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Why possible worlds semantics for predicate?

We obtain an analysis of the paradoxes.
Paradoxes can be ‘visualized’.
It shows that the predicate approach does not not force us to
abandon insights obtained via pws for sentential operators.
It allows one to find a common cause for many paradoxes.
It establishes a bridge to modal metaphysics.
It sheds a light on classical questions such as ante rem/in rebus
conceptions of properties.
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Possible worlds for sentential operators



The language of (sententential operator) modal logic treats the modal
operator just like ¬.

If φ is a formula, so is ◻φ, whereas for the modal predicate ◻ we can
write at best ◻φ or ◻x.

Consequently, we can define the logical complexity of a formula in the
lanugage of (sententential operator) modal logic ion the usual way.

But we cannot define the logical complexity for formulæ with a modal
predicate in the same way.



The language of (sententential operator) modal logic treats the modal
operator just like ¬.

If φ is a formula, so is ◻φ, whereas for the modal predicate ◻ we can
write at best ◻φ or ◻x.

Consequently, we can define the logical complexity of a formula in the
lanugage of (sententential operator) modal logic ion the usual way.

But we cannot define the logical complexity for formulæ with a modal
predicate in the same way.



A model for a language with a modal operator usually specifies a
non-empty set W of worlds, an accessibility relation R onW , and an
interpretation V that assign an interpretation to the non-logical
vocabulary. For a standard first-order language, V gives applied to a
world w ∈W a domain and to a world and a n-ary predicate P symbol
an n-ary relation, and so on.



The truth of ◻A at a world is then defined by induction on the
complexity of A simultaneously for all worlds.

This is possible because formulæ in modal logic are wellfounded.

An analogous strategy will fail for modal predicates, because cannot
define notion by induction on the ‘modal’ complexity of formulæ.
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Fundamentals



For pws semantics I make further assumption about the language L.

L is the minimal language plus a single sentence symbol p. This the
lanugage Lp.

Of course, we would like to have more ‘contingent’ vocabulary. Here I
keep things simple.
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The standard model E of Lqc has as its domain the set of all expressions
of the full language L and interprets the vocabulary such as the
quotation constants and ⌢ in the expected way.

A standard model for Lp is of the form ⟨E,V, S⟩, whereV assigns a truth
value true or false to p and S is the extension of ◻, that is, we have the
following:

⟨E,V, S⟩ ⊧ ◻e iff e ∈ S.

The notion of a frame is exactly the same as in operator modal logic:

Definition

A frame is an ordered pair ⟨W, R⟩ whereW is non-empty and R is a
binary relation onW.
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Definition

A pw-model is a quadruple ⟨W, R,V, B⟩ such that ⟨W, R⟩ is a frame,V is
a valuation for ⟨W, R⟩, and B is a ◻-interpretation for ⟨W, R⟩ satisfying
the following condition, where Lp is the set of all Lp-sentences:

B(w) = {φ ∈Lp ∶ for all u ∈W: if wRu then ⟨E,V(u), B(u)⟩ ⊧ φ }.



⟨E,V(u), B(u)⟩ ⊧ φ means that the sentence φ is true in the standard
model ⟨E,V(u), B(u)⟩ in the usual sense of first-order predicate logic;
and the expression ⟨E,V(u), B(u)⟩ ⊧φ can be read as ‘φ is true at
world u in the pw-model ⟨W, R,V, B⟩’.

⟨E,V(w), B(w)⟩ ⊧ ◻φ iff

for all u ∈W: if wRu then ⟨E,V(u), B(u)⟩ ⊧ φ.
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Lemma (normality)

Suppose ⟨W, R,V, B⟩ is a pw-model, w ∈W, and φ, ψ sentences of Lp.
Then the following hold:

(i) If ⟨E,V(u), B(u)⟩ ⊧ φ for all u∈W, then ⟨E,V(w), B(w)⟩ ⊧ ◻φ.
(ii) ⟨E,V(w), B(w)⟩ ⊧ ◻φ→ψ →(◻φ→◻ψ).



Lemma

(i) If a frame ⟨W, R⟩ is transitive and ⟨W, R,V, B⟩ a pw-model on that
frame, we have for all sentences φ in Lp and worlds w ∈W:

⟨E,V(w), B(w)⟩ ⊧ ◻φ→◻◻φ.

(ii) If a frame ⟨W, R⟩ is reflexive and ⟨W, R,V, B⟩ a pw-model on that
frame, we have for all sentences φ in Lp and worlds w ∈W:

⟨E,V(w), B(w)⟩ ⊧ ◻φ→φ.



Definition

A frame ⟨W, R⟩ admits a pw-model on every valuation iff for every
valuationVon ⟨W, R⟩ there is a B such that ⟨W, R,V, B⟩ is a pw-model.
A frame admits a pw-model iff the frame admits a pw-model on some
valuation, that is, iff there is a valuationV and a ◻-interpretation B
such that ⟨W, R,V, B⟩ is a pw-model.

strong characterizaiton problem
Which frames admit a pw-model on every valuation?
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Negative results



liar

There is only one world, say, w, and this world can see itself. Thus we
haveW1 = {w} and R1 = {⟨w ,w⟩}.

w
��

Theorem (liar paradox)

The above frame ⟨W1, R1⟩ does not admit a valuation.



Example (Montague)

If ⟨W, R⟩ admits a valuation, then ⟨W, R⟩ is not reflexive.



● ** ●jj

Example
The frame ‘two worlds see each another’ displayed above does not
admit a valuation.



The following frame does not admit a pw-model.

● ** ●
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Example
The frame ‘one world sees itself and one other world’ does not admit a
valuation.

For the proof the fixed point γ↔ (◻γ → ◻¬γ) can be employed.
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Example
The above frame ‘one world sees two worlds that see each another’
does not admit a valuation.

One can show this by using the fixed point γ↔ ¬◻◻γ ∧ ¬◻γ



Example (McGee’s paradox)

The frame ⟨ω, Pre⟩ does not admit a pw-model. Here ω is the set of all
natural numbers and Pre is the successor relation. Hence every world
n sees n + 1 but no other world.

The frame ⟨ω, Pre⟩ can be displayed by the following diagram:

0

��
1

��
2

��
⋮



Theorem (Yablo–Visser paradox)

The frame ⟨ω, <⟩ does not admit a pw-model. Here < is the usual
‘smaller than’ relation on the natural numbers:

The frame ⟨ω, <⟩ can be displayed by the following diagram:
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⋮



Positive results
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By Suc we denote the successor relation {⟨k, n⟩ ∶ k = n + 1} on the set
ω of natural numbers.
Example

The frame ⟨ω, Suc⟩ admits a pw-model on every valuation.

Obviously we can stop at any point.

What about the liar sentence?
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⟨E,V(0), B(0)⟩ ⊧ ¬γ,

⟨E,V(1), B(1)⟩ ⊧ γ,

⟨E,V(2), B(2)⟩ ⊧ ¬γ,

⟨E,V(3), B(3)⟩ ⊧ γ,

⋮
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Example
The frame above admits a pw-model on every valuation.

We can prove this for any tree of this kind.



Definition

A frame ⟨W, R⟩ is converse wellfounded (or Noetherian) iff for every
non-empty M ⊆W there is a w ∈ M that is R-maximal in M.

Lemma

Every converse wellfounded frame ⟨W, R⟩ admits a pw-model on every
valuation.

Proof.

Define B by recursion on the rank of w in R−1:

B(w) ∶= {φ∈Lp∶ ∀u(wRu → ⟨E,V(u), B(u)⟩ ⊧ φ) }
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The Strong Characterization Problem



Theorem (Strong Characterization theorem)

A frame admits a pw-model on every valuation iff it is converse
wellfounded.

The lemma above yields the right-to-left direction.

The proof for the other direction proceeds via Löb’s theorem.
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The accessibility relation need not be transitive. We can define its
transitive closure:

E ⊢ ∀n∀z∀y(γ(n, z, y) ↔

∃k(n = k⌢1 ∧ z =∀z(γ(k. , z, y.)→◻z)) ∨ (n= 0 ∧ z= y))

◻
0φ ∶= ◻φ,

◻
n+1φ ∶= ◻◻nφ

Lemma

For every pw-model ⟨W, R,V, B⟩, every w ∈W, and all n ∈N,

⟨E,V(w), B(w)⟩ ⊧ ∀z(γ(n, z, φ)→ ◻z) ↔ ◻
nφ

Then we define ◻∗ as follows:

◻
∗y ∶= ∀n∀z(γ(n, z, y) → ◻z).



Lemma

For all φ in LSp, all pw-models ⟨W, R,V, B⟩, and all w ∈W,

⟨E,V(w), B(w)⟩ ⊧ ◻∗φ iff for all v with wR∗v: ⟨E,V(v), B(v)⟩ ⊧ φ.



Lemma

For all Lp-sentences φ and ψ and pw-models ⟨W, R,V, B⟩ the following
hold:

(i) If ⟨E,V(w), B(w)⟩ ⊧ φ for all w ∈W, then ⟨E,V(w), B(w)⟩ ⊧ ◻∗φ.
(ii) ⟨E,V(w), B(w)⟩ ⊧ ◻∗φ→ψ → (◻∗φ→◻∗ψ).
(iii) ⟨E,V(w), B(w)⟩ ⊧ ◻∗φ→◻∗◻∗φ.
(iv) ⟨E,V(w), B(w)⟩ ⊧ ◻∗◻∗φ→φ → ◻∗φ.



Lemma

The transitive closure R∗of the accessibility relation R of any frame that
admits a pw-model on every valuation is converse well-founded.

Assume that ⟨W, R∗⟩ is converse ill-founded. Then there is a non-empty
set M⊆W without an R∗-maximal element. Define a valuationV as
follows:

V(w)(p) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

true, if w ∉M,

false, if w ∈M.



Lemma

A frame ⟨W, R⟩ is converse well-founded iff its transitive closure ⟨W, R∗⟩
is converse well-founded.



Theorem (Strong Characterization theorem)

A frame admits a pw-model on every valuation iff it is converse
wellfounded.



deep insight
Löb’s theorem is the mother of all paradoxes.

– at least in settings where we have pws.
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