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Abstract

There are many things—call them ‘experts’—that you should defer to in forming

your opinions. The trouble is, many experts are modest : they’re less than certain

that they are worthy of deference. When this happens, the standard theories of

deference break down: the most popular (“Reflection”-style) principles collapse to

inconsistency, while their most popular (“New-Reflection”-style) variants allow you

to defer to someone while regarding them as an anti-expert. We propose a middle

way: deferring to someone involves preferring to make any decision using their

opinions instead of your own. In a slogan, deferring opinions is deferring decisions.

Generalizing the proposal of Dorst (2020a), we first formulate a new principle that

shows exactly how your opinions must relate to an expert’s for this to be so. We then

build off the results of Levinstein (2019) and Campbell-Moore (2020) to show that

this principle is also equivalent to the constraint that you must always expect the

expert’s estimates to be more accurate than your own. Finally, we characterize the

conditions an expert’s opinions must meet to be worthy of deference in this sense,

showing how they sit naturally between the too-strong constraints of Reflection

and the too-weak constraints of New Reflection.
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Some people are fools. It’s best to ignore them in forming your opinions—and from here

on out, we will.

Others are not. In fact, there are many things—call them ‘experts’—that it’s best

to defer to in forming your opinions. This paper offers a theory of how.

Experts include people who are smarter and better informed than you, but also things

like your current evidence and the objective chances. Although such experts are clearly

worthy of deference in some sense, it’s tricky to say exactly what that sense is. The

trouble is that it’s possible for experts to be modest : to be less than certain that their

opinions are indeed worthy of deference.1 The person who is in fact smarter and better

informed than you might not be sure about that. Your evidence might in fact support

q, but also assign some probability to the claim that your evidence doesn’t support q.

And the objective chances (at least on certain Humean theories) might assign non-zero

chance to undermining futures: futures such that, if they came about, the objective

chances would now have been different from what they actually are. When any of these

things happen, the standard theory of deference—which is built around “Reflection”

principles—breaks down.2 A better theory is needed.3

This paper offers one. Building on Dorst (2020a), we suggest that the right deference

principle should encode the idea—call it ‘Value’—that you defer to an expert when you’d

prefer to make any decision using their opinions instead of your own (cf. Huttegger 2014;

Schoenfield 2016b; Nissan-Rozen and Spectre 2019). As we’ll sometimes say: deference

is a preference to give someone power of attorney. In a slogan: deferring opinions is

deferring decisions.

Unlike Reflection, Value allows modesty. Nevertheless, it turns out to be a surprisingly

strong constraint. The most popular way of fixing Reflection to allow modesty (“New-

Reflection”4) allows for radical failures of Value. And we’ll see that even deference

Campbell-Moore, for sharing her characterization of inaccuracy measures with us, and to both her and
Daniel Rothschild, for helping us to give an elementary proof of one of the core results (Theorem 3.2).
Thanks to Nilanjan Das, for suggesting we look closer at the (it turns out, all-important) hyperplane
separation theorem, and for giving detailed feedback on the paper once we had. Thanks to Jason Konek,
Richard Pettigrew, Itai Sher, Isaac Wilhelm, and the Twitter math hive mind for help with a variety of
places that we got stuck along the way. And thanks to Catrin Campbell-Moore (again!), Dmitri Gallow,
Harvey Lederman, Daniel Rothschild (agian!), Ginger Schultheis, Jack Spencer, Timothy Williamson,
and Snow Zhang for helpful feedback on earlier drafts.

1Letting ‘P ’ be a definite description for the expert’s opinions, whatever they are, the expert is modest
iff they are less than certain that they are indeed the expert: there is some q, t such that P (q) = t but
P (P (q) = t) < 1. We follow Elga (2013) in the ‘modest’ terminology; note that it is orthogonal to the
sense of ‘immodesty’ (or ‘strict propriety’) used as a constraint on accuracy scoring rules (Lewis 1971;
Gibbard 2008; Joyce 2009; Pettigrew 2016; Horowitz 2018). See §3 for discussion.

2We here use ‘Reflection’ to refer to a variety of principles of the same structure; in this sense,
the principles discussed by Miller (1966); Lewis (1980); Skyrms (1980); van Fraassen (1984); Gaifman
(1988); Williamson (2000); Christensen (2007, 2010); Briggs (2009a,b); Roush (2009, 2016); Elga (2013)
and Mahtani (2017) are all Reflection principles. The tension with modesty is already noted by Lewis
(1980); Elga (2013) gives a particularly clear and general explanation.

3We’re following Pettigrew and Titelbaum (2014) in framing our problem as finding the right form
of a deference principle across these various domains. We don’t claim that there’s a pretheoretic notion
of ‘deference’ to analyze; rather, we use ‘deference’ as a name for the relation that should hold between
your opinions and (at least some of) the various expert probabilities discussed above.

4See Hall (1994); Lewis (1994); Elga (2007, 2013); Pettigrew and Titelbaum (2014); Gallow (2019b);
Christensen (2020). For different criticisms New Reflection, see Lasonen-Aarnio (2015).
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understood along the precise lines suggested by Dorst (2020a) himself (“Trust”) does not

entail Value in full generality. But his suggestion can be modified to yield a deference

principle (“Total Trust”) which is exactly equivalent to Value—and which, we argue,

offers an account of deference that’s better than those currently on offer.

Moreover, although this account was built for modest experts, it turns out to have

implications for deference to immodest ones as well. This may be surprising, as it’s

well known that when experts are immodest, Value is equivalent to Reflection (Skyrms

1990; Huttegger 2014). However, that result holds only because the standard accounts of

deference—including our statement of Value above—are accounts of global deference: of

how to defer to an expert on every question. This type of deference is appropriate for

some experts (the objective chances, your current evidence), but not for others: you defer

to the weather forecaster about tomorrow’s weather, but not about whether you should

throw out the bananas you bought last weekend. Thus we also need a notion of local

deference: deferring to an expert’s opinions on certain questions, but not others.

To formalize local deference, we can relativize our principles to a given question

Q—for example, you Value an expert with respect to tomorrow’s weather iff, for any

decision whose outcomes are determined by tomorrow’s weather, you’d like to give them

power of attorney on that decision. In a surprising twist, it turns out that Value and

Reflection are not equivalent when relativized to questions in this way, even when the

expert is immodest (§5). Thus our argument that Value is the correct account of (global)

deference to modest experts suggests that it may also have an important role to play in

understanding (local) deference more generally. Nevertheless, our hands will be plenty full

just getting a theory of global, modest deference on the table—so we’ll largely suppress

talk of local deference until the end.

Here’s the plan. §1 sharpens both the problem raised by modest experts and our

proposal for how to fix it. §2 generalizes Dorst’s deference principle and proves that this

generalization is indeed equivalent to Value. §3 then explores how Value—which, with

its focus on decisions, can seem like a pragmatic deference principle—relates to a purely

epistemic variant of the same idea. Building on the results of Levinstein (2019) and

Campbell-Moore (2020), we show that Value is equivalent Epistemic Value: the claim

that you should expect the expert’s estimates to be more accurate than your own on

any reasonable way of measuring their accuracy. §4 then characterizes the conditions the

potential experts’ opinions must meet in order to be worthy of deference in our sense,

comparing them to those imposed by Reflection and New Reflection. §5 concludes by

turning to local deference and several other open questions.

One theme of this paper is that allowing experts to be modest opens up a largely

unexplored domain of potential deference principles. In an attempt to help make this

domain more tractable, we’ve included a Mathematica notebook that contains functions

for generating, visualizing, and exploring the models of modesty used throughout.5

Finally: the goal of this paper is to develop and defend a philosophical idea about

deference. That defense is built upon a series of equivalence and non-equivalence results,

5Available at https://www.kevindorst.com/DDB notebook.html. The code was largely written by
K.D. As you’ll notice, he’s no programmer. But it works.

https://www.kevindorst.com/DDB_notebook.html
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which in turn require a fair bit of technical exposition to establish. Nevertheless, we hope

that those uninterested in the technicalities will care about the philosophy. So for those

who care about deference but not about hyperplanes, we’ve done our best to hide the

technicalities in footnotes, “Proof ” paragraphs, and appendices—these can (and perhaps

should) be skipped without loss to the philosophical argument.

1 Deferring Opinions as Deferring Decisions

Fix on some particular expert—say, your current evidence. Let ‘P ’ be a definite descrip-

tion for ‘the expert’s probabilities, whatever they are’. There are various possibilities for

what those probabilities might be, which we model with a probability frame 〈W,P〉.6
(For introductions to how models of this kind work, see e.g. Williamson 2008, 2019;

Dorst 2019b, 2020b.) ‘Pw’ is a rigid designator for the probability distribution the expert

has at world w.7 Propositions are modelled as subsets of W . Using a standard move

from modal logic (Hintikka 1962; Kripke 1963), this includes propositions about the

expert’s probabilities: the proposition that the expert assigns probability t to q, written

‘[P (q) = t]’, is simply the set of worlds w such that Pw(q) = t; the proposition that the

expert has probability function Px, written ‘[P = Px]’, is simply the set of w such that

Pw = Px; and so on. For the expert to be modest at w is for them to assign non-zero

probability to ‘the expert’s probabilities’ (picked out non-rigidly) being different from

their own (picked out rigidly).8

Here’s a simple example. There are two possibilities,W = {a, b}. P represents rational

credences. The evidence you have is ambiguous, so it’s rational to be unsure what the

rational response to the evidence is (Christensen 2010; Elga 2013; Lasonen-Aarnio 2013,

2015; Carr 2019b; Dorst 2019b, 2020a). At world a it’s rational to be 70% confident you’re

at world a; at world b, it’s rational to be only 40% confident of this. Thus Pa(a) = 0.7

while Pb(a) = 0.4. There are two compact ways to represent such a frame. The first is a

Markov diagram in which nodes represent worlds, and the arrow from node w to node v

is labelled with the probability Pw assigns to v, Pw(v). The second represents the frame

as a (row-)stochastic matrix, in which row i, column j represents Pwi(wj). These two

representations are given in Figure 1.

a b

0.3

0.4

0.7 0.6

(
0.7 0.3
0.4 0.6

)

Figure 1: A modest frame, in Markov-diagram (left) and stochastic-matrix (right) forms.

6W is a finite set of worlds, and P is a function from worlds w to probability functions Pw that are
defined over the subsets of W . Convention: technical terms are bolded when defined; the definitions are
collected in Appendix A; bolded symbols always have the same meaning as their unbolded counterparts.

7This formalism assumes that at each world there is a unique, precise probability function that
models the expert’s opinions (cf. White 2005; Schoenfield 2012, 2014; Schultheis 2018; Carr 2019b).

8Precisely: Pw(P = Pv) > 0 for Pv 6= Pw; i.e. there’s a v ∈W such that Pw(v) > 0 and Pv 6= Pw.
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This frame represents a modest expert since, for example, at a the rational credence

function is unsure whether it’s rational to assign credence 0.7 or 0.4 to a: Pa(a) > 0 and

Pa(b) > 0, thus Pa(P (a) = 0.7) > 0 and Pa(P (a) = 0.4) > 0.

A probability frame represents various hypotheses about what the expert’s probabil-

ities might be. To formulate deference principles, we need to add a further probability

distribution π over W , which represent the opinions of the individual deferring to the

expert.9 While ‘P ’ is a definite description for ‘the expert probability function, whatever

it is’, ‘π’ (along with other lowercase Greek letters, like ‘ρ’) is a rigid designator for a

particular probability function whose values are fixed and known.

Structure in place, let’s consider some deference principles: principles attempting to

specify how π and 〈W,P〉 need to be related for π to be deferring to 〈W,P〉. The most

natural such principle is that to defer to the expert is to adopt their opinions as your

own, conditional on any given hypothesis about what those opinions might be:10

Reflection: π(·|P = ρ) = ρ

Conditional on the expert having a certain set of opinions, adopt those opinions.

Let us say that π reflects a frame 〈W,P〉 iff it meets this condition.

Unfortunately, the conditions imposed by Reflection are too strong. In particular, it’s

impossible for any distribution to reflect a frame while assigning non-zero probability

to the possibility that the expert is modest (Hall 1994; Lewis 1994; Elga 2013). The

reason is simple enough. Suppose you leave open that a modest candidate Pw might be

the expert. Since it’s modest, it assigns less than maximal credence to the claim that

it’s the expert: Pw(P = Pw) < 1. But conditional on it being the expert, you should be

certain that it’s the expert: π(P = Pw|P = Pw) = 1. Therefore conditional on this fact,

you don’t adopt the opinions of Pw: π(·|P = Pw) 6= Pw. For example, in the frame from

Figure 1, Pa(P = Pa) = 0.7, but π(P = Pa|P = Pa) = 1.11

Thus if Reflection were the correct theory of deference, it would be impossible to defer

to an expert unless you’re sure they’re immodest. But deferring to someone while leaving

open that they might be modest is clearly possible. So reflecting a frame isn’t necessary

for π to count as deferring to it—Reflection cannot be the full theory of deference.

In response to this problem, several philosophers have argued that we should modify

Reflection as follows:

9When the relevant opinions are themselves candidates for being the expert, we don’t need this
additional structure, since π will be guaranteed to be one of the Pw (Dorst 2020a, fn. 14). But in some
cases the deferring opinions will not be candidate experts: you might know that, whoever the smartest
and best-informed person is, it definitely isn’t you.

10Here and throughout we leave implicit the restriction that the conditional probability is well-defined.
11Reflection has also been proposed as specifying the conditions under which shifting opinions from π

to P counts as a “genuine learning experience” (Jeffrey 1988; Graves 1989; Skyrms 1990, 1997; Myrvold
2012; Huttegger 2013, 2014, 2017). The above suggests that this is too demanding, since one can surely
regard the shift to some new opinions as a genuine learning experience even when those new opinions
are modest (i.e., in this context, less than perfectly introspective). We think, instead, that the transition
represents a genuine learning experience only if π defers to P—where deference, as we’ll argue, need
not require Reflection.
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New Reflection: π(·|P = ρ) = ρ(·|P = ρ)

Conditional on the expert having a certain set of opinions, adopt the opinions they

would have were they to learn that fact.

Say that π new-reflects a frame iff this condition holds. New Reflection is equivalent

to Reflection when the expert is certain to be immodest (since then for all w, Pw =

Pw(· |P = Pw)); but New Reflection permits deference to modest experts.

Moreover, defenders of New Reflection have an attractive story to tell about why

this principle should hold even when Reflection fails (Hall 1994; Lewis 1994; Elga 2013).

The idea is that the condition that P = Pw gives additional information—information

that the expert, being modest, doesn’t have. So when you reason hypothetically on that

assumption, you shouldn’t adopt the expert’s unconditional opinions, which fail to take

this information into account; rather, you should adopt the opinion the expert would

have once made aware of this information, i.e. Pw(· |P = Pw).

This is a compelling explanation for why Reflection is not required for deference to

experts who might be modest; and it also makes clear why, by contrast, New Reflection

really is necessary for such deference. But it’s worth noting that it provides no direct

reason to think that obeying New Reflection is sufficient for deference. Moreover, there’s

good reason to think that it’s not. The problem is that—even when the expert knows

everything that you do—New Reflection imposes virtually no constraints on what you

think about the expert’s unconditional opinions.

To see this, notice that we can equivalently state New Reflection as follows (Stalnaker

2019). Let the informed expert opinions, P̂ , be the opinions the expert would have

were their modesty to be removed—i.e. were they to be informed that they are the

expert: P̂w := Pw(·|P = Pw). Then New Reflection is equivalent to:

New Reflection (informed version): π(·|P̂ = ρ) = ρ

Conditional on the informed expert having a certain set of opinions, adopt those

opinions.12

New Reflection thus says simply to reflect the informed expert, and is silent on what

you should think about the expert’s unconditional opinions.

This is a problem. It means that you can new-reflect a frame even if you are certain

that the expert is mistaken. Consider a toy example from Dorst (2020a, §6), represented in

Figure 2 below. W contains only two possibilities, a and b, and Pa(b) = Pb(a) = 0.8: both

candidates for the expert assign higher probability to the false hypothesis about which

of the two is the expert than the non-expert does. (For example, if a is actual, then

the expert, Pa, assigns this a low probability of 0.2, while the non-expert, Pb, assigns

it a high probability of 0.8.) Thus, for instance, conditional on the expert’s credence

in a being high, a is definitely false; and conditional on that credence being low, a is

12Why are the two versions equivalent? Take any w ∈ [P̂ = ρ], so P̂w := Pw(·|P = Pw) = ρ, and hence

ρ(P = Pw) = 1. Thus if Px 6= Pw, then P̂x := Px(·|P = Px), so P̂x(P = Pw) = 0, and P̂x 6= ρ. On the

other hand since if Px = Pw then P̂x = ρ, we have that [P̂ = ρ] = [P = Pw]. Thus π(·|P̂ = ρ) = ρ iff

π(·|P = Pw) = ρ = P̂w = Pw(·|P = Pw); see Stalnaker (2019) and Dorst (2019b) for discussion.
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definitely true—the expert’s credences are (known to be) anti-correlated with the truth.

Meanwhile, suppose π is 50-50 between a and b, so it doesn’t know anything that Pa
and Pb don’t. (All three are sure of {a, b}, and nothing stronger.) Surely, if π captures

your credences, you do not count as deferring to this frame—the opinions (as you see

them) are those of an anti -expert, not an expert. But note that [P = Pa] = {a} and

[P = Pb] = {b}, so π new-reflects this frame.13 Upshot: π new-reflecting a frame cannot

be sufficient for π to count as deferring to it; and so New Reflection cannot be the full

theory of deference.

π

a b

0.8

0.8

0.2 0.2

0.50.5 π =
(
0.5 0.5

)
〈W,P〉 =

(
0.2 0.8
0.8 0.2

)

Figure 2: A frame unworthy of deference. Left: Markov diagram. Right: stochastic-matrix.

(What are we doing when we give a purely formal example like this? After all, on some

interpretations of π and P , there may be general explanations for why structures like

Figure 2 are impossible—for instance, perhaps the correct Humean account of objective

chance will rule out the possibility of the chances having this structure (Levinstein 2019).

Nevertheless, on other interpretations of ‘P ’ (such as ‘the fool’s credences’), this scenario

is perfectly possible. And more generally, the point of this example is to illustrate that

New Reflection is missing something: the complete theory of deference should predict

that π doesn’t defer to P if it has this structure, yet New Reflection fails to do so.)

Intuitively, what goes wrong in the above example is that π does not regard the

expert’s (unconditional) opinions as tracking the facts. There is both a pragmatic and

a purely epistemic version of this complaint. The pragmatic version points out that π

does not regard the expert’s opinions as good ones to use in making decisions: faced

with a bet on which of a or b is actual, π would rather decide for itself than let the

expert decide. After all, π knows that the the expert will make the wrong decision—that

they’ll bet on a iff P (a) > P (b), which happens iff P = Pb, i.e. iff b is actual and it’s a

losing bet. Conversely, they’ll bet on b iff a is actual. Either way, they’ll take the wrong

bet—and whatever π thinks of itself, it can’t think that it’s bound to take the wrong

bet.14 Meanwhile, the epistemic version of this complaint points out that π regards itself

as closer to the truth about which of a or b is actual than the expert: if a is actual, then

π is more confident of it than the expert is (π(a) = 0.5 > 0.2 = Pa(a)), and if b is actual

then π is more confident of it than the expert is (π(b) = 0.5 > 0.2 = Pb(b)).
Let’s focus (till §3) on the pragmatic version. This suggests a new constraint on

13Precisely: Pa(a|P = Pa) = 1 = π(a|P = Pa) and Pb(b|P = Pb) = 1 = π(b|P = Pb).
14Here it’s important to note that ‘π’ is a rigid designator for a fixed and known probability function,

rather than a definite description for (e.g.) ‘Your opinions, whatever they are’, which, like ‘P ’, could
refer to different probability functions at different worlds.
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what deference requires: deference in opinions requires deference in decisions. That is,

deference to an expert requires that, for any decision problem, you would prefer to give

the expert power of attorney: to use their probabilities to make the decision rather than

use your own. As we’ll put it: you value an expert’s opinions when you always expect

the decisions those opinions warrant to be better than your own.

Here’s how to formalize this idea. (If it’s intuitive enough, skip the next two para-

graphs.) Let an option be a function from W to real numbers, with O(w) representing

the utility that would be achieved (for whatever person we are modeling with π) if O

were to be chosen at w. Let a decision problem on W be a finite set of options O.

For example, to represent the decision of whether to bet on a or b, let O = {Oa, Ob}

where Oa =

{
1 if a

−1 if b
, and Ob =

{
−1 if a

1 if b
. Relative to a probability distribu-

tion ρ, we can calculate the expected value of an option O as a weighted average of

the various values it might take, with weights determined by how likely they are to

obtain: EEEρ(O) :=
∑
w ρ(w)O(w) (we write EwEwEw(O) to abbreviate EPw(O)). For ex-

ample, in our above anti-expert frame (Figure 2), Eπ(Oa) = 0.5(1) + 0.5(−1) = 0, while

Ea(Oa) = 0.2(1) + 0.8(−1) = −0.6 and Ea(Ob) = 0.2(−1) + 0.8(1) = 0.6.

Given a frame 〈W,P〉 and a decision problem O on W , let a strategy S be a

way of choosing options based on the expert’s probabilities: a function from W to O,

w 7→ Sw such that Sw = Sv whenever Pw = Pv. A strategy S is recommended

by the (expert modeled by the) frame for the decision-problem O iff the option Sw it

selects at each world w is one that maximizes expected utility according to the the

expert’s credences at w: Ew(Sw) ≥ Ew(O) for every O ∈ O. In other words, if a strategy

is recommended, then following it is simply letting the expert decide how to respond

to O on your behalf. For example, note that Ea(Ob) = 0.6 > −0.6 = Ea(Ob), and

similarly Eb(Oa) = 0.6 > −0.6 = Eb(Ob). Thus the strategy that the frame in Figure 2

recommends for O is to take the bet on b (Ob) at world a, and the bet on a (Oa) at

world b. As we can see, a strategy involves taking different options at different worlds.

Abusing notation ever-so slightly, we’ll write EEEπ(S) for the expected utility of following

the strategy according to π: Eπ(S) :=
∑
w π(w)Sw(w). Note that in our example, this

value is negative, since π knows that the expert, whoever it is, recommends taking the

wrong bet: Eπ(S) = π(a)Sa(a) + π(b)Sb(b) = 0.5Ob(a) + 0.5Oa(b) = −1. This is less

than the expected value of simply betting on a, come what may: Eπ(Oa) = 0. Thus π

prefers not to give the (anti-)expert power of attorney in the above frame—it’s better

off choosing for itself!

Generalizing, the proposal is that π defers to a frame iff it values that frame:

Value: If S is recommended for O, then for all O ∈ O: Eπ(S) ≥ Eπ(O).

For any decision problem, prefer to giving the expert power of attorney to decide

on your behalf, rather than deciding for yourself.

In other words: no matter what decision you face, the expected utility of adopting a

strategy recommended by the expert is always at least as high as bypassing the expert
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and picking an option using your own probabilities.15

That’s the proposal. How does it relate to Reflection and New Reflection?

If π reflects a frame, it values it.16 And if a frame is immodest, π reflects it if and only

if π values it.17 But this is not true in general: π can value a frame without reflecting

it—and, in particular, without that frame being immodest. To get a feel for why, consider

a case in which π is 50-50 between a and b but Pa(a) = 0.9 and Pb(b) = 0.8, in Figure 3.

This frame is modest, so π doesn’t reflect it—for example, π(a|P = Pa) = 1 6= 0.9 = Pa(a).

But π values the frame. For if a is true then the expert is more confident of it than π is;

and if b is true, likewise. As a result, P is closer to the truth than π for every proposition,

and at every world. Thus, obviously, π would prefer to give the expert power of attorney.

Since this expert is modest, Value must be a weaker constraint than Reflection.18

π

a b

0.1

0.2

0.9 0.8

0.50.5 π =
(
0.5 0.5

)
〈W,P〉 =

(
0.9 0.1
0.2 0.8

)

Figure 3: A probability function that values a modest frame.

Meanwhile, Value is a stronger constraint than New Reflection. π values a frame only

if it new-reflects it.19 But, as we’ve seen, π does not value frames in which the expert’s

opinions are anti-correlated with the truth, even when it new-reflects them (Figure 2).

15Value is related to a substantial literature arising out of Good (1967) about the conditions under
which we should obtain additional information before deciding (e.g. Blackwell 1953; Savage 1954; Brown
1976; Skyrms 1990; Oddie 1997; Williamson 2000; Kadane et al. 2008; Myrvold 2012; Buchak 2013;
Huttegger 2014; Bradley and Steele 2016; Ahmed and Salow 2018; Campbell-Moore and Salow 2019;
Das 2020a; Pettigrew 2020). See Salow (2020) for a philosophical overview. Working in this tradition,
Geanakoplos (1989) was effectively the first to investigate the possibility of satisfying Value when
probabilities are modest, although he doesn’t formulate his project in this way. He works within a
sub-class of probability frames known as prior frames (footnote 25), thus our characterization (Theorem
4.1) will generalize his Theorem 1.

16By total expectation and then Reflection, we have Eπ(S) =
∑
w π(P = Pw)Eπ(S|P = Pw) =∑

w π(P = Pw)Ew(S). Since Reflection implies that the frame is immodest, Ew(S) = Ew(Sw) ≥
Ew(O), meaning that the above sum is at least as great at

∑
w π(P = Pw)Ew(O) =∑

w π(P = Pw)Eπ(O|P = Pw) = Eπ(O). See Skyrms (1990); Huttegger (2014).
17Note that π values a frame only if it new-reflects it (see footnote 19). So if the frame is immodest,

then Pi = P̂i, so π new-reflects the frame iff it reflects it, and hence π values it only if it reflects it;
footnote 16 proves the converse. Again see Skyrms (1990); Huttegger (2014).

18This frame also shows that Value does not entail another common weakening of Reflection—namely,
that your credence must equal your best estimate of the expert’s credence: π(q) = Eπ(P (q)) (Ismael
2008, 2015; Salow 2018, 2019; Gallow 2019b). For π(a) = 0.5, yet Eπ(P (a)) = π(a) ·0.9+π(b) ·0.2 = 0.55.
Unlike Reflection, such “estimate-matching” principles do not entail Value—note, for instance, that in
our anti-expert frame in Figure 2, we do have π(q) = Eπ(P (q)) for all q.

19If New Reflection fails, we can make a conditional bet which the frame recommends taking but
π doesn’t want to take. Precisely: if (WLOG) π(q|P = Pw) < t < Pw(q|P = Pw), then let O0 yield
0 everywhere and O1 be a conditional bet which yields 0 if P 6= Pw, 1 − t if q ∧ [P = Pw], and −t
if ¬q ∧ [P = Pw]. Then Pw takes the bet, and every option has 0 utility when P 6= Pw, so Eπ(S) =
π(P 6= Pw)0 + π(P = Pw)Eπ(O1|P = Pw), and Eπ(O1|P = Pw) < t(1− t) + (1− t)(−t) = 0, so Eπ(S) <
0 = Eπ(O0); Value fails.



2 IMPROVING TRUST, GENERATING VALUE 10

Finally, note that Value is equivalent to a natural formulation of a ban on Dutch-

bookability. In particular, imagine that π is your prior and P is the posterior credences

you will have after some transition in beliefs. A fixed-option Dutch book is a pair of

decision problems—both including a “no bet” option with 0 payout, one presented before

and the other presented after the belief-transition—such that doing the rational thing

before and after is guaranteed to result in a loss.20 If π fails to value P , it is possible

to construct a fixed-option Dutch book against the transition from π to P .21 No such

book can be made if π values P ; in fact, there can’t even be a pair of decision problems

which both include a “no bet” option but result in an expected loss.22

Value thus looks like a plausible candidate for threading the needle between the

overly strong Reflection and the overly weak New Reflection. What we need now is a

clearer picture of what Value requires. In particular, we’d like a characterization of Value

that tells us directly how π and P ’s opinions must relate (§2), that explains how the

pragmatic-looking Value relates to purely epistemic forms of deference (§3), and that

tells us what the expert’s opinions must be like in order to be valuable (§4). Off to it.

2 Improving Trust, Generating Value

As a deference principle, Value is cumbersome—we’d like to be able to say, directly, how

π’s opinions must relate to P ’s in order for π to value P . Dorst (2020a) takes a step in

the right direction. At a first-pass, he proposes as a deference principle:

Simple Trust: π(q |P (q) ≥ t) ≥ t
Conditional on the expert being confident of q, be confident of q.

20Precisely, it is a pair of decision problems O1 and O2 that both include a constant (“no bet”)
O0 = 0 option, where O ∈ O1 maximizes expectation amongst O1 relative to π and S is a strategy
recommended for O2 by P , such that O(w) + Sw(w) < 0 at every w ∈W .

21Suppose π doesn’t value P . Then there is a decision problem O, an option O ∈ O and a strategy S
recommended by P forO such that Eπ(O) > Eπ(S). LetO1 = {O0, O−S−ε} for 0 < ε < Eπ(O)−Eπ(S),
and let O2 = {O′ − O : O′ ∈ O}. Note that O0 = O − O ∈ O2, so both decision problems include a

“no bet” option. Then Eπ(O − S − ε) = Eπ(O) − Eπ(S) − ε > 0, so O − S − ε maximizes expectation
from O1 relative to π. Moreover, since Ew(O′ −O) = Ew(O′)− Ew(O), and S is recommended for O,
Ew(Sw−O) ≥ Ew(O′−O) for every O′ ∈ O; so the strategy S′ such that S′w = Sw−O is recommended
forO2 by P . But for any world w: O(w)−S(w)−ε+S′w(w) = O(w)−Sw(w)−ε+Sw(w)−O(w) = −ε < 0;
the combined course of action guarantees a loss.

22An expected loss implies that Eπ(O + S) = Eπ(O) + Eπ(S) < 0 for some O with maximal π-
expectation. But by definition, Eπ(O) ≥ Eπ(O0) = 0, and by Value, Eπ(S) ≥ Eπ(O0) = 0.

Note: the formulation of these claims in terms of fixed options touches on a subtle but important
point. Williamson (2000, Ch. 10) shows that many modest transitions—including some that Geanakoplos
(1989) and Dorst (2020a) show to satisfy Value—are such that you can be offered a fixed set of bets such
that, if at the later time you pay for each bet the maximal price that P is willing to pay, you should
expect a loss. Das (2020a) generalizes this result, and strengthens it to show that you can also be forced
into sure losses in this fashion. The way to reconcile these results with the above is that when we fix a
bet but vary how much you pay for it across worlds, we are (in the technical sense) giving you different
options O at different worlds: a bet that pays out $1 if q and $0 if ¬q, but which you must you pay $0.60
for at worlds w where Pw(q) = 0.61 and $0.70 for at worlds x where Px(q) = 0.71 is not a single option,

but is instead O1 =

{
0.40 if q

−0.60 if ¬q
at w and O2 =

{
0.30 if q

−0.70 if ¬q
at x. The philosophical import of

this fact is subtle. We are inclined to think that it casts doubt on the claim that such (non-fixed-option)
Dutch books demonstrate irrationality, but this is an issue that deserves more discussion.
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This principle looks independently appealing. It says that you regard the information

that the expert favors q to at least a certain extent as also favoring q to at least that

extent. Note that this is not affected by the criticism of Reflection we discussed earlier.

For, while it may be that the expert doesn’t know that the expert favors q to at least

degree t—so that learning this information might change their opinions—the asymmetric

nature of ‘at least degree t’ plausibly means that this added information can only favor

q further: it’ll change the expert’s opinions in a predictable direction. Thus you know

that upon learning what you’ve learned, the expert’s credence will still be at least t, so

it makes sense for your credence be at least t upon learning this (Dorst 2020a, §§4–5).23

As Dorst (2020a) emphasizes, Simple Trust is symmetric—substituting ¬p for q and

1− s for t gives us the principle that conditional on the expert being doubtful of p, you

should be doubtful of p: π(p|P (p) ≤ s) ≤ s. Thus Simple Trust says that when you learn

whether the expert favors or disfavors q (whether P (q) ≥ t or P (q) < t), you should agree

with the expert in (dis)favoring q.24

Dorst shows that Simple Trust is connected to Value. He first generalizes Simple

Trust to apply to conditional probabilities as well as unconditional ones, yielding:

Trust: π
(
q
∣∣p ∧ [P (q|p) ≥ t]

)
≥ t

Conditional on the expert being confident of q conditional on p, be confident of q

conditional on p.

He then shows that Trust follows from Value (Dorst 2020a, Theorem 7.2) and that, in a

natural subclass of frames, Value also follows from Trust (Theorem 7.4).25 He further

conjectures that the two are equivalent more generally.

Unfortunately, he’s wrong:

Fact 2.1. There are π, 〈W,P〉 such that π trusts 〈W,P〉 without valuing it.

23For example, note that in Figure 1 (page 4), [P (a) ≥ 0.7] = {a} and [P (b) ≥ 0.6] = {b}. Thus for
any π: π(a|P (a) ≥ 0.7) = 1 ≥ 0.7, and π(b|P (b) ≥ 0.6) = 1 ≥ 0.6; learning which world the expert favors
should lead you to favor that world as well—just even more so.

24It’s tempting to combine the two conditions to infer that Simple Trust implies that
P (q|[P (q) ≥ t] ∧ [P (q) ≤ t]) = t, but Simple Trust does not imply this due to the non-monotonicity
of probabilistic support (Dorst 2020a, §4.1).

25The special subclass is the class of prior frames. A prior frame 〈W, E, π〉 consist of a set of worlds
W , a function E from worlds w to sets of worlds Ew, and a probability distribution π that’s regular
over W . We can then recover a probability frame by defining Pw = π(· | Ew). Informally, we can think
of Ew as the set of worlds which the expert’s evidence at w fails to rule out, and of π as representing
an initial probability distribution indicating what the expert takes the various bodies of evidence to
support. On such an interpretation, prior frames allow for uncertainty about what evidence the expert
has, but not for uncertainty about what they take these bodies of evidence to support. Prior frames are
the focus in much of the related work (e.g. Geanakoplos 1989; Williamson 2000, 2014, 2018; Cresto 2012;
Lederman 2015; Lasonen-Aarnio 2015; Campbell-Moore 2016; Salow 2018, 2019; Das 2020a,b), in part
because they are more tractable. Nevertheless, there are compelling reasons to consider the wider class
of probability frames. Prior frames build in a wide range of modeling assumptions about the candidate
experts—for example, that they all share the same prior and all update by conditioning that prior on
propositional evidence. On some interpretations (e.g. P = ‘my present evidence’) these assumptions
are highly controversial; on others (e.g. P = ‘the opinions of the smartest person in the room’), they
are simply wrong. So when we can do without these assumptions, we should. Nevertheless, prior frames
remain a useful, tractable starting point for most investigations.
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Proof. Let π =
(
0.17 0.56 0.27

)
and 〈W,P〉 =

0.45 0.10 0.45

0.15 0.70 0.15

0.30 0.10 0.60

. Using the

checkTrust function in the Mathematica notebook shows that π trusts the frame.26

But let O0 = 0 everywhere and let O1(w1) = 29, O1(w2) = −3, and O1(w3) = −13. Each

Pi in the frame has higher expectation for O1 than O0, so the recommended strategy is

to take O1 everywhere. Thus Eπ(S) = Eπ(O1) = −0.26 < 0 = Eπ(O0); Value fails.

Nevertheless, it turns out that Trust can naturally be generalized to yield a principle

that really is equivalent to Value.

The simplest way to motivate the generalization invokes the idea of a random

variable—a function (any function) from worlds to numbers. Think of this as a definite

description for a number—‘the number of planets’; ‘the weight of this cow’, ‘the amount

of utility you’d get from eating cake’, etc. (Notice that options, in the sense used to specify

decision problems, are simply random variables.) If you’re unsure what value a random

variable takes, you can form an estimate of it by averaging the various possibilities to try

to be as close as possible. Precisely: the expected value of a random variable relative

to a distribution π is a weighted average of the various possible values it might take, with

weights determined by how likely they are to be actual.27 Note that a proposition q is

interchangeable with its indicator variable 1q, i.e. the variable that assigns 1 to worlds

where q is true and 0 to those where it’s false. The probability assigned to a proposition

equals the estimate assigned to its indicator variable: Eπ(1q) = π(q)1 + π(¬q)0 = π(q).

Thought of in this way, Simple Trust says that for certain random variables—namely,

indicator variables—conditional on the expert’s estimate of that variable being at least

t, you have an estimate that’s at least t. To formalize this, let ‘EEE(X)’ be a definite

description for the expert’s expectation of X (so, for example, [E(X) ≥ t] = {w :

Ew(X) ≥ t}). Then Simple Trust is simply the requirement that, for every indicator

variable 1q: Eπ(1q|E(1q) ≥ t) ≥ t.
It’s then easy to spot a generalization. Say that π totally trusts a frame iff:

Total Trust: For any variable X: Eπ(X |E(X) ≥ t) ≥ t
Conditional on the expert having a high estimate for X, have a high estimate

for X.28

Total Trust is of the same form as Trust—both [E(X) ≥ t] and [P (q) ≥ t] (i.e., [E(1q) ≥ t])
assert that the expert’s probability function has a certain lower-bounded feature: its

estimate of some quantity (X, or 1q) is above a given threshold. So while Total Trust

is stronger than Simple Trust, it formalizes a similar idea. In particular, it is likewise

26The checkTrust function asks whether for each Pi in a given frame, Pi trusts the frame. To check
that π trusts the frame (as well as that each Pi in the frame trusts the frame), one should enter the whole

structure as if π is a world in the frame that always gets 0 probability, like so:


0 0.17 0.56 0.27
0 0.45 0.10 0.45
0 0.15 0.70 0.15
0 0.30 0.10 0.60

.

27EEEπ(X) :=
∑
w π(w)X(w). Note that (total expectation:) for any partition Q, Eπ(X) =∑

q∈Q π(q)Eπ(X|q), where Eπ(X|q) =
∑
w π(w|q)X(w).

28For aficionados: this principle can be re-stated in terms of convex sets; see page 17 below.

https://www.kevindorst.com/DDB_notebook.html


2 IMPROVING TRUST, GENERATING VALUE 13

not affected by the criticism of Reflection we discussed earlier. While it may be that

the expert doesn’t know that the expert has a high estimate for X—so that this is new

information that the expert has not yet taken into account—the asymmetric nature

of ‘high estimate’ plausibly means that this added information can only increase their

estimate for X, meaning you know that it’ll still be high once this information is added.

Like Trust, Total Trust is again symmetric: π totally trusts a frame iff for all Y, s:

Eπ(Y |E(Y ) ≤ s) ≤ s. Thus Total Trust says that upon learning whether the expert’s

estimate for X is high or not (whether E(X) ≥ t or E(X) < t), you should follow their

estimate across this dividing line. (But, again, it does not follow that we can combine

these conditions to arrive at Eπ(X|t ≤ E(X) ≤ t) = t.)

Total Trust is also, in some respects, more elegant. While Trust is stronger than

Simple Trust, Total Trust already implies the analogous principle for conditional es-

timates: Eπ(X|q ∧ [E(X|q) ≥ t]) ≥ t; that means Total Trust implies Trust (let X be an

indicator variable), and hence that Total Trust implies New Reflection as well (see foot-

note 37 below). Moreover, Total Trust also implies a version of itself which applies to

comparisons of two estimates, rather than comparisons of an estimate with a threshold.29

In fact, Total Trust is equivalent to Value:

Theorem 2.2. π totally trusts 〈W,P〉 iff π values 〈W,P〉.30

Proof Sketch. (⇒) : Suppose Eπ(S) < Eπ(O) for some O ∈ O, so Eπ(O−S) > 0. Assume

(without loss of generality, as an excruciating proof in the appendix shows) that for each

Pi in the frame, there is a unique O ∈ O with maximal expectation. Then, finding a

pair 〈j,Oj〉 that maximizes the quantity Ej(Oj − S) in the frame, there will be a t > 0

such that [E(Oj − S) ≥ t] includes all and only worlds w where Sw = Oj and hence

(Oj − S)(w) = 0. Thus Eπ(Oj − S|E(Oj − S) ≥ t) = 0 < t; Total Trust fails.

(⇐) : If Eπ(X|E(X) ≥ t) ≤ t − ε for some X, t and ε > 0, then we let our options

be O = {X,Y } where Y = t − aε for 0 < a < 1 at all worlds. As a → 0, we reach a

point at which if S is recommended, S selects X at w if w ∈ [E(X) ≥ t], and selects Y

otherwise. Thus Eπ(S) is an average of Eπ(S|E(X) < t) = Eπ(Y |E(X) < t) = t− aε and

Eπ(S|E(X) ≥ t) = Eπ(X|E(X) ≥ t) ≤ t− ε < t− aε, and so is less than Eπ(Y ) = t− aε;
Value fails.

Why does Total Trust succeed where Simple Trust and Trust failed? Inspecting the

proof, clearly part of the answer is that Total Trust can apply directly to arbitrary

random variables—the language of Value and its “options”—whereas Trust is restricted

to propositions. But to understand why this restriction is limiting, and to identify another

sense in which Total Trust is a natural generalization of Trust, it helps to visualize what

these various principles require.31 (Readers less interested in the details can skip to the

next section without significant loss of continuity.)

29That is, Total Trust implies that for any X,Y : Eπ(X|E(X) ≥ E(Y )) ≥ Eπ(Y |E(X) ≥ E(Y )). Note
that by linearity of expectations, E(X) ≥ E(Y ) iff E(X − Y ) ≥ 0; hence Eπ(X|E(X) ≥ E(Y )) <
Eπ(Y |E(X) ≥ E(Y )) implies Eπ(X − Y |E(X − Y ) ≥ 0) < 0, violating Total Trust.

30For more difficult theorems we include only proof sketches in the main text; full proofs can be found
in Appendix B.

31Indeed, if there’s one methodological moral that we take away from this paper, it’s that we should’ve
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To do this, think of a probability function π defined over n worlds as a vector in

n-dimensional Euclidean space, where the ith coordinate is π(wi). We can then repres-

ent probability functions as points in a barycentric plot : a simplex (the n-dimensional

generalization of a triangle) in which the extreme points are those which assign maximal

probability to a single world. For a 3-world frame, this simplex is a 2D equilateral triangle.

To see how this works, look at the top left triangle in Figure 4 (page 15)—ignore the

shaded regions and arrows for now. In this figure, any point within the triangle repres-

ents a probability function. The red point in the bottom left, labeled w1, represents the

probability function that assigns 1 to w1 and 0 to each of w2 and w3. (In Euclidean

3-space, this is the point
(
1 0 0

)
.) Similarly, the gray point labeled w2 at the top

represents the probability function that assigns 0 to w1 and w3, and 1 to w2. (The point(
0 1 0

)
.) Within the triangle, how close each dot is to these extreme points represents

how confident it is in the corresponding world. For instance, P1 is equally confident in w1

and w3, hence it is in the middle of the triangle, but is much less confident of w2, hence it

is much further away from the top. (Exactly, P1 =
(
0.45 0.1 0.45

)
.) In contrast, P3 is

equally doubtful of w2, but is slightly more confident of w3 than of w1, so it is the same

vertical height as P1 but is shifted further to the right. (Exactly, P3 =
(
0.3 0.1 0.6

)
.)

Using such diagrams, we can visualize what our various Trust principles require.

Start with Simple Trust. This requires that conditional on the expert being confident

of q—that is, conditional on P being in the set {ρ : ρ(q) ≥ t}—π must also be confident of

q (must also be in this set). In our diagrams, such “probability-threshold” sets correspond

to those probability functions that fall on one side of a certain straight cut through the

space. For example, the gray region on the top left of Figure 4 (page 15) is the set

of functions that assign at least 2
3 to {w2}; and the blue region on the top right is

the set of functions that assign at least 2
3 to {w2, w3}. A “cut” is a hyperplane—a flat

surface in n-dimensional space (see below). All the probability functions that are in the

probability-threshold set are those that fall above this hyperplane.

Simple Trust says that conditional on the expert being in this set, you should be in

this set. Since Simple Trust is symmetric, it also says that conditional on the expert

being outside this set (in the non-shaded region), you should be outside this set. What

Simple Trust amounts to is thus: trust the expert’s judgment when you learn which side

of a probability-threshold cut they’re on. As can be seen, π in the top row of Figure 4

satisfies this criterion for the two cuts we displayed: the solid arrows indicate where π

moves when it conditions on P being in the shaded set (P (q) ≥ t); the dotted arrow

indicates where it moves when it conditions on P being in the non-shaded set (P (q) < t).

For instance, the solid gray arrow in the top left maps π to w2 (makes π certain of w2)

since w2 is the only world w such that Pw(w2) ≥ 2
3—as can be seen by the fact that P2

is the only world in the gray region.

Now turn from Simple Trust to Trust. This generalization matters because it in-

troduces additional cuts. In our simple three-world diagrams, the cuts associated with

long ago taken to heart the advice of Hanti Lin and Kevin Kelly (Lin and Kelly 2012a,b) and drawn
pictures of probability frames. This was what led us to discover most of the results to come. In fact,
arguably one of the reasons that characterizations within prior frames (footnote 25) have come so much
more easily than in probability frames is that the former are easier to draw.
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Figure 4: A frame and probability function π displayed with several different cuts. Top:
Two probability-threshold sets governed by Simple Trust. Gray region (left figure) comprises
{ρ : ρ(w2) ≥ 2

3
}; blue region (right figure) comprises {ρ : ρ({w2, w3}) ≥ 2

3
}. Solid arrows represent

where π moves when it conditions on P being in the shaded set; dotted arrows are where it move
when it conditions on P being in the non-shaded set. Middle: Two conditional-probability-
threshold sets governed by Trust. Gray region (left figure) comprises {ρ : ρ(w2|{w1, w2}) ≥ 1/4};
blue region (right figure) comprises {ρ : ρ(w3|{w2, w3}) ≥ 5/6}. Solid arrow represents where π
moves when it conditions on P being in the shaded set; dotted arrow represents where it moves
when it conditions on P not being in the shaded set. Bottom: A cut governed by Total Trust.
π does not trust the expert’s judgment across this cut—conditional on the expert being to the
left of the cut, π stays to the right, where it already is—meaning that Total Trust fails.
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probability thresholds are all and only those that are parallel to one of the sides of the

triangle. By strengthening Simple Trust to Trust, we require that you trust the expert’s

judgment about certain additional cuts—namely those corresponding to conditional

probability thresholds. In our three-world diagrams, this adds all the cuts that intersect

one of the vertices—see the middle row of Figure 4 for two examples. Though it is tricky

to verify in full generality, it turns out that π trusts P ’s judgment about all such cuts,

i.e. π trusts this frame.

Turn, finally, to Total Trust. The key realization is that there are further cuts beyond

those governed by Trust: not every cut corresponds to a conditional-probability threshold.

In particular, consider the purple region in the bottom row of Figure 4 (page 15). This

region is bounded by a cut; and since this cut separates π and the Pi, π clearly does

not trust the expert’s judgment across this cut. After all, π is already certain that the

expert is on the other side; so conditional on the expert being on that side, π remains

exactly where it is.

Now for the big reveal: the case we’ve been diagramming is in fact the case that we

used above (Fact 2.1) to show that π can trust a frame without valuing it. So the fact

that π agrees with P across all of the cuts corresponding to probability and conditional-

probability thresholds just is the fact that π trusts this frame. And the purple line

separating π from the frame represents the set of probability functions ρ such that

Eρ(O1) = 0—where O1 is as defined in the decision problem used to show that π doesn’t

value the frame, and 0 is the fixed utility of the alternative option O0. So the failure of

π to value the frame corresponds to its failure to trust the expert about these additional

cuts; requiring π to trust the expert about every cut would clearly be sufficient for

eliminating this example.32

There is, in fact, a more general connection between “cuts” and random variables such

as O1. For a cut is a hyperplane, and a hyperplane is specified by a linear equation; so a

“cut” is a set {ρ : ρ(w1)x1+· · ·+ρ(wn)xn = t}, for some x1, ..., xn, t ∈ R. The two sides into

which this cut separates probability-space are the sets {ρ : ρ(w1)x1 + · · ·+ ρ(wn)xn ≥ t}
and {ρ : ρ(w1)x1+· · ·+ρ(wn)xn ≤ t}. But now we can think of x1, x2, . . . , xn as the values

of some random variable X, meaning that a cut is simply a set {ρ : Eρ(X) = t} for some

t and X, and the two sides are {ρ : Eρ(X) ≥ t} and {ρ : Eρ(X) ≤ t}. The requirement

to trust the expert’s judgment about every cut is thus exactly the requirement that, for

every random variable X and threshold t, your expectation for X conditional on the

expert’s expectation being greater than t should also be greater than t (and mutatis

mutandis for smaller than t). That is, it is simply the principle Total Trust. That is why

Total Trust succeeds where Simple Trust and Trust failed.

This way of thinking about our Trust principles may suggest ideas for even stronger

ones. After all, why should the principle be restricted to cuts, i.e. hyperplanes, i.e. flat

surfaces. Wouldn’t it be natural to also require π to trust the expert’s judgment about

bent surfaces? Or to go further yet and simply require that, for any condition C on

32If, looking at this diagram, you are thinking “why not just say that π is in the convex hull of (within
the triangle circumscribed by) {P1,P2,P3}?”, the answer is that this condition is necessary but not
sufficient for Value—as proven below in Theorem 4.1 and illustrated by Figure 2 above.
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probability distributions, π should agree with the expert on whether to exhibit C when

it learns whether the expert does so—that is, π(·|P ∈ C) ∈ C and π(·|P /∈ C) /∈ C?

But any such strengthened requirement would be too demanding for reasons quite

orthogonal to anything arising from modesty. Suppose that there are two candidate

expert distributions, ρ1 and ρ2, with extreme probabilities: that ρ1(q) = 1 and ρ2(q) = 0.

π can clearly defer to this expert even if, upon learning that the expert’s credences

are either ρ1 or ρ2, π assigns a probability between 0 and 1 to q—conditional on the

expert knowing whether q, you may still be uncertain whether q! (Even Reflection allows

this.) But assigning q a probability between 0 and 1 conditional on P being either ρ1
or ρ2 means that π does not agree with the expert on whether to exhibit the condition

{ρ : ρ(q) = 1 or ρ(q) = 0}. More generally, say that a set C of probability distributions is

convex if it contains every distribution that is a weighted average of others it contains.33

It seems that one can defer to an expert by adopting any weighted average of the possible

opinions of the expert. (This, too, is allowed by Reflection.) So if C is not convex, π can

defer to P even though though π(·|P ∈ C) /∈ C. So at most it makes sense to require

π(·|P ∈ C) ∈ C if C is convex.

But notice: hyperplanes are the only divisions that divide probability space into two

convex sets.34 So if we want a principle that respects the basic shape of Total Trust—

requiring you to trust the expert’s judgment on either side of a division—that principle

should be no stronger than Total Trust itself.35 This observation helps situate the relative

strengths of Reflection, Total Trust, and Simple Trust. In particular, Reflection can be

equivalently stated using convex sets:

Reflection (convexity version): π(·|P ∈ C) ∈ C, for any convex C.

Likewise for Total Trust. Say that a set B is biconvex iff both B and its complement

are convex. Then since a set is biconvex iff its boundary is a hyperplane (footnote 34),

Total Trust is equivalent to:

Total Trust (convexity version): π(·|P ∈ B) ∈ B, for any biconvex B.

33Formally: C is convex if δ ∈ C whenever δ =
∑
i λiρi for some ρ1, ..., ρn ∈ C with λi ≥ 0 such that∑

i λi = 1.
34 Precisely: if both B and Bc are convex, then by the hyperplane separation theorem, their boundary

is a hyperplane. Recall that we are restricting attention to finite probability frames, so we don’t need to
worry about strengthening the E(X) ≥ t condition in Total Trust to deal with edge cases. In particular,
C = {Pw : Pw ∈ B} and D = {Pw : Pw /∈ B} are both finite, so their convex hulls are closed
and compact, meaning that there is a hyperplane strongly separating them: ∃Y, t, ε > 0 such that
C ⊂ {ρ : Eρ(Y ) ≥ t} and D ⊂ {ρ : Eρ(Y ) ≤ t− ε}.

35There may be more to be said about why the idea behind Total Trust does not motivate any stronger
principles. One hypothesis builds on the “directed” nature of the set of probability functions above a
cut. Intuitively, {ρ : ρ(q) ≥ t} is directed towards q-worlds and away from ¬q worlds. Indeed, this can
be made precise and generalized: any set A = {ρ : Eρ(X) ≥ t} has a unique direction associated with
it—namely, that of the vector X. Moreover, any (non-empty) such set will contain at least one extreme
point (world) of the simplex, and the angle between X and any extreme point inside A is less than that
between X and any extreme point outside of A. Thus any such A is directed at certain worlds and away
from others. The same is not true of sets that are not determined by one of our cuts, even if they are
convex. This might give a sense for why conditioning on such an A should effect a shift in a predictable
direction, while conditioning on another set, even a convex one, is unconstrained—and hence why Total
Trust should be true, but any generalization of it would overstep the mark the way Reflection does.
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This formulation of Total Trust is perhaps the most formally useful; it allows us to

easily show that Total Trust implies a variety of other principles. For instance, Total

Trust implies a seemingly more general conditional-expectation version of our above

formulation.36 This shows that Total Trust implies Trust (let X be an indicator variable),

which in turn shows that Total Trust implies New Reflection.37 Likewise, Total Trust

implies that conditional on the expert’s average credence across a set of propositions

{qi} being at least t, your average credence should also be at least t.38

Finally, this convexity formulation allows us see why Simple Trust remains a natural

component of Total Trust. Suppose we restrict ourselves to proposition-level formulations

of such deference principles—that is, ones that use only conditions on P that can be

stated in terms of the expert’s opinion about a single proposition q. The set of convex

proposition-level conditions are those of the form P ∈ {ρ : ρ(q) ∈ [l, h]}, i.e. those

that say that the expert’s credence in a given q is within a given range [l, h]. This

leads to a proposition-level formulation that is only very slightly weaker than Reflection

as formulated above: π(q|P (q) ∈ [l, h]) ∈ [l, h] (see Gallow 2017). Meanwhile, the set

of biconvex proposition-level conditions are those of the form P ∈ {ρ : ρ(q) ≥ t},
i.e. those that say the expert’s credence in a given q is above a given threshold t.

That is, restricting Total Trust to proposition-level conditions gives us exactly Simple

Trust: π(q|P (q) ≥ t) ≥ t. Thus Simple Trust is the strongest component of Total Trust

(i.e. Value) that we can formulate if we restrict ourselves to deference principles built

around single propositions. That restriction is where Simple Trust went wrong.

A similar lesson applies to New Reflection. If we restrict ourselves to learning about

the full distribution of P—i.e. propositions of the form [P = ρ]—then New Reflection is

the strongest thing we can say. More precisely, New Reflection is the strongest principle

that follows from Total Trust (i.e. Value) of the form π(·|P = ρ) ∈ C, for some C.

The obvious lesson from these two instances is that the form of potential deference

principles we countenance can easily impose problematic restrictions in our search for

the correct one. It is only when a range of different forms coincide—as they do with

Value, the various formulations of Total Trust, and several other formulations we’ll see

below—that we can have confidence in the principle we end up with.

36For any X, t and q ⊆ W : Eπ(X|q ∧ [E(X|q) ≥ t]) ≥ t. Note that B = {ρ : Eρ(X|q) ≥ t} is biconvex.
To see this, first note that if δ =

∑
i λiρi, then δ(·|q) is also a convex mixture of the ρi(·|q): for any

p, δ(p|q) =
δ(p∧q)
δ(q)

=

∑
i λiρi(q)

ρi(p∧q)
ρi(q)∑

k λkρk(q)
=
∑
i

( λiρi(q)∑
k λkρk(q)

ρi(p|q)
)
; so δ(·|q) =

∑
i

( λiρi(q)∑
k λkρk(q)

ρi(·|q)
)
.

Note that this mixture gives positive weight only to the ρi for which ρi(·|q) is well-defined. Now, for
any ρi ∈ B and non-negative λi that sum to 1,

∑
i λiEρi (X|q) ≥

∑
i λit = t, so

∑
i λiρi ∈ B. Likewise,

for any δi ∈ Bc, if Eδi(X|q) is well-defined then it’s less than t, so
∑
i λiEδi(X|q) <

∑
i λit = t, so∑

i λiδi ∈ Bc. Thus B is biconvex, so by Total Trust, we have that π∗ := π(·|P ∈ B) ∈ B, and thus
Eπ(X|q ∧ [E(X|q) ≥ t]) = Eπ∗ (X|q) ≥ t.

37For arbitrary q, suppose Pj(q|P = Pj) = s. Then [P = Pj ] ∧ [P (q|P = Pj) ≥ s] = [P =
Pj ] and similarly [P = Pj ] ∧ [P (q|P = Pj) ≤ s] = [P = Pj ]; so by Trust, π(q|P = Pj) =
π(q|[P = Pj ] ∧ [P (q|P = Pj) ≥ s) ≥ s, and also π(q|P = Pj) = π(q|[P = Pj ] ∧ [P (q|P = Pj) ≤ s) ≤ s, so
π(q|P = Pj) = s. Since q was arbitrary, that means Trust implies New Reflection.

38That is,
∑
i

1
n
π(qi|

∑
i

1
n
P (qi) ≥ t) ≥ t. Note that B = {ρ :

∑
i
ρ(qi)
n
≥ t} is a biconvex set, since if

ρj ∈ B, then
∑
i

1
n

∑
j λjρj(qi) =

∑
j

∑
i

1
n
λjρj(qi) =

∑
j λj

∑
i
ρj(qi)

n
≥
∑
j λjt ≥ t, so

∑
j λjρj ∈ B;

by parallel reasoning Bc is also convex. Hence π(·|P ∈ B) ∈ B, and the result holds.
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3 The Value of Accuracy

We’ve now shown that Total Trust captures the pragmatic version of Value we’ve been

focusing on: the principle that, no matter what decision you face, you should always

prefer to let the expert decide for you rather than decide yourself. But there is also an

epistemic version of this constraint—namely, that you should always expect the expert

to be more accurate than you are. In other words, if all you care about is getting to the

truth, you should prefer to have the expert’s credences, rather than your own:

Epistemic Value (rough): Always expect the expert’s opinions to be more

accurate than your own, under any reasonable way of measuring accuracy.

It’s straightforward to see that Value entails Epistemic Value. After all, here’s a decision-

problem: adopt a credence function, and receive utility in proportion to its accuracy.

Standardly, every candidate for the expert (every probability function) must expect

itself to be more accurate than any particular alternative candidate—this is the strict

propriety constraint on accuracy measures required for virtually all the major results in

the literature.39 This entails that the recommended strategy S in such a decision problem

is always simply to adopt the expert’s credences, whatever they are. Since Value entails

that this strategy has higher expected utility than simply sticking with your credence

function, it entails that you expect the expert to be more accurate than you.40

The converse, however, is not straightforward: why should expecting the expert to

be more accurate than you (have preferable credences for one type of decision—namely,

what opinions to have) necessarily mean that you prefer to use their opinions for all

possible decisions? A natural first thought is that the reason you prefer to use the

expert’s opinions to make decisions is that you expect them to be more accurate than

yours. But, as we’ll see, it turns out that the tenability of this thought depends heavily

on how wide the range of reasonable ways of measuring accuracy is.

In particular, the recent work of Levinstein (2019) can be marshaled to show both

a close connection but also a potential divergence between Value and Epistemic Value.

There is a large literature devoted to measures of accuracy (‘scoring rules’) and the

constraints they can be used to impose on rational opinions.41 By filling in ‘any reasonable

way of measuring accuracy’ in Epistemic Value with the standard class of scoring rules

39E.g. Greaves and Wallace (2006); Joyce (2009); Predd et al. (2009); Pettigrew (2016). Note that
this property is sometimes called “immodesty” (Lewis 1971)—terminology that is orthogonal to our
own (footnote 1).

40Precisely: let A be any strictly proper accuracy measure (so ∀ρ, δ : Eρ(A(ρ)) > Eρ(A(δ)) if δ 6= ρ) and
let the set of options be those which yield utility matching the accuracy of either π or some function in
the frame Pi: O = {A(ρ) : ρ ∈ {π}∪{Pw : w ∈W}}. (Recall that our frames our finite, so that this is a
finite set of options.) Then by strict propriety, for any i ∈W and ρ 6= Pi in {π}∪{Pw : w ∈W}, we have
Ei(A(Pi)) > Ei(A(ρ)), i.e. ∀O 6= A(Pi), Ei(A(Pi)) > Ei(O); hence the uniquely recommended strategy
S is such that for all i, Si = A(Pi), and S picks out “the accuracy of the expert credence function,
whatever it is”: for all w, S(w) = A(Pw, w). By Value, we know that Eπ(A(π)) ≤ Eπ(S) = Eπ(A(P )).
Since A was an arbitrary strictly proper measure, it follows that Value implies that π expects the expert
to be at least as accurate as itself under any such measure.

41See Rosenkrantz (1981); Oddie (1997); Joyce (1998, 2009); Greaves and Wallace (2006); Predd et al.
(2009); Schoenfield (2016b,a, 2017); Pettigrew (2016); Carr (2017, 2019a); De Bona and Staffel (2017);
Levinstein (2017b); Campbell-Moore and Salow (2019, 2020); Campbell-Moore (2020); Campbell-Moore
and Levinstein (2020); Konek and Levinstein (2019), and many others.
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used in this literature, Levinstein (2019) shows that this version of Epistemic Value is

equivalent to Simple Trust.

Since we now know that Simple Trust is substantially weaker than Value, this raises

the possibility that Epistemic Value and Value might come apart. But as we’ll show, we

need not accept that conclusion. The results of Campbell-Moore (2020) suggests that

we can broaden our view of what counts as a ‘reasonable way of measuring accuracy’ by

broadening what sort of state we can measure the accuracy of: instead of just measuring

the accuracy of credences in propositions, we can measure the accuracy of estimates

of random variables. Once we broaden our view in this way, we’ll show that Epistemic

Value does indeed turn out to be equivalent to Value. (Those uninterested in the details

can skip to §3.1.)

First, we need to get clear on what Levinstein (2019) shows. Let Iq be a local

inaccuracy measure for a given proposition q: it takes a probability function, δ, and

truth-value of q, 1q and outputs a non-negative real number measuring the divergence

between the probability and the truth of q—i.e. how inaccurate δ is about q. Iq(δ)

can then be treated as a random variable—‘the inaccuracy of δ about q, whatever

it is.’ Say that Iq is truth-directed iff being closer to the truth-value of q makes a

probability function more accurate (less inaccurate).42 Say that Iq is strictly proper iff

every probability function expects itself to be more accurate than any other (rigidly

designated) probability function.43

Now let I be a global inaccuracy measure which takes a probability function δ and a

world w and outputs its overall inaccuracy at w. Say I is additive iff it is a sum of local

inaccuracy measures.44 Say that an additive I is truth-directed and strictly proper iff

all its component local scoring rules are truth-directed and strictly proper. The favored

class of scoring rules within the epistemic utility literature is the class of additive, truth-

directed, strictly proper scoring rules (Predd et al. 2009; Pettigrew 2016; Levinstein

2017a; Campbell-Moore and Levinstein 2020). So suppose we assume that these are all

and only the reasonable ways of measuring accuracy; then Epistemic Value corresponds

to Simple Trust.

Notice that I(P ) and Iq(P ) can be treated as random variables for ‘the inaccuracy of

the expert’s opinions, whatever they are’: Iq(P )(w) = Iq(Pw, w), etc. Now fixing some

particular q, say that π simply trusts P with respect to q iff for all t: π(q|P (q) ≥ t) ≥ t

and π(q|P (q) ≤ t) ≤ t. Then we have:

Theorem 3.1 (Levinstein 2019). π simply trusts P with respect to q iff for every

continuous,45 truth-directed, strictly proper local scoring rule Iq, Eπ(Iq(P )) ≤ Eπ(Iq(π)),

with equality if and only if π(P (q) = π(q)) = 1.

A corollary is that π simply trusts P (for all propositions) if and only if for every

continuous, truth-directed, strictly proper, and additive global scoring rule I, Eπ(I(P )) ≤
Eπ(I(π)).

42Precisely: if |δ(q)− i| < |ρ(q)− i|, then Iq(δ, i) < Iq(ρ, i) for i = 0, 1.
43Precisely: for any δ, ρ, Eδ(Iq(δ)) ≤ Eδ(Iq(ρ)) with equality iff δ(q) = ρ(q).
44Precisely: there are local inaccuracy measures Iq such that for all w, δ, I(δ, w) =

∑
q⊆W Iq(δ,1q(w)).

45See Levinstein 2019, Appendix A for the details.
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What to make of this result? If this is the correct class of ‘reasonable ways of measuring

accuracy’, then—since Simple Trust is strictly weaker than Total Trust—it follows that

Epistemic Value is strictly weaker than Value.

But an alternative reading is possible: the result may suggest that the standard way

of thinking about scoring rules is overly narrow; they do not capture every reasonable

way of measuring accuracy. To see why, return to the example used in Fact 2.1 and

the bottom row of Figure 4 (page 15). As we’ve seen, in that example π trusts P , and

therefore expects P to be more accurate than itself on all of the ways of measuring

accuracy that Theorem 3.1 countenances. Yet there is an issue on which, it seems, π

may sensibly not expect P to be more accurate than itself on—namely, the value of the

random variable O1. π estimates O1 to have a value of −0.26, while every candidate

expert function estimates it to have a value of at least 0.3—this was why we were able

to separate π from the frame using the purple cut in the bottom row of Figure 4.

Visually, there’s an intuitive sense in which π could expect itself to be more accurate

about O1 than the expert—namely, it’s on the correct side of the line dividing the purple

from white region. For example, suppose we measure accuracy this way: to have an

accurate estimate of O1, it matters a lot whether your estimate is on the correct side

of 0, but very little how close it is beyond that. On that way of measuring accuracy of

estimates, π will expect itself to be more accurate about O1 than the expert.46

This suggests that we should follow the work of Campbell-Moore (2020) and consider

scoring rules that apply to arbitrary estimates—not just to estimates of indicator random

variables, i.e. probabilities of propositions. If we do so, we’ll find that Value and Epistemic

value will align exactly.

Precisely, let an estimate-inaccuracy measure for a random variable X take a

estimate e ∈ R, a world w, and output the inaccuracy of e at w, denoted IX(e, w). Writing

IX(π) to abbreviate IX(Eπ(X)), say that IX is generally strictly proper (gsp) iff any

probability function expects its own estimate of X to be more accurate than any other

(rigidly designated) estimate.47 For tractability, assume IX is absolutely continuous in

its first argument.

In a recent paper, Campbell-Moore (2020) has shown that Schervish’s (1989) well-

known characterization of strictly proper local inaccuracy measures can be generalized

to characterize gsp estimate-inaccuracy measures as well. Using this more general charac-

terization, we can show that our pragmatic version of value does coincide with a version

of Epistemic Value—namely, the version we get if we say that the class of ‘reasonable

ways of measuring (in)accuracy’ correspond exactly to the generally strictly proper es-

timate-scoring rules. In fact, we can show an even tighter connection than that—one

that outstrips in both directions the argument that Value implies Epistemic Value from

above. For we can show that totally trusting an expert with respect to a given variable

46Precisely: using the Schervish-style characterization from §7.3.2, letting e = Eπ(X), f(t) ={
1 if t ∈ [−0.1, 0.1]

0.001 otherwise
and IX(π,w) =

∫max(e,X(w))
min(e,X(w))

|t−X(w)|f(dt), then this is a generally strictly

proper scoring rule and we have Eπ(IO1
(P )) = 1.107 > 1.082 = Eπ(IO1

(π)).
47Precisely: for any probabilistic π, Eπ(IX(π)) < Eπ(IX(s)) whenever Eπ(X) 6= s.
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X is equivalent to expecting their estimate of X to be more accurate than your own

under an way of measuring the accuracy of such an estimate.

Precisely, let IX(P ) be the inaccuracy of the expert’s estimate for X, whatever it is:

IX(P,w) = IX(Ew(X), w). Say that π epistemically values the P with respect to X iff

it expects P ’s estimate of X to be more accurate than its own, on any (generally strictly

proper) way of measuring accuracy.48 And say that π totally trusts P with respect to X

iff for all t: Eπ(X|E(X) ≥ t) ≥ t and Eπ(X|E(X) ≤ t) ≤ t. Then:

Theorem 3.2. π totally trusts P with respect to X iff π epistemically values P with

respect to X.49

Proof Sketch. (⇒): Let Eπ(X) = e. Given Total Trust, we show:

Eπ(IX(P ) |E(X) > e) < Eπ(IX(e) |E(X) > e) (1)

This suffices for the proof since a symmetric argument shows:

Eπ(IX(P ) |E(X) < e) < Eπ(IX(e) |E(X) < e) (2)

Jointly equations (1) and (2) entail this direction of the theorem.

To prove equation (1): Let w1, . . . , wp be the worlds where for each i, Ei(X) > e.

Without loss of generality, assume that for each i < p, Ei(X) > Ei+1(X). We then prove

by induction for all k with 1 ≤ k ≤ p and for any s < Ek(X):

Eπ(IX(P ) |E(X) ≥ Ek(X)) < Eπ(IX(s) |E(X) ≥ Ek(X))

(⇐): Suppose that Eπ(X |E(X) ≥ t) < t for some t. (The case where Eπ(X |E(X) <

t) ≥ t can be treated similarly.) Then there is some region (α, β) where for all t ∈ (α, β),

Eπ(X |E(X) ≥ t) < t. In Appendix 7.3.1, we show how to make a gsp that pays special

attention (α, β). It is then relatively straightforward to show that Eπ(IX(e)) < Eπ(IX(P ))

for this rule.

It follows immediately from Theorems 2.2 and 3.2 that Value is equivalent to Epistemic

Value—at least, it is if we understand the ‘reasonable ways of measuring accuracy’ as

the set of all gsp estimate-inaccuracy measures:

Epistemic Value: For any X and gsp IX , Eπ(IX(P )) ≤ Eπ(IX(π)) with equality

if and only if π(E(X) = Eπ(X)) = 1.

Always expect the expert’s estimates to be more accurate than your own.

As with Theorem 3.1, this result immediately generalizes to additive, “global” estimate-

inaccuracy which measure the inaccuracy of a given probability function by a sum of

the inaccuracies of its various estimates.

48Precisely: for any gsp IX , Eπ(IX(P )) ≤ Eπ(IX(π)), with equality only if π(E(X) = Eπ(X)) = 1.
49Appendix 7.3 gives two proofs of this result, one using Campbell-Moore’s (2020) Schervish-style

characterization, and the other using purely elementary methods; the latter is heavily indebted to help
from Catrin Campbell-Moore and Daniel Rothschild.
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3.1 Upshots

By Theorem 3.2, you expect an expert’s estimate of a particular quantity X to be

more accurate than your own on every reasonable way of measuring accuracy iff you

totally trust their estimate of that quantity. This result carries with it some philosophical

subtleties, so let’s pause to take a look.

First subtlety: recall that many potential experts are only local experts—you should

only trust them on a restricted range of questions (page 3). Unlike Theorems 2.2 and

4.1, Theorem 3.2 is a local equivalence result. Fix some particular quantity X—say, the

number of inches of rain we’ll have next week. And fix on some potential expert—say,

the weather forecaster. The result says that you totally trust the forecaster about how

much rain we’ll have iff you expect their estimate to be more accurate than your own

on every reasonable way of measuring its accuracy. This holds even if you don’t totally

trust them on other questions (like what to do with the now-far-too-old bananas). This

is significant because it shows that the connection between Total Trust and Epistemic

Value is a very tight one. In particular, the connection is not restricted to modest experts.

As we’ll discuss below (§5), you can totally trust an immodest expert with respect to

a certain question (or with respect to certain quantities) even without reflecting them

with respect to that question. By Theorem 3.2, you will then likewise expect them to

be more accurate than you with respect to that question. Thus this theorem shows

that even when it comes to immodest experts, Total Trust carves out a formally and

philosophically natural notion of deference that is weaker than Reflection.

Second subtlety: note that the biconditional connecting Total Trust to Epistemic

Value goes through only on a very permissive account of the reasonable ways of meas-

uring accuracy. If there are more constraints on reasonable ways of measuring accuracy

beyond them being gsp estimate-inaccuracy measures, then we would lose the right-to-

left direction of the proof, and Epistemic Value might not entail Value. Yet some have

argued that there are further constraints—for example, that the Brier score (squared

Euclidean distance) is the uniquely reasonable scoring rule (Joyce 2009; Pettigrew 2015,

2016). What should we make of this discrepancy?

One possibility is to endorse a form of subjectivism about measuring accuracy: in-

dividuals have complete latitude (amongst the gsp estimate-inaccuracy measures) to

choose how they are going to value accuracy. The proper formulation of Epistemic Value

should then guarantee that if they defer to an expert, then however they decide to meas-

ure accuracy, they will expect the expert to be more accurate than their own credence

function. A second reaction would be a form of objectivism, combined with an epistemic-

robustness constraint: although there is a uniquely rational way of measuring accuracy,

reasonable people can be uncertain what it is (amongst the gsp estimate-inaccuracy

measures). The proper formulation of Epistemic Value should then guarantee that no

matter how this uncertainty is distributed, if they defer to an expert then they’ll expect

them to be more accurate than their own credence function. A final option is a form of

supervaluationism: it’s indeterminate (amongst the gsp estimate-inaccuracy measures)

what the correct way of measuring accuracy is, but if you defer to an expert then it’s
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determinately true that you expect them to be more accurate than you—therefore, they

must be more accurate on all such measures.

We are neutral between these three approaches. But we do think that Theorem 3.2

lends some support to a reading along one of these lines—i.e. to a pluralistic approach

to accuracy-measures. For it turns out that the universal quantification over accuracy

measures is extremely important in the above argument: merely requiring that π expects

P to be more accurate than itself according to (say) the propositional Brier score, does

not entail any interesting deference principle—not even Simple Trust or New Reflection.50

Interestingly, requiring π to expect all of P ’s estimates to be more accurate than its

own as measured by squared Euclidean distance may entail New Reflection (we’ve been

unable to find a counterexample). But New Reflection does not entail this constraint,

and the constraint still does not entail even Simple Trust.51

Thus insofar as there’s reason to want a tight connection between deference and

expected accuracy, there’s reason to be pluralist about the acceptable ways of measuring

accuracy. And, we think, there is such reason: after all, it’s intuitive to think that when

you value an expert, the explanation for why you prefer to use their opinions to make

decisions is that you expect their opinions to be more accurate than your own. As we’ve

seen, this intuition is correct iff the reasonable ways to measure accuracy correspond to

the set of gsp estimate-inaccuracy measures.

4 The Geometry of Deserved Deference

So far we’ve shown how to generalize Trust to arrive at a deference principle—Total

Trust—that can be stated as a constraint on the relationship between your opinions and

the expert’s, and which characterizes what it takes to value an expert’s opinions for the

sake of making good decisions or accurate estimates. But this doesn’t yet tell us exactly

what constraints the various candidates for the expert must meet in order to deserve π’s

deference. In particular, we’d like a characterization of these constraints along with the

relationship π must bear to them such that, if we are given a probability function and a

frame, we can (efficiently) check whether the function values that frame. (Compare: in

epistemic logic, we don’t simply want to know which axioms are equivalent the KK

principle that Kq → KKq; we also want to know that a frame validates this principle

iff it is transitive.) This section will give such a characterization, revealing another way

50Let our frame be

0.9 0.1 0
0.9 0.1 0
0.4 0.1 0.5

 and let π = P3 =
(
0.4 0.1 0.5

)
. π(w1|P (ws) ≥ 0.9) = 0.8

and π(w1|P = P1) = 0.8 6= 0.9 = P1(w1|P = P1), so π neither (simply) trusts nor new-reflects this frame.
Nevertheless, for every q ⊆W , π expects P to have a better Brier score with respect to q than itself.

51Recall that Figure 2 shows that π can new-reflect P while knowing that P is less accurate than π.

And letting π =
(
0.8 0.1 0.1

)
and 〈W,P〉 =

0.6 0.2 0.2
0 1 0
0 0 1

 yields an example in which π expects

P to be more accurate than it on every random variable, according to squared Euclidean distance,
yet π(P ({w2, w3}) ≥ 0.4) = 1 while π({w2, w3}) = 0.2 < 0.4, so Simple Trust fails. Thanks to Richard
Pettigrew for the example.
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in which Total Trust is a natural middle ground between Reflection and New Reflection.

(This will require attention to some technicalities; if you are just here for the philosophy,

you may prefer to skip to §5.)

The characterization begins, once more, by looking at pictures. Compare frames F1

and F2, described and pictured in the first two rows of Figure 5, page 26. The two frames

look very similar: in both, each Pi is more confident of wi than of the other worlds; in

both P2 thinks w1 is more likely than w3; in the second, it just does so to a slightly

greater extent. But while there are probability distributions that totally trust the first

frame (for example, the uniform distribution π = ( 1
3 ,

1
3 ,

1
3 ), or any other distribution in

the triangle delineated by the Pi), there are no probability distributions that totally

trust the second. Why the difference?

Notice that in F2 we can separate P2 from the rest of the frame using a cut that does

not include w2 (right side of second picture-row of Figure 5). As a result, conditional on

the expert being to the left of this cut, π moves directly to w2, and does not trust the

expert on this cut.52 In contrast, we cannot do the same in F1: any cut that is shallow

enough to include only P2 will also include w2, so π will map to w2 and trust P across

about this cut (middle picture row of Figure 5; gray region and solid arrow on the left);

and any cut steep enough to exclude w2 will include P1, and so map π to the left side of

the triangle, again trusting the expert about the cut (orange hatched region and dashed

arrow).

What makes for the difference? The answer is easy to visualize. First, recall that

P̂w := Pw(·|P = Pw) is the expert’s informed opinions—those they’d have upon learning

that they are the expert (§1). Since in F1 and F2 each Pw is unique, this means that

P̂w is certain it’s at w, so is represented by the extreme point in the triangle that’s

certain it’s at w: P̂1 is at the bottom left corner, P̂2 is the top corner, etc. Now notice

the differing relationship between the Pi and the P̂i in F1 and F2. The convex hull of a

set of points ρ1, ..., ρn is the smallest convex set containing them all, i.e. the set of points

obtainable by averaging them.53 On the bottom picture-row of Figure 5 we’ve plotted

the convex hulls (shaded triangles) of {P̂1,P2,P3} (red/left), {P1, P̂2,P3} (gray/top),

and {P1,P2, P̂3} (blue/right). Once we do so, the difference betwen F1 and F2 jumps

out: in the former, P2 falls insides the gray convex hull of {P1, P̂2,P3}, while in the

latter it does not. This is what allowed us to separate P2 from the rest of the frame and

w2, generating a Value failure for F2.

It also points us to a characterization. Say that a candidate Pi is modestly informed

iff their opinions are an average of their own informed opinions P̂i along with the

(uninformed) opinions Pj of the other candidates they think might be an expert.54 This

is the key constraint. π totally trusts (i.e. values) a frame iff all the candidates for the

52Precisely, for X =
(
5 −1 −10

)
, the purple region is {ρ : Eρ(X) ≥ 0}, so Eπ(X|E(X) ≥ 0) < 0.

53Precisely, CH({ρ1, ..., ρn}) = {δ : ∃λi ≥ 0 and
∑
λi = 1 such that δ =

∑
λiρi}.

54Precisely, let Cρ := {δ : ρ(P = δ) > 0} be the set of C andidates that ρ thinks might be the expert

(abbreviating CPi to Ci for Pi in the frame), and let C
−
ρ = Cρ \ {ρ} be those candidates other than ρ

itself. Then Pi is modestly informed iff Pi is in the convex hull of {P̂i}∪C−i , i.e. iff there are non-negative

weights λij that sum to 1 such that Pi = λiiP̂i +
∑

Pj∈C
−
i

λijPj .
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Figure 5: Two frames. π = ( 1
3
, 1
3
, 1
3
) values F1 (left column) but not F2 (right column).

Top: The frames are the same except that in F2, P2 is slightly further weighted towards w1

over w3. Middle: In F2 we can use a cut to separate P2 from its world (w2) and the other Pi
(right); in F1 we cannot (left): any cut shallow enough to exclude P1 (gray region) will include
w2, so will map π to w2 (solid arrow); any cut steep enough to include P1 (hatched region) will
include the ( 1

2
, 1
2
, 0) point it maps π to (dotted arrow). Bottom: Shaded triangles represent

the convex hulls of {P̂1,P2,P3} (red/left), {P1, P̂2,P3} (gray/top), {P1,P2, P̂3} (blue/right).
Note that in F1, P2 falls within the gray hull, while in F2 it does not.
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expert are modestly informed, and π is an average of them:

Theorem 4.1. π totally trusts 〈W,P〉 iff each Pi ∈ Cπ is modestly informed and π is

in their convex hull.

Proof Sketch. (⇒:) If π is not in the convex hull of the Pi, we can separate it from them

using a cut as we did in the bottom row of Figure 4, in which case Total Trust fails. And

if one of the Pi is not modestly informed, we can use a cut to separate it from its worlds

and the other Pj like we did in the bottom of Figure 5, leading to a Total Trust failure.

(⇐:) If Total Trust fails, then Value fails, so Eπ(O−S) > 0 for some O, O ∈ O, and

recommended S. There must be some extreme point Pi in the frame that maximizes

this divergence. The trouble is, if Pi is modestly informed then Ei(O − S) is an average

of Êi(O−S) (which is 0, since O maximizes Ei and so Si = O) and the other Ej(O−S)

(which are less extreme than Ei(O − S)). This contradicts the assumption that Pi is an

extreme point, so it must not be modestly informed.

How should we understand this result—and, in particular, the constraint that each

candidate be modestly informed?

First, to get some intuition for the constraint, consider what it amounts to in one

standard case of higher-order evidence: you and some peers do some reasoning and each

come to have a certain “hunch”; but then you realize your hunches differ, conclude that

you might not have reasoned properly, and so adjust your opinions to take account of your

higher-order doubts. For each i, we can think of the informed opinion P̂i as the “hunch”

of the person who reasoned properly at world i55—after all, they’re the opinions that

person would have if they had no higher-order doubts about their reasoning. Meanwhile,

Pi represents the “all-doubts-considered” opinions of the person who reasoned properly

at world i—those which that person has once they’ve taken their higher-order doubts

into consideration. To require the rational person’s (all-doubts considered) opinions

to be modestly informed is thus to insist that they are some kind of average of the

hunch of the well-reasoning individual, P̂i, and the all-doubts-considered opinions of

those who reasoned poorly. It thus permits both an extreme “right reasons” response

(which maintains that the all-doubts considered opinions of the well-reasoning individual

should simply be their hunch; Titelbaum 2015) and an extreme “conciliationist” response

(which maintains that everyone’s all-doubts-considered opinions should coincide; Elga

2007), and everything that falls strictly between these.

Now let’s turn to seeing how the modestly-informed constraint relates to those

imposed by Reflection and New Reflection. A helpful way to do so is to focus on what

our various principles require of the expert candidates, assuming that they all defer to

the expert.56 Say that a frame validates a deference principle Φ iff every Pi in the

55Or, if you prefer, as what the “first-order evidence” warrants at that world (Dorst 2019b).
56Notably, while π reflects/values/totally-trusts 〈W,P〉 only if every Pi ∈Wπ reflects/values/totally-

trusts P , π can new-reflect 〈W,P〉 even when Pi ∈Wπ doesn’t new-reflect 〈W,P〉. Thus the requirement
that New Reflection is valid on a frame is stronger than the requirement that some π that assigns positive
probability to all w ∈W new-reflects it. Notably, if one should defer only to those who defer to themselves,
this is simply another argument that New Reflection is too weak for deference.
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frame defers to it Φ-wise. Reflection then is equivalent to the requirement that each Pi
is either immodest or an average of the other candidates it leaves open:

Fact 4.2. 〈W,P〉 validates Reflection iff for each i ∈W : either Pi is immodest or Pi is

in the convex hull of C−i .57

Why is this true? In particular, why does Reflection require that if Pi is modest, then

Pi is an average of the other candidates, excluding itself? Reflection immediately implies

that Pi can be written as an average of itself along with the other candidates, C−i .58

Moreover, if Pi is modest, then Pi(P = Pj) > 0 for some Pj ∈ C−i ; so then this average

is nontrivial in the sense that it gives at least some weight to the other candidates C−i .

Now, in order for a point to fall outside the convex hull of the other candidates, it must

be more extreme than of them in some direction (Figure 6). It’s then easy to see that

any nontrivial average of such a point and the other candidates would be less extreme

than the point itself. (If x > y1, ..., yn, then any average of x with the yi will be less

than x.) Since Pi is such a nontrivial average, and can’t be less extreme than itself, it

follows that Pi must already be in the convex hull of the other candidates C−i .

Moreover, it is this feature which makes Reflection incompatible with modest experts.

For consider the set of all the candidate experts. By the reasoning above, none of its

extreme points can be modest. So all of its extreme points are immodest, and thus assign

probability 0 to any candidate other than themselves. In particular, they all assign

probability 0 to every modest candidate. And since any other candidate must be in their

convex hull (otherwise it would be an extreme point), it follows that any other candidate

also assigns probability 0 to every modest candidate; so modest candidates might as well

not be included in the frame. The problem, in essence, is that Reflection requires Pi to

be an average of itself and the other candidates it leaves open; but a point Pi can’t be

used to anchor itself outside of the hull of the other candidates it gives weight to.

New Reflection solves this problem by having each Pi be an average of a different

set of points—the informed P̂j—rather than the Pj themselves:

Fact 4.3. 〈W,P〉 validates New Reflection iff for each i ∈ W : Pi is in the convex hull

of {P̂j : Pj ∈ Ci}.59

57Proof. (⇒:) If Pi(P = Pj) > 0 then Pj must be immodest since Pi(P = Pj |P = Pj) = 1. If not, then

Ci = C−i , so by total probability and Reflection Pi =
∑
Pj∈C

−
i
Pi(P = Pj)Pj .

(⇐:) Let A := {Pi : i ∈ W}, let B be the extreme points of A’s convex hull. Every Pi ∈ B
must be immodest, since if Pi is an extreme point then it’s not in CH(A − {Pi}), and so not in
the convex hull of C−i ; so Reflection holds throughout B. For Pj ∈ A − B, Pj is in the convex
hull of the immodest B, so Pj(P ∈ B) = 1, hence Pj =

∑
Pi∈B λiPi. Taking any q and Pk, we

have Pj(q|P = Pk) =
Pj(q∧[P=Pk])
Pj(P=Pk)

=
∑
i λiPi(q∧[P=Pk])∑

i λi(P=Pk)
=

λkPk(q∧[P=Pk])
λkPk(P=Pk)

= Pk(q). (The last two

equalities comes from the fact that each Pi ∈ B is immodest.) Hence Reflection holds throughout A−B.
58By total probability and then Reflection, Pi =

∑
Pj∈Ci Pi(P = Pj)Pi(·|P = Pj) =∑

Pj∈Ci Pi(P = Pj)Pj = Pi(P = Pi)Pi +
∑
Pj∈C

−
i
Pi(P = Pj)Pj .

59Proof. (⇒:) If Pi satisfies New Reflection, then by total probability and then New Reflection we

have Pi =
∑
Pj∈Ci Pi(P = Pj)Pi(·|P = Pj) =

∑
Pj∈Ci Pi(P = Pj)P̂j , so Pi.

(⇐:) Suppose Pi =
∑
Pj∈Ci λjP̂j . Taking any q and P̂k for which Pi(·|P̂ = P̂k) is defined, we
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Figure 6: Projection onto 2D of a set of points illustrating why each Pi can’t stably be a
a nontrivial average of itself and C−i unless it is an average of C−i . Left: Orange region is
convex hull of C−1 ; since P1 falls outside it, it is more extreme than C−1 ; thus averaging P1 with
this pulls it towards the others. (In contrast, the red dotted line delineates the convex hull of

{P̂1} ∪ C−1 , meaning that P1 can stably be an average of these points—i.e. it can stably be
modestly informed.) Right: The process iterates as new extreme points are pulled towards the
others, illustrating why Reflection makes modesty unstable.

This does solve the instability problem just identified—but notice that it walks back

much further from Reflection than is needed to do so. It replaces every point Pj that

Reflection told Pi to be pulled towards with its informed version, P̂j . But the reason

Reflection was unstable was not because each candidate Pi was pulled towards the others

Pj—it was that Pi had nothing distinct from itself to pull back with. Thus we didn’t need

to replace all the Pj with their informed selves; it suffices to replace Pi with its informed

self P̂i to make it so that Pi can stably give weight to the other candidates without

being pulled into their convex hull. To see this, notice that in Figure 6, P1 is in the

convex hull of P̂1 (left corner of the triangle) with the other points, as delineated by the

red dotted line. This is just to say that Pi is in the convex hull of P̂1 and C−1 —i.e. that

it is stably both modest and modestly informed.

Thus the constraint that Pi be modestly informed combines the insights of both

Reflection and New Reflection. From Reflection, it takes the idea that Pi should be

pulled towards the uninformed opinions of the other candidates Pj ∈ C−i it leaves open.

From New Reflection, it takes the idea that in order to do so stably, Pi must pull back

with some anchor point other than itself—in particular, with its informed self P̂i—which,

since it’s not sensitive to higher-order doubts, can stably pull back.

Nevertheless, we may wonder why it has to be Pi’s informed self (P̂i) in particular

that serves as the anchor, as opposed to some other point more extreme than C−i . To

see why this is so, consider one final way to reach the constraint that Pi be modestly

have Pi(q|P̂ = P̂k) =
Pi(q∧[P̂=P̂k])
Pi(P̂=P̂k)

=

∑
j λj P̂j(q∧[P̂=P̂k])∑

j λj(P̂=P̂k)
=

λkP̂k(q∧[P̂=P̂k])
λkP̂k(P̂=P̂k)

= P̂k(q). (The last two

equalities come from the fact that each P̂j is immodest.) Hence New Reflection (informed version) holds.
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informed. In particular, notice that Fact 4.2 entails that there’s another formulation of

the requirements of Reflection—namely, that Pi must be an average of its informed self

and the (uninformed) opinions of the other candidates, where the weights in this average

are extreme. That is, where λij ≥ 0 are non-negative weights that sum to 1, we have:

Corollary 4.4. 〈W,P〉 validates Reflection iff for each i ∈W : Pi is modestly informed

with extreme weights, i.e. Pi = λiiP̂i +
∑

Pj∈C−i

λijPj , with either λii = 1 or λii = 0.60

Once we write Reflection this way, we can see that there are two completely discon-

tinuous ways to satisfy it: the first is to have your opinions match your informed opinions

(if λii = 1); the second is to have them match an average of the other candidates’ unin-

formed opinions (if λii = 0). Once we see this bifurcation, it’s natural to generalize it by

allowing intermediate averages between these two extremes—giving some weight to your

informed self and some weight to the other candidates uninformed opinions (0 < λii < 1).

That generalization is simply the requirement that Pi be modestly informed:

Corollary 4.5. 〈W,P〉 validates Total Trust iff for each i ∈ W , Pi is modestly in-

formed: Pi = λiiP̂i +
∑

Pj∈C−i

λijPj with 0 ≤ λii ≤ 1. 61

In short, Value retains the core idea of Reflection—namely, that your opinions should

be pulled between your own informed opinions and the other candidates uninformed

ones—but generalizes it to allow the balance between these two forces to be intermediate.

5 Open Questions

Many of the things we’d like to defer to—people, evidence, chances—can be unsure

whether they are worthy of deference. In such contexts the standard theories of deference

break down. We’ve proposed Value as new theory of deference: you defer to an expert if

you’d always prefer for them to make decisions on your behalf—in a slogan, deferring

opinions is deferring decisions. Following Dorst (2020a), we observed that this theory

is equivalent to the standard theories (Reflection and New Reflection) in the context

of immodesty, but it both allows modesty (unlike Reflection) and rules out deference

to anti-experts or Dutch-bookable ones (unlike New Reflection) (§1). However, we also

showed that we lacked a general theory of modest Value (§2).

60By Fact 4.2, each Pi is either immodest or in the convex hull of C−i . If the former, then Pi = P̂i,
so λii = 1; and if the latter, then Pi =

∑
Pj∈C

−
i
λijPj , so λii = 0.

61By Theorem 4.1, Pi totally trusts the frame iff it’s in the convex hull of Ci and Ci is modestly
informed. If Pi assigns positive probability to itself, then it’s automatically in the convex hull of Pi ∈ Ci,
and so the only requirement is that all of Ci (including Pi) be modestly informed. If Pi does not assign
positive probability to itself, then since Ci = C−i , it’s in the convex hull of Ci iff it’s modestly informed.
Note: Whereas the weights λij in Facts 4.2, 4.3, and 4.4 turn out to always equal Pi(P = Pj), this will
not in general be true for the weights λij used in Corollary 4.5.
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The point of this paper has been to give one. As we’ve seen, you value an expert iff you

totally trust their estimates (§2), iff you expect their estimates to be more accurate than

yours on any reasonable way of measuring accuracy (§3), iff all the expert candidates’

opinions can be factored into their informed opinions along with their higher-order doubts,

and your opinions are an average of theirs (§4). Collecting our theorems, we have the

following characterization:

Theorem 5.1 (Characterization of Value). The following are equivalent:

· π values 〈W,P〉;
For any O, if S is recommended for O, then ∀O ∈ O, Eπ(S) ≥ Eπ(O);

There’s no fixed-option Dutch Book against transitioning from π to P .

· π totally trusts 〈W,P〉:
Eπ(X|E(X) ≥ t) ≥ t, for all X;

π(·|P ∈ B) ∈ B for any biconvex B.

· π epistemically values 〈W,P〉:
Eπ(IX(P )) ≤ Eπ(IX(π)), for all X and gsp IX .

· π is in the convex hull of Cπ, and each Pi ∈ Cπ is modestly informed:

π =
∑
Pi∈Cπ

λiPi and for each Pi ∈ Cπ: Pi = λiiP̂i +
∑

Pj∈C−i

λijPj .

Theory in hand, we can draw out both formal lessons and philosophical questions.

The most obvious formal lesson is this. In the context of immodesty, deference can

seem simple—all the plausible theories (Reflection, New Reflection, Value, Trust, etc.)

coincide. But once we allow modest experts, important differences emerge. We’ve argued

that probing these differences singles out Value as the most plausible, general account of

deference. Nevertheless, within the space that modesty opens up, there’s clearly a wide

range of different deference principles that deserve to be explored (cf. Dorst 2020b). We

hope that the methods we’ve found so useful here (asking computers; drawing pictures)

will also be helpful in such further explorations.

Turning to philosophical questions, we’d like to focus on two. First, there are a variety

of things that most philosophers agree we should defer to: objective chances (Lewis 1980;

Levinstein 2019); our rational and more-informed future selves (van Fraassen 1984;

Salow 2018); our own evidence (Good 1967; Dorst 2020a); and so on. If we are right,

that means we must value such experts—which in turn imposes structural constraints

on what their opinions might be. For example, to value an expert, their opinions must

obey positive access: if the expert is certain of q, they must be certain that the expert

is certain of q; if P (q) = 1, then P (P (q) = 1) = 1 (Dorst 2020a, Fact 8.2). That raises a

question: what substantive facts about these various experts explain why their opinions

obey such structural features? What is it about objective chances (or rational credences, or

evidential probabilities) that guarantees that they obey (say) positive access—and which

theories of them can deliver this result? Thus theories of deference can be used to impose

adequacy conditions on substantive accounts of chance (C. Dorst 2019; Gallow 2019a),
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diachronic rationality (cf. Schoenfield 2016b; Gallow 2019b), evidence (cf. Lasonen-

Aarnio 2019; Das 2020a), and so on.

Second, every theory we’ve explored here is a theory of complete deference—of what

it takes to defer to an expert on all your opinions. As we mentioned at the beginning,

this is an appropriate notion of deference for some experts (present chances, your current

evidence) but not for others. We defer to Nate Silver about who’ll win the election, but

not about what the weather will be; we defer to our political opponents about what their

favorite news network says, but not about whether it’s correct; we defer to our future self

about how busy we’ll be next month, but not about how much we should work today;

and so on. Most real-world deference is local deference: we defer to an expert’s opinions

about some questions but not others. Such limited deference is clearly both pervasive

and philosophically important.

It’s also formally interesting, for it turns out that question-sensitivity adds even

more variability to our growing gamut of deference principles. Thinking of a question Q

as a partition of logical space (Hamblin 1976; Roberts 2012), we can relativize all our

principles to such questions. You reflect an expert with respect to Q iff for any partial

answer to Q, you adopt the expert’s credence in that answer upon learning what it

is.62 You totally trusts an expert with respect to Q iff for any quantity whose values

are determined by the answer to Q, you have a high estimate for that quantity upon

learning that their estimate is high.63 You value an expert with respect to Q iff for any

decision-problem whose utilities are determined by the answer to Q, you’d like to give

the expert power of attorney for that decision.64

Once we add such question-sensitivity, things get even more interesting. For example,

you totally trust a frame with respect to every 2-cell question (Q = {q,¬q}) iff you

simply trust it (with respect to every question). As we’ve seen in Theorem 3.2, you

totally trust an expert with respect to a question iff you expect their estimates of

quantities determined by that question to be more accurate than your own on every

reasonable way of measuring accuracy. We conjecture that, similarly, you totally trust

an expert with respect to a question iff you value them with respect to that question.65

Finally—and perhaps most importantly—it turns out that you can totally trust, value,

and epistemically value an immodest expert with respect to Q without reflecting them

62Precisely: if q =
⋃
qi, for qi ∈ Q, then π(q|P = ρ) = ρ(q).

63Precisely: if X is such that for all w, w′ in the same Q-cell, X(w) = X(w′), then Eπ(X|E(X) ≥ t) ≥ t.
64Precisely: if for all O ∈ O, O(w) = O(w′) whenever w and w′ are in the same Q-cell, then if S is

recommended for O, Eπ(S) ≥ Eπ(O), for any O ∈ O.
65The right-to-left direction is true and easy to prove using the same reasoning as that in Lemma 7.1;

it’s the left-to-right direction which is open. Levinstein (2017b) shows how scoring rules for individual
propositions can be thought of as measuring the expected practical (dis)utility of having a certain
credence in a given proposition when it is uncertain what decision problem you face whose outcome
is determined solely by the truth-value of the proposition in question. Since Levinstein’s 2019 result
shows that Simple Trust is enough to expect an expert to be at least as accurate as you are for a
given proposition (and therefore to have a credence with higher-expected utility), we believe it’s likely
the left-to-right direction holds as well. However, it is unclear how or whether the identification of
propositional scoring rules with pragmatic expected disutility generalizes to gsp scoring rules.



6 APPENDIX A: GLOSSARY 33

with respect to Q.66 This means that even in the context of immodesty, the epistemic and

pragmatic incentives to defer to someone do not always suffice to justify Reflection—they

sometimes justify only Total Trust. That opens up further questions. How exactly do

the local versions of Reflection and Total Trust relate? Is the latter indeed equivalent

to (local) Value? And, more generally, how will the various theories of deference stack

up once we turn our attention to the incredibly-common but under-explored domain of

local, question-relative deference?

We don’t know. So we should end on a modest note: although we think that our

theory of deference does better than those currently on offer, there remains plenty of

room for deference to be done better yet.

6 Appendix A: Glossary

Definitions of technical terms and symbols are repeated here, in alphabetical order:

· Biconvex set: A set of points in B ⊆ Rn is biconvex iff both it and its complement

Rn \B are convex.

· Cπ, Ci, C−
π : Cπ is the set of candidates that π leaves open might be the expert:

Cπ := {ρ : π(P = ρ) > 0}. For Pi that occur in a frame, Ci abbreviates CPi .

C−π := Ci \ {π} are the candidates it leaves open other than itself.

· Convex: A set of points C ⊆ Rn is convex iff it contains any average of the points

it contains: if c1, ..., cn ∈ C, then for any λi ≥ 0 that sum to 1,
∑
i λici ∈ C.

· Convex hull, CH : The convex hull of a set of points ρ1, .., ρn is the set of points

that can be obtained by taking averages of them: CH ({ρ1, .., ρn}) = {ρ : ∃λi ≥
0 and

∑
i λi = 1 such that ρ =

∑
i λiρi}.

· Cut: A cut through probability space Rn is a hyperplane, i.e. a set of the form

{π : Eπ(X) = t} for some random variable X and threshold t.

· Decision problem, O: A finite set of options O which are functions from worlds

w to numbers (utilities) O(w).

· Estimate-inaccuracy measure, IX(e), IX(π), IX(P ): Given a random vari-

able X, an estimate-inaccuracy measure IX takes an estimate e ∈ R and a world

w and outputs the inaccuracy of e at w, IX(e, w) ∈ R. ‘IX(π)’ abbreviates the in-

accuracy of π’s estimate: IX(π) = IX(Eπ(X)). ‘IX(P )’ is a definite description for

the inaccuracy of the expert’s estimate, whatever it is: IX(P )(w) := IX(Ew(X), w).

· Epistemic Value: π epistemically values a frame iff for any random variableX and

generally strictly proper estimate-inaccuracy measure IX , Eπ(IX(P )) ≤ Eπ(IX(π)),

with equality if and only if π(E(X) = Eπ(X)) = 1.

66Let 〈W,P〉 =


1 0 0 0
0 0.6 0.4 0
0 0.6 0.4 0
0 0 0 1

 and π = ( 1
4
, 1
4
, 1
4
, 1
4

), let q be the blue worlds w1 and w2, and

Q = {q,¬q}. Then π(q|P (q) = 0.6) = π(q|{2, 3}) = 0.5, so π doesn’t reflect 〈W,P〉 with respect to Q;
and since the frame is immodest, π likewise does not new-reflect it with respect to Q. Nevertheless, π
does totally trust 〈W,P〉 with respect to Q, since, for instance, π(q|P (q) ≥ 0.6) = π(q|{1, 2, 3}) = 2/3 and
π(q|P (q) ≤ 0.6) = π(q|{2, 3, 4}) = 1/3; and, in fact, π values this frame with respect to Q.
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· Expected value, EEEπ(X), EEEw, EEE(X), EEEπ(S): the expected value (estimate)

of a random variable X relative to π is Eπ(X) =
∑
w π(w)X(w). For probability

functions Pw in the frame we abbreviate EPw to Ew. ‘E(X)’ is a definite description

for the expert’s estimate of X, whatever it is. Eπ(S) :=
∑
w π(w)Sw(w) is the

expected utility of following strategy S.

· Fixed-option Dutch book: Given a π and frame 〈W,P〉, a fixed-option Dutch

book is a pair of decision problems O1 and O2, each of which contain a “no bet”

0-option, such that O maximizes expected value amongst O1 relative to π, S is

recommended for O2 by the frame, and π(O + S) ≤ 0 = 1 and π(O + S < 0) > 0.

· Generally strictly proper (gsp): An estimate-inaccuracy measure IX is gsp

iff for any probabilistic π, Eπ(IX(π)) ≤ Eπ(IX(ρ)) with equality only if Eπ(X) =

Eρ(X).

· Indicator variable, 1q: A random variable such that 1q(w) = 1 if w ∈ q and

1q(w) = 0 if w /∈ q.
· Informed expert, P̂ , P̂w: The opinions the expert would have were they informed

that they were the expert: P̂w := Pw(·|P = Pw). ‘P̂ ’ is a definite description for

the informed expert opinions, whatever they are.

· Modestly informed: A candidate Pi is modestly informed iff it’s in the convex

hull of {P̂i} ∪ C−i , iff Pi = λiiP̂i +
∑

Pj∈C−i

λijPj for λij ≥ 0 such that
∑
j λij = 1.

· New Reflection: π new-reflects a frame iff for every function ρ, π(·|P = ρ) =

ρ(·|P = ρ). Equivalently (informed version): π(·|P̂ = ρ) = ρ.

· Option, O: An option O is a function from worlds w to real numbers O(w)

represented the utility that would be achieved by taking option O at w.

· ‘P ’, ‘Pw’, ‘π’, and ‘ρ’: ‘P ’ is a definite description for the expert credence function,

whatever it is. ‘Pw’ is a rigid designator for the credence function the expert has at

world w. ‘π’ (along with other lower-case Greek letters, like ‘ρ’) is a rigid designator

for an arbitrary probability function.

· [P ∈ C] := {w ∈ W : Pw ∈ C} is the proposition (set of worlds in a probability

frame 〈W,P〉) that the expert’s credence function is in the set C.

· Probability frame 〈W,P〉: A finite set of worlds W and a function P from

worlds w ∈ W to probability distributions Pw defined over the subsets of W ,

thought of as the expert’s credences at w.

· Random variable, X: A random variable X is any function from worlds w to

real numbers X(w).

· Reflection: π reflects a frame iff for every function ρ, π(·|P = ρ) = ρ. Equivalently,

iff for every convex set C: π(·|P ∈ C) ∈ C.

· Simple Trust: π simply trusts a frame iff, for all q, t: π(q|P (q) ≥ t) ≥ t.
· Strategy, S: given a decision problem O, a strategy is a function from worlds w

to options Sw ∈ O such that Sw = Sv whenever Pw = Pv. S is recommended for

O by a frame iff, for each w ∈ W , Sw maximizes expected utility relative to Pw
amongst the options: Ew(Sw) ≥ Ew(O) for any O ∈ O.
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· Total Trust: π totally trusts a frame iff for any random variable X and threshold

t ∈ R, Eπ(X|E(X) ≥ t) ≥ t. Equivalently, for every biconvex set B, π(·|P ∈ B) ∈ B.

· Trust: π trusts a frame iff for any q, p, t: π(q|p ∧ [P (q|p) ≥ t]) ≥ t.
· Validates: A frame 〈W,P〉 validates a deference principle Φ iff for every i ∈ W ,

Pi defers Φ-wise to the frame.

· Value: π values a frame 〈W,P〉 iff for any decision problem O, any recommended

strategy has higher expected utility than any option: if S is recommended for O
by the frame, then Eπ(S) =

∑
v π(v)Sv(v) ≥ Eπ(O) for any O ∈ O.

· Wπ : {w ∈W : π(w) > 0}.

7 Appendix B: Proofs

For both efficiency and technical reasons we will prove the main results using a slightly

different structure than the theorems stated in the text. Rather than proving a series

of biconditionals, will will first prove a cycle, and then use all of these results together

for the final link. In particular, for technical reasons it is much harder to prove the full

version of Value directly; instead, we first work with a potentially weaker version (which

we’ll later show to in fact be equivalent):

Weak Value: Given any O, there exists some recommended strategy S such that

for all O ∈ O: Eπ(S) ≥ Eπ(O).

The difference is that Value universally quantifies over recommended strategies, whereas

Weak Value existentially quantifies over them. Note that for frames-plus-decision-problems

for which the recommended strategy is unique, Weak Value holds iff Value does.

We’ll proceed as follows. We’ll first (§7.1) prove that π weakly values a frame only

if π totally trusts it. We’ll then prove that π totally trusts a frame only if π is in the

convex hull of Cπ and each Pi ∈ Cπ is modestly informed. We’ll then show that if this

condition holds, then π weakly values the frame. This shows that these three conditions

are equivalent. Next (§7.2), we’ll show that, together, they entail that π values the frame—

thus establishing Theorems 2.2 and 4.1. Finally, in §7.3 we’ll prove Theorem 3.2—that

total trust is equivalent to epistemic value—directly. Together, these results establish

Theorem 5.1.

7.1 Weak Value ⇔ Total Trust ⇔ modestly informed

Lemma 7.1. If π weakly values 〈W,P〉, π totally trusts it.

Proof. Supposing π doesn’t totally trust 〈W,P〉, we find a decision problem using the

same random variable on which Value fails and in which there is a unique recommended

strategy—therefore, Weak Value fails too.

If π doesn’t totally trust the frame, there is an X, t such that Eπ(X|E(X) ≥ t) = a < t.

(Note that this implies π(E(X) ≥ t) > 0.) Find the maximum b < t such that ∃w ∈ W :
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Ew(X) = b, and let s be any number strictly between max(a, b) and t. Let Y be a random

variable that takes values s at all worlds, and let O = {X,Y }.
By construction, for all x ∈ [E(X) ≥ t], Ex(X) > Ex(Y ); and for all y ∈ [E(X) < t],

Ey(X) < Ey(Y ). Thus there is a uniquely recommended strategy S—namely, Sw = X

iff w ∈ [E(X) ≥ t] and Sw = Y iff w ∈ [E(X) < t]. Noting that Eπ(X|E(X) ≥ t) < s and

that Eπ(Y |E(X) < t) = s if defined, we then have:

Eπ(S) = π(E(X) ≥ t) · Eπ(X|E(X) ≥ t) + π(E(X) < t) · Eπ(Y |E(X) < t)

< π(E(X) ≥ t · s + π(E(X) < t) · s
= s = Eπ(Y ).

We thus have Eπ(Y ) > Eπ(S); Weak Value fails.

The next step is to prove:

Lemma 7.2. If π totally trusts 〈W,P〉, then π is in the convex hull of Cπ and each

Pi ∈ Cπ is modestly informed.

To do so, we first prove some lemmas about the properties of Cπ if all the candidates

are modestly informed; in particular, we want to show that that assuming π is in the

convex hull of Cπ, all the candidates are modestly informed iff a more general condition

(class-convexity, defined below) holds.

Remark 7.2.1. When π =
∑
i λiPi, or Pj = λjjP̂j +

∑
Pi∈C−i

λjiPi, there may well be

multiple worlds w 6= w′ such that Pw = Pi = Pw′ . Nevertheless, we can always choose a

single representative world i in each such equivalence class, and in what follows we write

the terms λji (etc.) assuming we have done so.

Lemma 7.2.2. Take any nonempty set of points A = {P1, ...,Pn} that are each

modestly informed, so Pi = λiiP̂i+
∑
Pj∈C−i

λijPj , and which assign weight only to each

other, so λij > 0 only if Pj ∈ A. Then λii > 0 for some Pi in A.

Proof. Suppose not: each Pi =
∑
Pj∈C−i

λijPj where each C−i ⊂ {P1, ..,Pn}. Then

each Pi is in the convex hull of the other Pj , meaning that CH(A) has at most one

extreme point and therefore is a singleton. But since P1 /∈ C−1 , P1 =
∑
Pj∈C−1

λ1jPj = 0,

contradicting the fact that P1 is a probability function.

Definition 7.2.3. Let Wπ be the set of worlds seen by π: {w ∈W : π(w) > 0}.

Lemma 7.2.4 (Transitivity). If each Pi in Cπ is modestly informed and π is in their

convex hull, then they all are such that Pi(Wπ) = 1

Proof. Let W ′π := {w ∈Wπ : Pw(Wπ) = 1}. W ′π is nonempty, otherwise π is not in Cπ’s

convex hull. We first note that every Pi for i ∈W ′π, is a mixture of P̂i and {Pj : j ∈W ′π}.
For Pi = λiiP̂i +

∑
Pj∈C−i

λijPj , and since Pi(Wπ) = 1, Ci ⊆ {Pj : j ∈Wπ}; yet for any

Pj with j ∈Wπ but not in W ′π, Pj(Wπ) < 1, so Pj(x) > 0 for x /∈Wπ; hence if λij > 0,

then Pi(x) ≥ λijPj(x) > 0, contradicting the assumption that Pi(Wπ) = 1.
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Next we show that for i ∈ W ′π, Pi(W ′π) = 1. Suppose not, so Pi(x) > 0 for x ∈ Wπ

but not in W ′π. Let t := maxw∈W ′π (Pw(x)), and let M := {w ∈ W ′π : Pw(x) = t} and

m ∈ M . Note that (by the above) λmj > 0 only if j ∈ W ′π; hence λmj > 0 only if

Pj(x) ≤ t. Thus if λmk > 0 for k /∈ M , Pj(x) would average to less than t; so λmj > 0

only if j ∈ M . Notice also that since P̂m(x) = 0 (since Px(Wπ) < 1 but Pm(Wπ) = 1),

we must similarly have that λmm = 0, for Pm(x) ≤ λmm · 0 + (1 − λmm)t. Hence we

have that for all m ∈ M : λmm = 0 but λmj > 0 only if j ∈ M ; i.e. each such m is

modestly informed, assign weight only to each other, and assign no weight to themselves.

By Lemma 7.2.2, this is a contradiction; so we have that Pi(W ′π) = 1.

We can now show that Wπ \W ′π = ∅. For we know that π =
∑
i λiPi for Pi ∈ Cπ.

Since π(Wπ) = 1 we know λi > 0 only if Pi(Wπ) = 1, hence λi > 0 only if Pi ∈ W ′π.

But since we now know that all such Pi have Pi(W ′π) = 1, it follows that π(W ′π) = 1,

i.e. Wπ = W ′π. Hence for all i ∈Wπ = W ′π, we have Pi(Wπ) = Pi(W ′π) = 1.

Lemma 7.2.5 (Reflexivity). If each Pi ∈ Cπ is modestly informed and π is in their

convex hull, then for all i ∈Wπ, Pi(i) > 0.

Proof. Suppose π(i) > 0 but Pi(i) = 0. Since π =
∑
Pj∈Cπ λjPj , there must be some

j ∈ Wπ such that Pj(i) > 0. Let t = maxj∈Wπ (Pj(i)) and M := {j ∈ Wπ : Pj(i) = t},
and m ∈ M . By Lemma 7.2.4, Pm(Wπ) = 1, so λmk > 0 only if k ∈ Wπ, so only

if Pk(i) ≤ t. Thus if λmk > 0 for k /∈ M , Pm(i) must average to less than t; but it

doesn’t. Similarly, note that since P̂m(i) = 0 (since Pi 6= Pm), we must likewise have

that λmm = 0. So M is a nonempty set of worlds which assign weight λmk > 0 only to

each other and not to themselves—contradicting Lemma 7.2.2. Hence if i ∈ Wπ, then

Pi(i) > 0.

Definition 7.2.6. Wπ is class-convex iff each candidate Pi is in the convex hull of

its informed self and the other candidates in Wπ (as opposed to the other candidates it

leaves open, for modest-informedness): for all Pi ∈ Cπ, Pi = λiiP̂i +
∑

Pj 6=Pi:Pj∈Cπ
λijPj .

Lemma 7.2.7 (Class-Convexity). If π is in the convex hull ofCπ, then Wπ is class-convex

iff each Pi ∈ Cπ is modestly informed.

Proof. (⇒) : Suppose Wπ is class-convex but there is a Pi ∈ Cπ that’s not modestly

informed. Since Wπ is class-convex, Pi is in the convex hull of its informed self and the

other candidates in Wπ: Pi = λiiP̂i +
∑

Pj 6=Pi:Pj∈Cπ
λijPj . By Lemma 7.2.4, Pi(Wπ) = 1,

so Ci ⊆ Cπ. Since Pi is not in the convex hull of P̂i and C−i , this means there is

some Pj ∈ Cπ but Pj /∈ Ci such that λij > 0. By Lemma 7.2.5, Pj(j) > 0, hence

Pi(j) ≥ λijPj > 0. But since Pj /∈ Ci, Pi(j) = 0—contradiction.

(⇐) : If Wπ is not class-convex, then there is a Pi that’s not in the convex hull of

P̂i and {Pj 6= Pi : Pj ∈ Cπ}. Since by Lemma 7.2.4 Ci ⊆ Cπ, it follows that Pi is not in

the convex hull of P̂i and C−i , so it not modestly informed.

We’re now in a position to prove Lemma 7.2, repeated here:
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Lemma 7.2. If π totally trusts 〈W,P〉, then π is in the convex hull of Cπ and each

Pi ∈ Cπ is modestly informed.

Proof. Suppose π is not in the convex hull of Cπ. Then by the hyperplane separation

theorem, there is an X, t strongly separating them: i.e., Eπ(X) < t but for all Pi ∈ Cπ,

Ei(X) ≥ t. Then π(E(X) ≥ t) = 1, so Eπ(X|E(X) ≥ t) = Eπ(X) < t; Total Trust fails.

Now suppose that π is in the convex hull of Cπ yet some Pi ∈ Cπ is not modestly

informed. By Lemma 7.2.7, this means Wπ is not class-convex, so some Pj is not in the

convex hull of P̂j and {Pk 6= Pj : Pk ∈ Cπ}. By the hyperplane separation theorem,

there must be an X, t that strongly separates them: Ej(X) ≥ t, but Êj(X) < t and

likewise for all Pk 6= Pi in Cπ, Ek(X) < t. By the latter fact, [E(X) ≥ t] = [P = Pj ].
If Total Trust held, we’d have Eπ(X|E(X) ≥ t) = Eπ(X|P = Pj) = Êj(X) ≥ t (since, by

footnotes 36 and 37, Total Trust entails New Reflection); but by the above, Êj(X) < t;

so Total Trust fails.

Next, we prove the last link in this cycle:

Lemma 7.3. If π is in the convex hull of Cπ and each Pi ∈ Cπ is modestly informed,

then π weakly values 〈W,P〉.

Proof. By Lemma 7.2.7, we know that Wπ is class convex, and by Lemma 7.2.4, each

Pi ∈ Cπ has Pi(Wπ) = 1. Thus throughout we restrict quantification over worlds to

those in Wπ.

We first prove that each Pi in Cπ weakly values the frame, and moreover that there is

always a single strategy that they all value. Suppose not, so there is a decision problem

O such that for any recommended strategy S, there is a world i and an option O ∈ O
such that Ei(O) > Ei(S), hence Ei(O−S) > 0. For any j, letMj := {O : (∀O′)Ej(O) ≥
Ej(O′)} be the set of options with maximal (uninformed) expected utility at world j;

so any S such that for all j ∈ W , Sj ∈ Mj will be a recommended strategy. Choose a

strategy S such that for all j ∈W : Sj maximizes informed expected utility amongst the

options with maximal (uninformed) expected utility: ∀O′ ∈Mj , Êj(Sj) ≥ Êj(O′). This

is a recommended strategy, and so still we have some i, O such that Ei(O − S) > 0. We

use this fact to show that class-convexity must fail, contradicting our hypothesis.

Find a pair 〈O′,m〉 that maximizes this divergence in the frame: Em(O′ − S) = α =

max
〈O′′,j〉

(Ej(O′′ − S)). (It exists, since the number of options and worlds are both finite.)

Let M := {j ∈W : Ej(O′ − S) = α} be the set of worlds with this maximal divergence.

Note three facts about M :

F1: If k /∈M , then Ek(O′ − S) < α, by construction.

F2: If j ∈ M , then O′ has maximal expected value amongst O. (If not, then α is

not the maximal divergence after all, for there is an O′′ such that Ej(O′′) > Ej(O′), and

therefore Ej(O′′ − S) > Ej(O′ − S) = α.)

F3: If j ∈M , then Êj(O′−S) ≤ 0 < α, since O′ maximizes Ej , and Sj has maximal

informed expected value amongst such options, so Êj(Sj) ≥ Êj(O′). Since P̂j(S = Sj) = 1

since P̂j knows what P is, it follows that Êj(S) = Êj(Sj) ≥ Êj(O′), so Êj(O′ − S) ≤ 0.
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Now let A := CH({Pk : k /∈M}∪{P̂j : j ∈M}) be the convex hull of the uninformed

opinions outside M and the informed opinions inside it. By F1 and F3, ∀ρ ∈ A: we have

that Eρ(O′ − S) < α, while for all j ∈M : Ej(O′ − S) ≥ α. Thus 〈O′ − S, α〉 determines

a hyperplane that separates all the Pj (for j ∈M) from A, meaning Pj is not in A.

We now strengthen this conclusion to show that there must be a Pi for i ∈ M on

which class-convexity fails, i.e. Pi /∈ Ai := CH({P̂i} ∪ {Pj 6= Pi : Pj ∈ Cπ}). Note that

Ai ⊆ A∗i := CH({P̂j : j ∈M} ∪ {Pk : k /∈M} ∪ {Pj 6= Pi : j ∈M})
= CH(A ∪ {Pj 6= Pi : j ∈M})

so it’ll suffice to show that Pi is separable from A∗i .

Take a Pi that is extreme within the convex hull of {Pj : j ∈ M}, so Pi is not

in the convex hull of {Pj 6= Pi : j ∈ M}. Suppose, for reductio, that Pi is in the

convex hull of A∗i , so there are ρk ∈ A such that Pi =
∑
k λkρk +

∑
Pj 6=Pi:j∈M

λjPj .

Now, if λk = 0 for all ρk, then Pi would be in the convex hull of {Pj 6= Pi : j ∈ M},
contradicting the assumption that it’s extreme within M ; so λk > 0 for some ρk. But

we know that Eρ(O′ − S) ≤ α− ε for ε > 0, while Ej(O′ − S) = α for all j ∈M ; hence

Ei(O′−S) ≤ λk(α− ε) + (1−λk)α < α, contradicting the assumption that i ∈M . Thus

Pi is not in A∗i , and hence it is not in Ai, so Wπ is not class-convex.

This establishes that for any decision problem O, there is a strategy S such that for

all i ∈ Wπ and O ∈ O, Ei(S) ≥ Ei(O), so Ei(S − O) ≥ 0. Note that since π is in the

convex hull of the Pi for i ∈Wπ, this means that for any such O, there is an S such that

for all O, Eπ(S −O) =
∑
i λiEi(S −O) ≥

∑
i λi0 = 0, and hence Eπ(S) ≥ Eπ(O), and

so π weakly values the frame.

By Lemma 7.1, π weakly values a frame only if π totally trusts it; by Lemma 7.2, π

totally trusts it only if π is in the convex hull of Cπ and each Pi ∈ Cπ is modestly

informed; by Lemma 7.3 only if π weakly values the frame. Hence we’ve shown that

these three conditions are equivalent.

7.2 Weak Value ⇔ Value

Having established that Weak Value is equivalent to both Total Trust and our convex-

hull-plus-modestly-informed constraint, we now prove that together all these principles

entail full Value. Since full Value (obviously) entails Weak Value (since there always

is at least one recommended strategy), this will establish that all these conditions are

equivalent.

We first show a helpful Lemma about the decomposition of modestly informed Pi:

Lemma 7.4. If π is in the convex hull of Cπ and each Pi ∈ Cπ is modestly informed,

so Pi = λiiP̂i +
∑
Pj∈C−i

λijPj , then λii > 0.

Proof. Note that by the results of §7.1, both π and all the Pi must totally trust the frame.

Suppose λii = 0, so Pi is in the convex hull of C−i . Take Pk ∈ arg maxPj∈C−i
(Pk(P = Pi)).
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Since Pi is in the convex hull of C−i , Pi(P = Pi) ≤ Pk(P = Pi). If there is a w ∈ [P = Pi]
such that t = Pk(w) > Pi(w), then π(w|P (w) ≥ t) = 0, contradicting (Simple) Trust.

Thus for all w ∈ [P = Pi], Pi(w) ≥ Pk(w), hence we have equality: Pi(P = Pi) =

Pk(P = Pi). Since nevertheless Pi 6= Pk, there must be an x /∈ [P = Pi] such that

Pk(x) > Pi(x) and hence Pk(¬{x}) < Pi(¬{x}). Thus we have that

t′ := Pk(P = Pi|¬{x}) =
Pk(P = Pi)
Pk(¬{x})

>
Pi(P = Pi)
Pi(¬{x})

= Pi(P = Pi|¬{x})

Thus if there’s some world in Wπ that’s not x and where [P (P = Pi|¬{x}) ≥ t′] holds,

we have that π(P = Pi|¬{x} ∧ [P (P = Pi|¬{x}) ≥ t′]) is well-defined and equal to 0 < t′

(since no w ∈ [P = Pi] is such a world), contradicting the fact that π trusts the

frame. Conversely, if there is no such world, that means that k = x and so then

Pk(P (P = Pi|¬{x}) < t′
∣∣¬{x}) = 1. It follows that Trust fails at Pk, since we have that

Pk(P = Pi
∣∣¬{x} ∧ [P (P = Pi|¬{x}) < t′]) = Pk(P = Pi|¬{x}) ≥ t′, contradicting the fact

that Pk trusts the frame.

We’re now in a position to prove that Weak Value entails full Value. The strategy is

to take a case where Value fails, and show that we can modify it by slightly adjusting

the available options to make there be a unique recommended strategy, to generate a

case where Weak Value fails. To do so, we will need to use our knowledge about what

the frame must look like for Weak Value to hold, using the Lemmas 7.1–7.4.

Lemma 7.5. π weakly values a frame iff it values it.

Proof. The ⇐ direction is immediate, so we show the ⇒ direction. Suppose π weakly

values the frame 〈W,P〉. By Lemmas 7.1–7.3 we know that π also totally trusts the

frame and that each Pi ∈ Cπ is modestly informed and that π is in their convex hull.

Moreover, since for each Pi ∈ Cπ, by Lemma 7.2.4 we know that Ci ⊆ Cπ, we know that

all Pj ∈ Ci are modestly informed; and since by Lemma 7.2.5 we have that Pi(i) > 0,

Pi ∈ Ci and so Pi is automatically in the convex hull of Ci. Thus applying Lemmas

7.1–7.3 with Pi substituted for π, we have that each Pi also weakly values and totally

trusts the frame.

Suppose, for reductio, that π doesn’t value the frame, so that there is a decision

problem O = {O1, .., Om} and a recommended strategy S such that Eπ(O − S) > 0 for

some O ∈ O. We will show that we can alter the decision problem to make one on which

there is a unique recommended strategy, and on which π still fails to value the frame—

and hence, that Weak Value fails as well (since when there is a unique recommended

strategy, Weak Value holds for that decision problem iff Value does).

Relabel things so that {P1, ...,Pn} = Cπ, and consider the set of options they select

under S: {S1, ..., Sn} ⊆ O. We are going to remove all these options from the decision

problem, and replace them with ones Sti that are identical to Si except they yield an
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additional t value when P = Pi. In particular, for any t ≥ 0 and i, let

Sti (w) :=

{
Si(w) + t if Pw = Pi
Si(w) otherwise

Since Cπ is all modestly informed, for all Pi ∈ Cπ we have that

Ei(Sti − Si) = λiiÊi(Sti − Si) +
∑
Pj∈C−i

λijEj(Sti − Si)

where Êi(Sti −Si) = t and Ej(Sti −Si) ≥ 0 by definition of Sti , and λii > 0 by Lemma 7.4.

Viewing this equation as a function of t, notice that it is continuous and monotonically

increasing in t; moreover, when t = 0, Ei(Sti − Si) = 0, and as t → ∞, λiit → ∞ and

thus Ei(Sti − Si) → ∞. As a result, for any α ≥ 0, by the intermediate value theorem

there is a unique ti such that Ei(Stii − Si) = α. (Note that as α→ 0, likewise ti → 0.)

Consider an arbitrary α > 0 and for each Pi choose ti > 0 such that Ei(Stii −Si) = α.

Now consider a new decision-problem O∗ := (O − {S1, ..., Sn}) ∪ {St11 , ..., Stnn }. We first

show that for any α > 0, there is a uniquely recommended strategy for O∗; we then show

that if α is small enough, this will be a decision-problem on which Value (and hence

Weak Value) fails.

We know that for each Pi, Ei(Si) was maximal amongst the options in O. Letting

X = O − {S1, ..., Sn}, note that O∗ = X ∪ {St11 , ..., Stnn }. For any O ∈ X , we know

that Ei(Stii ) > Ei(Si) ≥ Ei(O). So to show that each Stii is the unique option that

maximizes expected utility according to Pi, it suffices to show that if Pi 6= Pj , then

Ei(Stii ) > Ei(S
tj
j ). Notice that this holds iff Ei(Stii − Si) > Ei(S

tj
j − Si), and since

Ei(Si) ≥ Ei(Sj), it suffices to show that

Ei(Stii − Si) > Ei(S
tj
j − Sj) (*)

Note that since Ei(Stii − Si) = α = Ej(S
tj
j − Sj), it suffices to show that

Ej(S
tj
j − Sj) > Ei(S

tj
j − Sj) (**)

First note that for all Pk 6= Pj , we have that Ek(S
tj
j − Sj) ≤ Ej(S

tj
j − Sj). For suppose

not, and instead Ek(S
tj
j −Sj) ≥ s > Ej(S

tj
j −Sj) > 0. Then [E(S

tj
j −Sj) ≥ s] is nonempty

and entails P 6= Pj , therefore by definition of S
tj
j , [E(S

tj
j − Sj) ≥ s] ⊆ [S

tj
j − Sj = 0],

hence Eπ(Stjj − Sj
∣∣E(S

tj
j − Sj) ≥ s) = 0 < s, violating Total Trust. Thus Ek(S

tj
j − Sj) ≤
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Ej(S
tj
j − Sj) for all Pk. Given this, for Pj 6= Pi we have that

Ei(S
tj
j − Sj) = λiiÊi(S

tj
j − Sj) +

∑
Pk∈C−i

λikEk(S
tj
j − Sj)

≤ λii0 +
∑
Pk∈C−i

λikEj(S
tj
j − Sj)

= (1− λii)Ej(S
tj
j − Sj)

< Ej(S
tj
j − Sj)

The last line follows from the fact that, by Lemma 7.4, λii > 0. This establishes (∗∗),
and therefore (∗), and therefore that for all Pi, Stii is an option that uniquely maximizes

expected value, i.e. that the strategy S∗ such that S∗i = Stii , for each Pi, is the uniquely

recommended strategy for O∗, for an arbitrary α > 0.

From here we show that Weak Value fails. We know that Eπ(O−S) > 0; say it equals

β > 0. We know moreover that no matter which α > 0 we choose in modifying O to O∗,
we’ll have an option O∗ ∈ O∗ such that Eπ(O∗) ≥ Eπ(O) (since our modifications only

replace options with more valuable ones). Finally, note that for any w ∈Wπ, there’s a Pi
such that Pw = Pi, so (S∗ − S)(w) = (Stii − Si)(w) = ti. Hence this divergence S∗ − S
is upper-bounded across all worlds by the maximal ti used to modify the options Si to

Stii . Recalling that as α→ 0, all such ti → 0, we can choose an α > 0 small enough so

that t1, ..., tn < β, in which case we have the Eπ(S∗ − S) < β. It follows that

Eπ(O − S) = β > 0

⇒ Eπ(O − S)− Eπ(S∗ − S) > 0

⇒ Eπ(O − S − S∗ + S) > 0

⇒ Eπ(O − S∗) > 0

And, since Eπ(O∗) ≥ Eπ(O), we have that Eπ(O∗ − S∗) > 0, i.e. Eπ(O∗) > Eπ(S∗),

which is just to say that π does not value the frame on this decision-problem O∗. Since

S∗ is the uniquely recommended strategy on this decision problem, it follows that π

doesn’t weakly value the frame, completing the proof.

Combining Lemmas 7.1, 7.2, 7.3, and 7.5, we’ve now established:

Theorem 7.6. The following are equivalent:

· π values 〈W,P〉.
· π weakly values 〈W,P〉.
· π totally trusts 〈W,P〉.
· π is in the convex hull of Cπ an each Pi ∈ Cπ is modestly informed.

What remains to be done in order to establish our full characterization result, Theorem

5.1, is to prove Theorem 3.2, which we do in the next subsection.
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7.3 Accuracy Theorem

We give two different proofs of Theorem 3.2 to establish the connection between Total

Trust and Epistemic Value. The second (§7.3.2) is the one we started with, using

Campbell-Moore’s (2020) characterization of gsp estimate-inaccuracy measures. It is

in some ways more illuminating, at least for those familiar with Schervish (1989)’s con-

struction of scoring rules. However it also has a high barrier to entry. Catrin Campbell-

Moore and Daniel Rothschild later helped us figure out how to give a proof using only

elementary methods (§7.3.1); we begin with this one.

Since Theorem 3.2 is local—i.e., concerns only a single random variable—we fix X

for the rest of this appendix. We also adopt the following conventions:

• To save space, we set Eπ(X) := e.

• We let E(X) take values in a0 < . . . < am.

• We let X take values in v0 < . . . < vn.

For convenience we restate the result here:

Theorem 3.2. π totally trusts P with respect to X iff Eπ(IX(P )) ≤ Eπ(IX(e)) for gsp

scoring rules IX , with equality if and only if π(E(X) = e) = 1.

7.3.1 Elementary-Methods Proof

For the elementary-methods proof, we first note that Campbell-Moore (2020) proves that

every gsp estimate-inaccuracy measure is value-directed, which generalizes the constraint

of truth-directedness to estimates generally: If e1 < e2 ≤ X(w) or e1 > e2 ≥ X(w), then

IX(e1, w) > IX(e2, w).

Next, we will need the following concept:

Monotone Strict Propriety Let IX be a gsp. We say that IX is monotone

strictly proper if for any probability function π:

· If e ≤ s < t ≤ vn, then Eπ(IX(t)) > Eπ(IX(s))

· If v0 ≤ s < t ≤ e, then Eπ(IX(t)) < Eπ(IX(s))

The idea behind this definition is just that as estimates get closer to e, π expects them

to be less inaccurate. Since for any gsp IX , π expects its own estimate to be the least

inaccurate, the following lemma is not surprising, but the proof (due to Catrin Campbell-

Moore) is rather tricky.

Lemma 7.7. If IX is a gsp, then IX is monotone strictly proper.

Proof. We show that if e ≤ s < t < vn, then Eπ(IX(t)) > Eπ(IX(s)). The second

condition is entirely symmetric.

Fix s and t with s < t. We focus on probability functions ρ such that (i) if vi ≤ s,

ρ(X = vi) ≤ π(X = vi), (ii) if s < vi < t, ρ(X = vi) = π(X = vi), and (iii) if t ≤ vi,

ρ(X = vi) ≥ π(X = vi). Let Q be the set of all such ρ.
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Since IX is a gsp, it is value-directed. So, if vi ≤ s, IX(t, vi) > IX(s, vi), and if t ≤ vi,
IX(t, vi) < IX(s, Vi). So, for any ρ ∈ Q, Eρ(IX(t)− IX(s)) ≤ Eπ(IX(t)− IX(s)).

We show that there exists a ρ ∈ Q such that Eρ(X) = s. Let:

ρ?(X = vi) =


0 if vi ≤ s
π(X = vi) if s < vi < vn

π(X = vn) + π(X ≤ s) if vi = vn

Clearly ρ? = arg maxρ∈Q Eρ(X).

Given the definition of ρ?, we see s < Eρ?(X). Note that π ∈ Q and that Q is convex.

So since e ≤ s ≤ Eρ?(X), there is indeed some ρ ∈ Q such that Eρ(X) = s. By strict

propriety, Eρ(IX(t)− IX(s)) > 0, and as we’ve already established Eπ(IX(t)− IX(s)) >

Eρ(IX(t)− IX(s)). This completes the proof.

We can now prove Theorem 3.2 with elementary methods. The left-to-right direction

is due to Daniel Rothschild.

Proof. We first prove the left-to-right direction. Given Total Trust, we show:

Eπ(IX(P ) |E(X) > e) < Eπ(IX(e) |E(X) > e) (3)

This suffices for the proof since a symmetric argument shows:

Eπ(IX(P ) |E(X) < e) < Eπ(IX(e) |E(X) < e) (4)

Jointly equations (3) and (4) entail this direction of the theorem.

To prove equation (3): Let w1, . . . , wp be the worlds where for each i, Ei(X) > e.

Without loss of generality, assume that for each i < p, Ei(X) > Ei+1(X). (In what

follows, it will be clear that if Ew(X) = Ew′(X) then they can be treated together.)

We will prove by induction for all k with 1 ≤ k ≤ p and for any s < Ek(X):

Eπ(IX(P ) |E(X) ≥ Ek(X)) < Eπ(IX(s) |E(X) ≥ Ek(X)) (5)

When k = p, equation (5) entails (3), since Ep(X) is the lowest value E(X) can take

while still being greater than e.

Base case: k = 1, so Ek(X) is at its maximum value. Therefore,

Eπ(IX(P ) |E(X) ≥ E1(X)) = Eπ(IX(P1) |E(X) ≥ E1(X)) (6)

By total trust in X, we know that Eπ(X |E(X) ≥ E1(X)) ≥ E1(X). Since IX is monotone

strictly proper by Lemma 7.7, we have then established the base case:

Eπ(IX(P ) |E(X) ≥ E1(X)) < Eπ(IX(s) |E(X) ≥ E1(X)) (7)

for any s < E1(X).
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Inductive Step: Suppose equation (5) holds for all k < i. By Total Trust in X and

monotone strict propriety, we have that for any s < Ei(X):

Eπ(IX(Pi) |E(X) ≥ Ei(X)) < Eπ(IX(s) |E(X) ≥ Ei(X)) (8)

Since Ei(X) < Ei−1(X), the inductive hypothesis tells us that:

Eπ(IX(P ) |E(X) ≥ Ei−1(X)) < Eπ(IX(Pi) |E(X) ≥ Ei−1(X)) (9)

Since [E(X) ≥ Ei(X)] = [E(X) = Ei(X)] ∪ [E(X) ≥ Ei−1(X)], (9) implies that

Eπ(IX(P ) |E(X) ≥ Ei(X)) < Eπ(IX(Pi) |E(X) ≥ Ei(X)) (10)

Combining (8) and (10), we have that for any s < Ei(X):

Eπ(IX(P ) |E(X) ≥ Ei(X)) < Eπ(IX(s) |E(X) ≥ Ei(X))

as desired.

To show the right-to-left direction: Suppose π does not totally trust P with respect

to X. We consider the case where there exists t such that Eπ(X |E(X) ≥ t) < t (as

the case where there is a t such that Eπ(X |E(X) ≤ t) > t is symmetric). Since E(X)

can take only finitely many values (a0, . . . , am), there is some region (α, β) with α < β

where Total Trust fails. I.e., for all t ∈ (α, β), Eπ(X |E(X) ≥ t) < t.

We construct a gsp where Eπ(IX(e)) < Eπ(IX(P )). For convenience (so that we only

need six instead of nine cases in the scoring rule defined below), we choose α, β such

that: there is no vi, ai in (α, β), and moreover e /∈ (α, β). This is always possible since

there are only finitely many vi and ai.

We define the following scoring rule for some (large) constant C > 0:

IX(x, vi) =



(x− vi)2 if x ≤ α and vi < α

(α− vi)2 + C(x− α)(x+ α− 2vi) if α < x < β and vi < α

(α− vi)2 + C(β − α)(β + α− 2vi)

+(x− β)(x+ β − 2vi) if x ≥ β and vi < α

(α− x)(2vi − α− x) + C(β − α)(2vi − β − α)

+(β − vi)2 if x ≤ α and vi > β

(β − vi)2 + C(β − x)(2vi − β − x) if α < x < β and vi > β

(x− vi)2 if x ≥ β and vi > β

We leave it to the reader to verify that IX(x, vi) is a gsp scoring rule.67

67If you’re wondering why we said the Schervish-style proof is more illuminating, here’s one reason. We
constructed this rule using the Campbell-Moore, Schervish-style characterization, setting λ(dt) = 2dt
everywhere except [α, β], where instead it is 2Cdt. Then we made B.A.L. compute the integrals.
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Suppose that e < α. (The case where e > β can be treated similarly.) Note that:

Eπ(IX(P )− IX(e)) =

n∑
i=0

m∑
j=0

π(vi, aj)(IX(aj , vi)− IX(e, vi)) (11)

where we write π(vi, aj) for π(X = vi,E(X) = aj). We want to show that for C large

enough (11) is positive.

We can break (11) up into four separate summations: (i) when vi, aj < α, (ii) when

vi < α, but aj > β, (iii) when vi > β, but aj < α, and (iv) when vi, aj > β. When we

look at IX , these correspond, respectively, to:∑
vi<α

∑
aj<α

π(vi, aj)((aj − vi)2 − (e− vi)2) (12)

∑
vi<α

∑
aj>β

((α− vi)2 + (aj − β)(aj + β − 2vi)

+ C(β − α)(β + α− 2vi)− (e− vi)2)) (13)∑
vi>β

∑
aj<α

π(vi, aj)(aj − e)(aj + e− 2vi)) (14)

∑
vi>β

∑
aj>β

π(vi, aj)((aj − vi)2 − (a− e)(2vi − α− e)− (β − vi)2

+ C(β − α)(β + α− 2vi)) (15)

Summing these four expressions gives us (11).

It’s easy to see that we can ignore the contributions of (12) and (14), since C does

not appear.

We also can ignore all terms in (13) and (15) that do not involve C. That is, we only

need to consider:∑
vi<α

∑
aj>β

π(vi, aj)(C(β − α)(β + α− 2vi)) +
∑
vi>β

∑
aj>β

(C(β − α)(β + α− 2vi)) (16)

For sufficiently large C, (16) is positive if and only if (11) is positive.

We divide (16) by C and see that:

(16)/C =
∑
i

π(vi,E(X) > β)((β − α)(β + α− 2vi)) (17)

= π(E(X) > β)
∑
i

π(vi |E(X) > β)((β − α)(β + α− 2vi)) (18)

= π(E(X) > β)(β − α)(β + α− 2Eπ(X |E(X) > β)) (19)

In (19), π(E(X) > β) > 0 and β − α > 0. Given how we chose α, β, Eπ(X |E(X) > β) =

Eπ(X |E(X) > α) < α. So since β > α, β + α − 2Eπ(X |E(X) > β) > 0. So (19) and

therefore (11) are both positive as desired.
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7.3.2 Schervish-Style Proof

We now turn to the slightly more in-depth but (we think) illuminating Schervish-style

proof. For simplicity, we’ll assume, without loss of generality, that perfect accuracy

receives a score of 0. I.e., if X is a random variable, then IX(x,w) = 0 if and only if

x = X(w), where X(w) is X’s value at w.

Schervish (1989) proves that for indicator variables, we can construct essentially

arbitrary strictly proper scoring rules by placing various measures over the [0, 1] interval

as follows. (For an intuitive explanation of Schervish’s theorem, see Levinstein 2017b.)

Theorem 7.8 (Schervish 1989). Let X be an indicator variable, and let IX(x, i) be a

function from [0, 1] × {0, 1} to R ∪ {∞}. Suppose IX(i, i) = 0, and IX(x, i) is strictly

increasing (decreasing) for i = 0 (i = 1), that IX is continuous in its first argument over

(0, 1), and such that IX(i, j) = limt→i IX(t, j) for i, j = 0, 1. Then IX is a strictly proper

scoring rule if and only if there exists a measure λ on [0, 1] such that:

IX(x, 1) =

∫ 1

x

(1− t)λ(dt)

IX(x, 0) =

∫ x

0

t λ(dt)

for all x, where λ gives positive measure to every interval [a, b) where b > a.

For example, if we let λ(dt) = 2dt, then IX(x, 1) = (1− x)2, and IX(x, 0) = x2, which

is the familiar Brier score.

Campbell-Moore (2020) generalizes Schervish’s result to construct generalized strictly

proper scoring rules for estimates.

Theorem 7.9 (Campbell-Moore 2020). Let X be a real-valued random variable such

that v0 ≤ X ≤ vn, and let IX(x, k) be a function from [v0, vn]× [v0, vn] to R. Suppose

IX(x, x) = 0 and IX(x, y) is strictly increasing as |x − y| increases. Suppose further

that IX(x, k) is absolutely continuous in its first argument over (v0, vn). Then IX is a

generalized strictly proper scoring rule iff there exists a measure λ on [v0, vn] such that:

IX(x, k) =

∫ x

k

k − xλ(dt)

for all x, where λ gives positive measure to every interval [a, b) where b > a.

A few quick remarks. First, we require any gsp to be absolutely continuous in its first

argument so that we can use the Lebesgue integral. (It is unclear if there is a way to

relax this restriction.) Second, in the above result, we define the integral
∫ b
a
f(t)λ(dt) =

−
∫ a
b
f(t)λ(dt). This ensures

∫ x
k
k − xλ(dt) ≥ 0. Second, we’ve written the result so

that X is bounded. This does not restrict us at all, since we’re assuming all frames have

finitely many worlds.

Campbell-Moore’s result let’s us easily generalize standard rules. For instance, if we

again let λ(dt) = 2dt over [v0, vn] (where v0 (vn) is the minimum (maximum) value of
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X in the frame), then IX(x, k) = (k−x)2, which is the natural analog of the Brier score

for estimates.

We now establish a useful lemma:

Lemma 7.10. If π totally trusts P with respect to X, then for all t ∈ [0, 1]:

1. Eπ(X1E(X)≤t)− t · π(E(X) ≤ t) ≤ 0;

2. t · π(E(X) > t)− Eπ(X1E(X)>t) ≤ 0 with strict inequality if π(E(X) > t) > 0.

Furthermore, if π does not totally trust P with respect to X, then there exist x, y with

x < y such that for all t in [x, y] either:

3. Eπ(X1E(X)≤t)− t · π(E(X) ≤ t) > 0; or

4. t · π(E(X) > t)− Eπ(X1E(X)>t) > 0.

Proof. If π(E(X) ≤ t) = 0, then Eπ(X1E(X)≤t) = 0, so (1) holds trivially. Likewise, if

π(E(X) > t) = 0, then Eπ(X1E(X)>t) = 0, so (2) holds trivially.

Suppose that π(E(X) ≤ t) > 0 and π totally trusts P . Then Eπ(X |E(X) ≤ t) ≤ t.

Expanding the definition of conditional expectation:

n∑
i=0

π(X = vi,E(X) ≤ t)
π(E(X) ≤ t)

vi ≤ t (20)

Multiplying both sides by π(E(X) ≤ t) and then appealing to the definition of expecta-

tion, we get that if π totally trusts P , then Eπ(X1E(X)≤t)− t · π(E(X) ≤ t) ≤ 0.

We can obtain (2) through a similar derivation.

Now suppose π does not totally trust P . So, there exists some t such that Eπ(X |E(X) ≤
t) > t or Eπ(X |E(X) > t) ≤ t. Suppose it’s the former. Then for such a t:

n∑
i=0

π(X = vi,E(X) ≤ t)
π(E(X) ≤ t)

vi > t (21)

Again, multiplying both sides by π(E(X) ≤ t) and appealing to the definition of expect-

ation, we have Eπ(X1E(X)≤t)− t ·π(E(X) ≤ t) > 0. Since E(X) can take on only finitely

many values, [E(X) ≤ t] is equivalent to either [E(X) ≤ t + ε] or [E(X) ≤ t − ε] for

some sufficiently small ε. A parallel argument shows that if Eπ(X |E(X) > t) ≤ t, (4)

holds.

Lemma 7.11. If IX is a generalized strictly proper scoring rule generated by measure
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λ and P is coherent, then:

Eπ(IX(P )) =

∫ e

v0

Eπ(X1E(X)≤t)− t · π(E(X) ≤ t)λ(dt) (22)

+

∫ vn

e

t · π(E(X) > t)− Eπ(X1E(X)>t)λ(dt)

+ Eπ(IX(e))

=

∫ v0

e

t · π(E(X) > t)− Eπ(X1E(X)>t)λ(dt) (23)

+

∫ e

vn

Eπ(X1E(X)≤t)− t · π(E(X) ≤ t)λ(dt)

+ Eπ(IX(e))

Proof. By the definition of expectation and Theorem 7.9, we have:

Eπ(IX(e)) =

n∑
i=0

π(X = vi)

∫ vi

e

(vi − t)λ(dt) (24)

(Recall: We are defining the integral so that
∫ vi
e
f(t)λ(dt) = −

∫ e
vi
f(t)λ(dt).)

We now show that Equation (22) holds. We have:

Eπ(IX(P )) =

n∑
i=0

m∑
j=0

π(X = vi,E(X) = aj)

∫ vi

aj

(vi − t)λ(dt) (25)

Fix vi in the above equation and consider the inside summation:

m∑
j=0

π(X = vi,E(X) = aj)

∫ vi

aj

(vi − t)λ(dt) (26)

First, divide up the aj ’s so that a0 < . . . < al ≤ vi and vi ≤ al+1 < . . . < am. So, we

can re-write expression (26) as:

l∑
j=0

π(X = vi,E(X) = aj)

∫ vi

aj

(vi − t)λ(dt) (27)

+

m∑
j=l+1

π(X = vi,E(X) = aj)

∫ vi

aj

(vi − t)λ(dt) (28)

Consider the first summand on line (27). We first integrate from a0 to vi, then from a1
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(which is greater than a0) to vi, then from a2 to vi, etc. So we can re-write line (27) as:

l∑
j=0

π(X = vi,E(X) ∈ {a0, . . . , aj})
∫ min(aj+1,vi)

aj

(vi − t)λ(dt)

=

l∑
j=0

π(X = vi,E(X) ≤ aj)
∫ min(aj+1,vi)

aj

(vi − t)λ(dt)

=

l∑
j=0

∫ min(aj+1,vi)

aj

π(X = vi,E(X) ≤ t)(vi − t)λ(dt)

=

∫ vi

a0

π(X = vi,E(X) ≤ t)(vi − t)λ(dt)

=

∫ vi

v0

π(X = vi,E(X) ≤ t)(vi − t)λ(dt) (29)

The second equality comes from the fact that if aj ≤ t ≤ aj+1, then π(X = vi,E(X) ≤
t) = π(X = vi,E(X) ≤ aj). The last equality comes from the fact that since P is

coherent, a0 ≥ v0. So,
∫ a0
v0
π(X = vi,E(X) ≤ t)(vi − t)λ(dt) = 0.

Applying a similar manipulation to line (28), we have that the expression on line

(26) is equivalent to: ∫ vi

v0

π(X = vi,E(X) ≤ t)(vi − t)λ(dt)

+

∫ vm

vi

π(X = vi,E(X) > t)(t− vi)λ(dt) (30)

Suppose first that vi < e. Then we can re-write expression (30) as:∫ vi

v0

π(X = vi,E(X) ≤ t)(vi − t)λ(dt)

+

∫ e

vi

π(X = vi,E(X) > t)(t− vi)λ(dt)

+

∫ vm

e

π(X = vi,E(X) > t)(t− vi)λ(dt)

=

∫ vi

v0

π(X = vi,E(X) ≤ t)(vi − t)λ(dt)

+

∫ e

vi

[π(X = vi)− π(X = vi,E(X) ≤ t)] (t− vi)λ(dt)

+

∫ vm

e

π(X = vi,E(X) > t)(t− vi)λ(dt)
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=

∫ vi

v0

π(X = vi,E(X) ≤ t)(vi − t)λ(dt)

+

∫ e

vi

π(X = vi,E(X) ≤ t)(vi − t)λ(dt)

+

∫ vi

e

π(X = vi)(vi − t)λ(dt)

+

∫ vm

e

π(X = vi,E(X) > t)(t− vi)λ(dt)

=

∫ e

v0

π(X = vi,E(X) ≤ t)(vi − t)λ(dt) (31)

+

∫ vm

e

π(X = vi,E(X) > t)(t− vi)λ(dt)

+

∫ vi

e

π(X = vi)(vi − t)λ(dt)

The second line on the right-hand side of the first equality comes from the law of total

probability, since π(X = vi) = π(X = vi,E(X) ≤ t) + π(X = vi,E(X) > t).

If e < vi, we can show using a similar derivation that the expression (30) is still

equivalent to expression (31). So, since expressions (30) and (31) are always equivalent,

we can rewrite equation (25) as:

Eπ(IX(P )) =

n∑
i=0

(∫ e

v0

π(X = vi,E(X) ≤ t)(vi − t)λ(dt) (32)

+

∫ vm

e

π(X = vi,E(X) > t)(t− vi)λ(dt) (33)

+

∫ vi

e

π(X = vi)(vi − t)λ(dt)

)
(34)

First, note the summation of the integrals on line (34) is equivalent to Eπ(IX(e)),

i.e.:
n∑
i=0

∫ vi

e

π(X = vi)(vi − t)λ(dt) = Eπ(IX(e)) (35)

Second, note that the first and second summations on lines (32) and (33) simplify as

well to:

n∑
i=0

∫ e

v0

π(X = vi,E(X) ≤ t)(vi − t)λ(dt) =

∫ e

v0

Eπ(X1E(X)≤t)− tπ(E(X) ≤ t)λ(dt)

(36)
n∑
i=0

∫ vm

e

π(X = vi,E(X) > t)(t− vi)λ(dt) =

∫ vm

e

tπ(E(X) > t)− Eπ(X1E(X)>t)λ(dt)

(37)
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If we plug the right-hand sides of Equations (35), (36), and (37) into lines (32)–(34), we

see that Equation (22) holds, which completes the proof of Equation (22).

To see that Equation (23) holds, note that in the derivation of line (29) from line

(27), we integrated vi− t first from a0 to vi, then from a1 to vi, . . . , and then from al to

vi. By the integration convention we’ve adopted, we instead could have integrated t− vi
first from vi to al, then from vi to al−1, . . . , then from vi to a0. Instead of line (29), we

would have: ∫ v0

vi

π(X = vi,E(X) > t)(t− vi)λ(dt) (38)

And by an analogous treatment of line (28), we would see that line (26) is equivalent to:∫ v0

vi

π(X = vi,E(X) > t)(t− vi)λ(dt)

+

∫ vi

vm

π(X = vi,E(X) ≤ t)(vi − t)λ(dt)

The rest of the proof goes on to use a mirror image of the above derivation to obtain

Equation (23).

Using these Lemmas, we’re now in a position to prove our main accuracy result,

Theorem 3.2.

Proof. We first prove the left-to-right direction. Suppose π totally trusts P . By Lemma

7.11, Equation (22) holds. By Fact (7.10), the first two terms in Equation (22) are less

than or equal to 0 and the last term is Eπ(IX(e)). So Eπ(IX(P )) ≤ Eπ(IX(e)) as desired.

To show that Eπ(IX(P )) = Eπ(IX(e)) when and only when π(E(X) = e) = 1, consider

the first two integrands in Equation (22). As noted in Fact 7.10, the second integrand

will be less than 0 for all t such that π(E(X) > t) > 0. It’s also easy to see that the first

integrand will be negative for all t such that both π(E(X) = t) = 0 and π(E(X) ≤ t) > 0.

Unless π(E(X) = e) = 1, then, the integrands will be sometimes negative over some range

(since there are only finitely possible values of E(X)). Therefore, the inequality is strict

when π(E(X) = e) < 1.

To prove the right-to-left direction, suppose π does not trust P . We will show there

is then some gsp scoring rule IX such that Eπ(IX(P )) > Eπ(IX(e)).

Since π does not trust P , we appeal to items (3) and (4) of Fact 7.10. There exists

some interval [x, y] such that at least one of the following holds:

1. y ≤ e and for all t ∈ [x, y], Eπ(X1E(X)≤t)− tπ(E(X) ≤ t) > 0,

2. y ≤ e and for all t ∈ [x, y], tπ(E(X) > t)− Eπ(X1E(X)>t) > 0

3. e ≤ x and for all t ∈ [x, y], Eπ(X1E(X)≤t)− tπ(E(X) ≤ t) > 0, or

4. e < x and for all t ∈ [x, y], tπ(E(X) > t)− Eπ(X1E(X)>t) > 0
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We choose λ such that λ([v0, x]) and λ([y, vm]) < ε with λ([a, b]) = b−a for a, b ∈ [x, y].

If (1) or (4) hold, ε sufficiently small, we force the sum of the first two terms in Equation

(22) to be positive. If (2) or (3) hold, we force the sum of the terms in Equation (23) to

be positive. This completes the proof.
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