between the axiomatic theory and
the semantic construction. In the light of our findings we propose to view
N-categoricity as one way of rendering precise this intuitive thought. In a

39 Note that Leitgeb (2005) also identifies the collection of grounded sentences with the
least fixed point of his dependence jump. As noted by Leitgeb, this least fixed point is
Π1

1-complete, such that our limitative result 4.9 carries over (Leitgeb, 2005, p. 190).
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nutshell, our findings show that for an N-categorical axiomatization to be
possible the complexity of the satisfaction relation and the complexity of
the specific semantic property of the intended interpretations of the truth
predicate according to the semantic theory, e.g. the property of being a fixed-
point, have to agree. If we apply this idea of a balance between the axiomatic
and the semantic theory to this very observation, our semantic theory should
not be too complicated. Moreover, if we understand N-categoricity as a
criterion that guarantees balance in complexity between the axiomatic and
the semantic theory, then the criterion seems to compatible with the other
criteria we discussed because balance of complexity alone cannot be the only
criterion for a successful axiomatization. As matter of fact, this seems to be
a desirable outcome given that all the criteria are insufficient considered in
isolation.

We conclude by outlining what we believe to be promising routes of fu-
ture work, keeping in mind the idea that axiomatic and semantic approaches
should be in balance. One way to achieve balance may be by restricting
the complexity of the model constructions, for example by seeking Kripke
jumps in a supervaluational spirit that allow for a ∆1

1 definition. This line
of research would also lead us back from axiomatizations to semantic con-
structions and thus stand in the tradition outlined in section 2. However, it
may well be that the agreement of complexity has not to be exactly at the
level indicated by N-categoricity. So another way to achieve balance also for
supervaluational or minimal fixed points may be to lift the complexity of the
satisfaction relation, possibly by using a nonclassical satisfaction relation.

Laying the basis for such future research, we hope that the present pa-
per contributes to a better understanding of the interplay of axiomatic and
semantic work on truth.
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