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I am interested mainly in formal languages, more specifically, finite
expansions of the language of set theory.



Logic



Semantic characterization of validity

An argument is logically valid if, and only if whenever all premisses
are true under an interpretation of the non-logical vocabulary the
conclusion is true under that interpretation.

A sentence is logically valid iff it is true under all interpretations of the
non-logical vocabulary.

There is the logical vocabulary (aka logical constants) and the
non-logical vocabulary (and perhaps auxiliary symbols such as the
brackets).

Usually, the truth-functional connectives are taken to be logical
constants as well as the standard first-order quantifiers; ‘is red; ‘Firenze,

or € are not.
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The most popular way to turn the characterization into a definition is
the model-theoretic account of logical consequence.

The distinction between logical and non-logical vocabulary is baked in
the model theory. A model M provides interpretations of the predicate
symbols as well as function symbols (including individual constants),
but not of A or —.

The treatment of the identity symbol can be varied.

In a way, the standard first-order quantifiers V and 3 do receive an
interpretation by M (namely the domain). However, their
re-interpretation is limited: 3x cannot be interpreted as ‘at least five x’
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Logicians have added terms as logical constants that are not present in
the standard language of first-order set theory.

What about generalized quantifiers such as “There are more As than Bs;,

>

“There are infinitely many’, “There are X; many’?
What about second-order quantifiers?
What about modal operators?

What about €?



consequence of the semantic characterization
If a sentence ¢ contains only logical constants, then ¢ is logically valid
if it is true (and it’s a logical contradiction if false).

Potential examples: -1, Vx x=x, IxJy ~x =y, VX Vy (Xy v =Xy)
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There is a wide-spread view that the choice of logical constants is purely
pragmatic. I have concerns.

(i) Whether logicism can be successful becomes a matter of choice.

(ii) At least some indeterminacy problems (Skolem’s paradox,
multiversism about arithmetic) arise from model theory (and
therefore from the choice of logical constants).

(iii) Debates about ‘the correct logic’ depend on the logical constants.
(We could have intuitionistic or strong Kleene connectives as
logical constants, but LEM (without exception) as another kind of
truth.)

(iv) The metatheoretic properties of logical consequence (compactness,
decidability, enumerability, arithmetical definability,
axiomatizability) depend on the choice of logical constants.



Of course, we can permit variations of interpretations in arbitrary ways

to obtain other notions of consequence.
We can re-interpret even the connectives. Cf. Carnap categoricity.

We can fix the interpretation of non-logical expressions. E.g. fix the

interpretation of the mathematical vocabulary or parts of it.



Of course, we can permit variations of interpretations in arbitrary ways
to obtain other notions of consequence.

We can re-interpret even the connectives. Cf. Carnap categoricity.
We can fix the interpretation of non-logical expressions. E.g. fix the

interpretation of the mathematical vocabulary or parts of it.

The big question is whether there are principled reasons to draw the
distinction for logical constants.
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A logical term should not be subject-specific; it should behave on all
objects in the same way.

The empty predicate is logical, ‘is red” isn't.

Negation, conjunction, the standard first-order quantifiers are not
subject-specific.

Permuation invariance is a popular way to make this criterion precise.
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then there was another surge from around 1990: (Sher 1991, Feferman
1999, McGee 1996, Bonnay 2008).

Some aspects are foreshadowed in Tarski (1935). I am sure there are
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History

Usually, (Tarski 1986a, Mautner 1946, Mostowski 1957) are cited and
then there was another surge from around 1990: (Sher 1991, Feferman

1999, McGee 1996, Bonnay 2008).

Some aspects are foreshadowed in Tarski (1935). I am sure there are
earlier philosophical and mathematical accounts (long before algebraic
logic). E.g., the observation that intersection is invariant under

permutations must be old.
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A permutation of a set S is an injective mapping from S onto itself. L.e.

permutation replaces each object in S with a (not necessarily different)
object. That is, every element of D is assigned exactly one proxy from D;
different objects have different proxies; and everything in D is a proxy

of something.

Satisfaction conditions change for non-logical expressions: ‘is white’ is
satisfied by snow; but if snow is replaced with coal as proxy, it’s no
longer satisfied.

The predicate that applies to everything is logical: It applies to me as
well as to all objects (proxies) I can be replaced with.

The formula x = y is satisfied by VH and VH. If I am replaced with
something else (a proxy), it’s still satisfied. x = y is not satisfied by VH
and Trump. If they are replaced with proxies, it’s still not satisfied (here
we need injectivity).



Permutation Invariance and Models



Think of a first-order model M as an ordered pair (D, I) consisting in a
domain D and an interpretation of the predicate symbols (forget about
function symbols for the moment being).



Think of a first-order model M as an ordered pair (D, I) consisting in a
domain D and an interpretation of the predicate symbols (forget about
function symbols for the moment being).

The interpretation of some symbols is kept fixed, e.g., the interpretation
of =.
As above, a permutation 7 of D is an injective mapping of D onto D.

M= ¢[a] is defined in the usual way. A variable assignment is a
mapping from w into D.



Given a variable assignment a over D and a function 7 on D, I write
7’ (a) for the variable assignment b with b(i) = 7(a(i)) for i € w.



Given a variable assignment a over D and a function 7 on D, I write

7’ (a) for the variable assignment b with b(i) = 7(a(i)) for i € w.

Definition

A formula Rvgv; is permutation invariant over M iff for all
permutations 7 of D and variable assignments a over D:
(M E Rvgvi[a]iff M E Rvgvi[7'(a)]).

Normally, the variables don’t matter and I call the predicate symbol R
permutation invariant over M.
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sense if it is permutation invariant over all models M.

This is not for what we signed up! We want logical constants to behave
in the same way on all objects, not only on all objects of every model.



Definition
A formula Rvgv; is permutation invariant in the model-theoretic
sense if it is permutation invariant over all models M.

This is not for what we signed up! We want logical constants to behave
in the same way on all objects, not only on all objects of every model.

Also, which models should be considered?
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A term can behave in each model logically, but very differently in
different models.

Imagine a predicate W that applies to all objects in models with a
domain containing at least one wombat and to nothing in all other
domains. W is permutation invariant in the model-theoretic sense!

Similarly, ‘wombat conjunction’ functions like A on domains containing
wombats, but like v on domains without wombats. (Cf. McGee 1996.)

A binary predicate permutation invariant in the model-theoretic sense
can be have like identity in some models and like distinctness in others
and apply to everything in still others.
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Mostowski (1957) was aware of the problem and considered injective
and surjective mappings between domains. See also (Sher 1996).

The problem is that one can force R to behave in the same way on all
domains of the same cardinality. Between models of different
cardinalities R can behave in wildly different ways.

Similar problems arise for connectives and quantifiers.



Return to the original idea and ditch domains!

This will solve the wombat problem. We consider only what is the case
and not different interpretations (models).

I suspect the reason for using models in the criterion for logicality is

some sort of reductionism.



This is by no means a new idea. Already Tarski (1986b, p. 149) may have
considered both options, i.e., defining invariance over elements of a
specific domain as well as over all objects:

we would consider the class of all one-one transformations of

the space, or universe of discourse, or ‘world’, onto itself.

Also Williamson (1999) seems to make use of a formulation of the

permutation-invariance criterion without domains.



DOMAIN-BASED INVARIANCE
A term or operation is invariant (and thus supposed to be logical) iff
the term is invariant for all domains D under all permutations of D.

is replaced with

DOMAIN-FREE INVARIANCE
A term or operation is invariant (and thus supposed to be logical) iff
the term is invariant under arbitrary permutations of the entire

universe.

For the latter we need satisfaction over the entire universe and
permutations of the universe. This is why I need to move to higher-order

logic or use satisfaction predicate.



We deal with variable assigments as our extensions of formule. Because
all our formulz are finite, their extensions are finitary in the following

sense:
Definition

A class A € V' of variable assignments is finitary iff there is a finite set
I c w such that Vb (JacAViel b(i)=a(i) - beA)).

V' is the class of all functions from w into the universe V, i.e., the class
of all variable assignments.

F is the class (3rd order) of all finitary classes of variable assignments.



Under reasonable assumptions, the extension |¢| of any formula will
thus be finitary (in contrast to McGee 1996).

Lemma
For any formula with finitely many variables,
lp| := {aeV*:Sat("p', a)} is a finitary variable assignment.

Sat is the definition of satisfaction for the first-order language in the
second-order language in the style of Tarski.

If ¢ is satisfied by at least one variable assignment, |¢| is a proper class.



We get the picture similar to that obtained in algebraic logic:

If ¢ is a true sentence (without free variables), we have |¢| = V¥;if ¢ is
false, we have |¢| = @.
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We get the picture similar to that obtained in algebraic logic:

If ¢ is a true sentence (without free variables), we have |¢| = V¥;if ¢ is
false, we have |¢| = @.

I~ol =V~ lgl

lo Ayl =1lolnlyl

If connectives are treated as truth functions, we don’t do justice to the

fact that connectives can be applied to open formulee.

The operation expressed by existential quantification with Jvy is called
cylindrification:
|Fvig| = {beV* Jac|p| Vitka(i)=b(i)}.

We can consider generalized quantifiers etc in the same way.



Definition

For n > 0 an n-ary operation O is a function that maps every n-tuple

(Ao, ..., A,) of finitary classes of variable assignments to a class of
finitary variable assignments A.



Definition

For n > 0 an n-ary operation O is a function that maps every n-tuple
(Ao, ..., A,) of finitary classes of variable assignments to a class of
finitary variable assignments A.

Formule and thus also atomic formula correspond to 0-ary operations,
i.e., O has an output (the extension), but no input.

The operation of negation is a unary operation. It maps a finitary class
A of variable assignments to the complement V¢ \ A.

The operation of conjunction is binary and maps (A1, A2) to A; N A;.



I work in some class theory.

Definition

A permutation of V is an injective mapping of V onto V. The
permutation IT’ of variable assignments induced by a permutation IT
of V is the class-sized function mapping every a€ V“ to the variable
assignment be V* such that b(i) = I1(a(i)) for all i € w.

As usual, I conflate permutations of V and the permutations induced by
it and write IT where I should write IT".



Definition
An n-ary operation O is permutation-invariant iff for all
permutations IT and all A; e F with i < n:

O(TI(Ay), ..., II(A,-1)) = TI(O(Ag, ..., Au1))

Operations in this sense are operations on proper classes.



Consider the 0-place operation O- := |vg=v;|. We have:
O- =T1(O-)
Identity, distinctness, V¢ are all permutation-invariant, as are negation

(complementation), conjunction (intersection), existential

(cylindrification) and universal quantification.



Consider the 0-place operation O- := |vg=v;|. We have:
O- =T1(O-)
Identity, distinctness, V¢ are all permutation-invariant, as are negation

(complementation), conjunction (intersection), existential

(cylindrification) and universal quantification.

For conjunction we have for all (finitary) classes A and B of variable

assignments:

OA(I1(A), TI(B))

(IT(A) N TI(B))
I1(AnB)
T1(OA(A, B))

Le. the operation expressed by A, which is intersection, is permutation

invariant.



Definition (expressing an operation)

Assume that o is a predicate symbol or an n-ary connective or
quantifier and define |¢| := {ae V:Sat('¢’, a)} as above. Then o
expresses an operation O that maps (|¢1], ..., |¢x]|) to

| o (@1, ..., ¢y for all first-order formulee of the chosen language.

Definition (logical term)
A term (predicate symbol, connective, quantifier) is logical iff is
expresses a permutation-invariant operation.

Note that v, is a term that is different from Jvg.



Thus =, =, A, =, 3v, and Vvy are all logical terms, while €, ‘there is at
least one ordinal’ (if present as prim. quantifier) etc. are not.

Our classification of logical constants (as well as our theory of logical
consequence) should be stable in the sense that it does not produce
strange results when the language is expanded.



Thus =, =, A, =, 3v, and Vvy are all logical terms, while €, ‘there is at
least one ordinal’ (if present as prim. quantifier) etc. are not.

Our classification of logical constants (as well as our theory of logical
consequence) should be stable in the sense that it does not produce
strange results when the language is expanded.

All cardinality quantifiers and the generalized quantifier ‘there are more
As than Bs’ are classified as logical.



McGee (1992) considered the quantifier 34l vk expressing that there are
absolutely infinitely many. This quantifier corresponds to the operation
that maps A€ F to the class B of all variable assignment such that

beB iff ({ae A:Vi#ka(i)=b(i)} is a proper class.)

On a straightforward domain-relative formulation of the
permutation-invariance criterion, the operation will also qualify as
permutation-invariant, but in a trivial way because there is no proper
class of variable assignments over a set-sized domain.

On a domain-relative formulation, the quantifier ‘there are
unboundedly many ordinals’ comes out as a logical term.



At the beginning I mentioned the following principle:

consequence of the semantic characterization
If a sentence ¢ contains only logical constants, then ¢ is logically valid
if it is true (and it’s a logical contradiction if false).

Thus, 3% vi = v will then qualify as a logical contradiction on a
domain-relative account. It is logically true on my account.
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On my domain-free account of permutation invariance as criterion for

logical constants, the following problems are solved:

(i) I obtain principled reasons to classify =, A, -, 3vy as logical terms.

(ii) The logicality of the connectives isn’t trivial in the same way as for

functional type structures.
(iii) Under certain assumptions, O will not be a logical term.
(iv) The problem of wombat conjunction is solved.
(v) The McGee quantifier 347y, is treated adequately.

(vi) Cardinality quantifiers, the Hértig quantifier are classified as
logical constants.

(vii) The higher-order quantifiers can be eliminated using a satisfaction

predicate (as in the book).
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My entire story is extensional. vy # vo and vy is a unicorn’ are

extensionally equivalent. Both come out as logical constants.

Somehow logical terms should not express ‘more’ than the logical
operator.



Permutation Invariance and Higher-Order Logic



Usually, permutation invariance is defined for objects in and operations
between type structures. See (Gomez-Torrente 2002, Bonnay 2008).

One starts with a permutation of the domain, which is then lifted to

higher-order objects. On this approach higher-order existential and

universal quantifiers are logical constants.

Griffiths and Paseau (2016, p. 492) write:
The isomorphism invariance of second-order quantifiers shows
that they are topic-neutral and general in the same way as first-
order quantifiers. In this way, isomorphism invariance can be
used to defend second-order logic as logic (the first of our paper?s
two subsidiary aims), in a way that dovetails with pluralist
justifications of second-order quantification as logical but does
not presuppose them.

But the permutation is not permitted to replace a first-order object with
a higher-order object etc. Permutation invariance doesn’t show

anything about higher-order quantification.



Feferman’s Stricter Standards



BTW in functional type structures connectives are treated as acting on
sentences only. This leads to odd results.



BTW in functional type structures connectives are treated as acting on

sentences only. This leads to odd results.

Here we can deal with arbitrary formula. Feferman (1999) writes:

Finally, as pointed out to me by Bonnay, it is hard to see how iden-
tity could be determined to be logical or not by a set-theoretical
invariance criterion of the sort considered here, since either it is
presumed in the very notion of invariance itself that is employed
- as is the case with invariance under isomorphism or one of the
partial isomorphism relations considered in the next section - or
it is eliminated from consideration as is the case with invariance

under homomorphism.

Distinctness is not invariant if injectivity is dropped, as Feferman (1999)
suggested. In the setting here then, however, negation is no longer
invariant (cf. Casanovas 2007). That's why we need to treat connectives

as acting on variable assignments.



References

Denis Bonnay. Logicality and invariance. Bulletin of Symbolic Logic, 14:29-68, 2008.

Enrique Casanovas. Logical operations and invariance. Journal of Philosophical Logic, 36:33-60,
2007.

Solomon Feferman. Logic, logics, and logicism. Notre Dame Journal of Formal Logic, 40:31-54,
1999.

Mario Gomez-Torrente. The problem of logical constants. Bulletin of Symbolic Logic, 8:1-37,

2002.

Owen Griffiths and Alexander C Paseau. Isomorphism invariance and overgeneration. Bulletin
of Symbolic Logic, 22:482-503, 2016.

Friedrich I. Mautner. An extension of Klein’s Erlanger program: Logic as invariant-theory.
American Journal of Mathematics, 68:345-384, 1946.

Vann McGee. Two problems with Tarski’s theory of consequence. Proceedings of the Aristotelian
Society, 92(92):273-292, 1992.

Vann McGee. Logical operations. Journal of Philosophical Logic, 25:567-580, 1996.

Andrzej Mostowski. On a generalization of quantifiers. Fundamenta Mathematicae, 44:12-36,
1957.



Gila Sher. The Bounds of Logic: A Generalized Viewpoint. MIT Press, 1991.
Gila Sher. Did Tarski commit ‘Tarski’s Fallacy’? Journal of Symbolic Logic, 61:653-686, 1996.

Alfred Tarski. Einige methodologische Untersuchungen iiber die Definierbarkeit der Begriffe.
Erkenntnis, 5:80-100, 1935. quoted from translation with additions “Some methodological
investigations on the definability of concepts” in (Tarski 1983, 296-319).

Alfred Tarski. Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Hackett Publishing,
Indianapolis, second edition, 1983. John Corcoran (ed.).

Alfred Tarski. Collected papers, volume 1. Birkhauser, Basel, 1986a.

Alfred Tarski. What are logical notions? History and Philosophy of Logic, 7:143-154, 1986b.
edited by John Corcoran.

Timothy Williamson. Existence and contingency. Aristotelian Society, sup. vol. 73:227-234, 1999.
Reprinted with printer’s errors corrected in Proceedings of the Aristotelian Society 100
(2000): 321-343 (117-139 in unbound version).



	The Full Project
	Logic
	Subject-Specificity
	Permutation Invariance and Models
	the classification
	Unicorns
	Permutation Invariance and Higher-Order Logic
	Feferman's Stricter Standards
	References

