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Abstract
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1 Introduction

There are many possible ways in which players might learn to play an infinitely repeated

game. But whichever way they choose, if they satisfy the Savage (1954) axioms, their

play will respond optimally to subjective beliefs about opponents’ strategies, and those

beliefs will be updated in light of observed play in accordance with Bayes’ law. Kalai and

Lehrer (1993a) establish that such players will eventually approximate a Nash equilibrium

of the repeated game, provided that this equilibrium play is absolutely continuous with

respect to their beliefs. However, this “grain of truth” condition—whereby players must

put positive probability on the eventual play from the outset—has been shown to be

quite demanding; it is not, for instance, satisfied under pure strategies and atomless prior

beliefs, even if the beliefs have “full support” on the repeated-game strategies.1 Positive

results are available if one adds further structure, such as (incomplete) payoff information

with common priors (Jordan 1995) or with mutually absolutely continuous priors (Nyarko

1998), but without a “grain of truth” purely Savage–Bayesian learners are liable to spend

eternity in disequilibrium.2 And essentially, the “grain of truth” is a weakened form of the

coordination in beliefs required by Nash equilibrium.

Nevertheless, perhaps beliefs might be uncoordinated but limited to a reasonable subset

of the repeated-game strategy space, within which play might be “learnable”. Nachbar

(1997, 2005) argues that this works essentially only in games that are strategically simple

in the sense of having a stage-game weakly dominant action; for other stage games, if the

restricted strategy space is “broad enough” to avoid implicit coordination, a prior belief

guaranteeing the learnability of any continuation play will generally lead ε-best responses to

lie outside of the restricted strategy space for some such play. This “inconsistency” result

suggests that the scope of Bayesian learning of Nash equilibrium is quite limited; more

limited, for instance, than that of various sub-rational learning processes from evolutionary

game theory (see, e.g., Sandholm 2011), where Nash equilibria of coordination games are

eminently learnable.

In this paper, I show that this negative conclusion can be moderated, because Nash

convergence of Bayesian learning does not require Nachbar’s notion of learnability; rational

learning requires only that optimal play be learnable, rather than any possible continuation

1. Relatedly, Miller and Sanchirico (1997, 1999) critique the genericity and implicit coordination of
absolute continuity, and Foster and Young (2001) exhibit the impossibility of learning certain mixed
equilibria of standard Bayesian games. Kalai and Lehrer’s (1993a) “grain of truth” condition is slightly
stronger than absolute continuity.

2. A framework for the analysis of equilibrium under ‘misspecified’ models is offered by Esponda and
Pouzo (2016).
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play. I offer a modified notion of “optimizing learnability” that captures this idea and is

sufficient for approximate Nash convergence (Theorem 1 below).3 I then show that such

optimizing learnability may be reconciled with “broad enough” strategy sets in a wider

class of games than Nachbar’s consistent class (Propositions 1 and 2), including many

repeated coordination games for instance. I offer two examples of positive learning results

by way of illustration; one of ‘dumb’ learning under a uniform prior and bounded memory

(anticipated in Noguchi 2015b), and the other of ‘smart’ learning under Sandroni’s (2000)

belief in “strict reciprocity”.

Nachbar (2005, pp. 459–60) offers a simple example to illustrate his inconsistency:

each player has two stage-game actions and believes that his opponent’s strategy is i.i.d.

for sure, but then an i.i.d. response is not even approximately optimal (under a belief that

guarantees that any i.i.d. play is learnable) unless players have weakly dominant stage-

game actions. Hence, Bayesian learning “within” the set of i.i.d. strategies is not possible.

However, notice that i.i.d. play will eventually be optimal if players are coordinating in

repeated coordination games, by contrast with repeated matching pennies. The idea in

this paper is that, in many games without weakly dominant stage-game actions, there

are nonetheless beliefs that generate learnable optimal play that is consistent with those

beliefs; such beliefs may not be able to learn any path of play, but they can learn the path

of rational play that they generate.

I now proceed informally to motivate this idea, before going on formally to: construct

the model in Section 2; define the key concept of “optimizing learnability” in Section

3; show that it is inconsistent with “broad enough” strategy sets in a narrower class of

games than Nachbar’s learnability (Proposition 1); and show in Section 4 the sufficiency of

optimizing learnability for Bayesian learning in repeated games both in general (Theorem

1) and for two particular coordination-game examples.

Informal Motivation The idea of Nachbar’s (1997, 2005) inconsistency result is roughly

as follows. A Nash equilibrium (with degenerate beliefs on the true strategies) is trivially

“learnable”, in the sense that the players (immediately) learn the continuation play. It

is also trivially “consistent”, in the sense that each player’s strategy is a best response

to his belief in any possible continuation. But it also clearly presupposes a great deal of

coordination amongst the players in the veracity of their beliefs, to which criticism the

3. Convergence to the set of exact Nash equilibria cannot be guaranteed under Kalai and Lehrer’s strong
notion of convergence (Levy 2015), but it is possible under weaker notions (Kalai and Lehrer 1993a §7.1,
Sandroni 1998). Although the notion of convergence that I use is weaker than that of Kalai and Lehrer
(1993a), it is sufficient for the discounting case (Kalai and Lehrer 1994). I employ a stronger notion of
learning a particular path of play than Nachbar (2005), but require it to hold along fewer play paths.
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Figure 1: game in class MM

literature on learning in games is in large part a response. Nachbar considers whether

Bayesian learning can remove this coordination by providing beliefs that are guaranteed

to learn the continuation play of any of a broad set of strategy vectors, within which each

player has a strategy that is a best response to his belief in any possible continuation. His

inconsistency result shows that learning cannot accomplish this aim for the broad class

(MM) of stage games with a minmax payoff in excess of their pure maxmin payoff; any

set of strategy vectors that is broad enough to remove implicit coordination (in a precise

sense) must fail to be either learnable or consistent in such games. In the class MM then,

it is not possible for players’ beliefs to be confined to a set of strategy vectors that is: (a)

sufficiently small to allow them to learn continuation play; and (b) sufficiently large both

to remove implicit coordination and to contain optimal responses for the players.

Consider the intuition for this result in Nachbar’s i.i.d. strategies example above. Given

the players’ certainty that opponents’ strategies are i.i.d., it can be shown that beliefs with

full support on the i.i.d. strategy space guarantee the learnability of continuation play

under any of its elements, notwithstanding their lack of a grain of truth. But for any

given strategy fi of a player i in games in class MM, there exists an opponent’s strategy

generating continuation play from which i would like to deviate (what Nachbar calls an

“evil twin”). For instance, if player i plays H in every repetition of the game in Figure

1, then his opponent playing likewise will lead to infinite repetition of (H,H). Since a

full-support prior belief guarantees that this continuation play is learned, player i cannot

be optimizing in this continuation. And since such an evil twin can be found for any i.i.d.
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strategy in the class MM of games, it follows in this class that the set of such strategies does

not contain a strategy that is a best response for player i in every possible continuation—i.e.

it is not consistent.

At a fundamental level then, it is difficult to guarantee both learning and optimization

in all possible continuations. But should we be concerned with all possible continuations

in this way? After all, infinite repetition of (H,H) in the game of Figure 1 calls for rather

odd behavior on the part of the evil twin; he is evil not only to his twin, but also to

himself! If both twins were optimizing with respect to their beliefs, and if they also both

learned the continuation path of play, then this state of affairs would have zero probability.

Hence it seems unnecessarily demanding to require that such a path be learnable; Bayesian

learning of Nash equilibrium can certainly proceed in the absence of this requirement, as

long as paths generated by optimizing play are learnable. Nachbar’s evil twin is insufficient

to violate consistency under this weaker form of learnability; to violate consistency, the

evil twin would have to be optimizing—an “evil genius”, if you will—as for instance with

infinite repetition of the profile (H,T ) in the game of matching pennies.

2 The Model

Now let us sketch the formal details of the learning model. There is a finite, two-player

stage game with finite action sets Σ1,Σ2, and payoff functions ui : Σ → R, i = 1, 2,

Σ ≡ Σ1 × Σ2. Without loss of generality, we may normalize the payoffs to be contained

in the unit interval. This stage game is infinitely repeated in discrete time t ∈ N, with
each player knowing his own payoff function and public observation of play. As in Nachbar

(2005), the results could be extended to games with more than two players, at the cost of

some expositional simplicity.

Let Ht ≡ Σt be the set of histories of actions taken in periods 1 through t, with

H ≡
⋃

t∈NHt. The realized play path is the infinite vector z ∈ Σ∞ of the players’ actions.

For every history h ∈ Ht, a cylinder with base on h is the set C(h) = {z ∈ Σ∞ | z = (h, . . .)}
of all realized play paths whose t initial elements z(t) coincide with h. Let Ft be the σ-

algebra on Σ∞ whose elements are all finite unions of cylinders with base on elements of

Ht. We then have a filtration

F0 ⊂ · · · ⊂ Ft ⊂ · · · ⊂ F ,

where F0 is the trivial σ-algebra and F is the σ-algebra generated by the algebra of

histories F 0 ≡
⋃

t∈N Ft. The inclusion of Ft in Ft+1 arises because any given event in
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period t is a union of events in period t+ 1.

A (behavior) strategy fi : H → ∆(Σi) for player i is a function from the set of all

possible histories into the simplex of his action mixtures ∆(Σi); the space of all such

strategies is Fi ≡ ∆(Σi)
∞, endowed with the product Borel σ-algebra, and the space of

strategy vectors is F ≡ F1 × F2. With a minor abuse of notation, the set Gi of pure

strategies gi : H → Σi may be considered a subset of Fi. Note that any fi induces a

strategy, f l
i , in the corresponding l-fold repeated game. The f l

i is simply the restriction of

f to the smaller domain, Hl, and it is called the l-truncation of f . Given a strategy fi,

t ∈ N and h ∈ Ht, the induced strategy fi|h is defined by

fi|h(h′) = fi(hh
′), for any h′ ∈ Hr, r ∈ N,

where hh′ is the concatenation of h with h′, i.e. the history of length t + r whose first

t elements coincide with h, followed by the r elements of h′. Let fi|h(ai) denote the

probability that fi|h prescribes for the action ai ∈ Σi.

The vector f = (f1, f2) of behavior strategies induces a probability measure µf on the

cylinder sets, with µf (C(h)) giving the probability of the history h; µf (C(∅)) = 1 and

µf (C(ha)) = µf (h)×i fi|h(ai), h ∈ H. The Kolmogorov Extension Theorem then delivers

a unique extension of the probability measure µf from the Ft’s to F . Each player i also

has a belief, which is a probability measure πi over the opponent’s behavior strategy. By

Aumann’s (1964) infinite-extensive-form version of Kuhn’s (1953) theorem, this belief has

an equivalent single behavior-strategy vector fπi ≡ f i = (f i
1, f

i
2) (see Kalai and Lehrer

1993a, p. 1031), with f i
i = fi (since a player is assumed to know his own strategy); let −i

be player i’s opponent, and f i
−i be the restriction of f i to i’s opponent’s strategy space.

Letting λi ∈ (0, 1) be individual i’s discount factor, player i’s expected utility over all

possible play paths is

Ui(fi, f
i
−i) ≡

∫
Σ∞

(1− λi)
∞∑
t=1

λtiui(z(t))dµf i ,

and fi is a best response to f i
−i if

Ui(fi, f
i
−i) ≥ Ui(f

′
i , f

i
−i), ∀f ′

i ∈ Fi.

Given a small ε > 0, fi is an ε-best response to f i
−i if

Ui(fi, f
i
−i) ≥ Ui(f

′
i , f

i
−i)− ε, ∀f ′

i ∈ Fi.
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A strategy vector f is an ε-Nash equilibrium if each fi is an ε-best response to f−i.

In order to analyze convergence of play and beliefs, we need a notion of the distance

between probability measures on Σ∞. I will often employ Sandroni’s (1998) notion of weak

closeness of strategy vectors: a probability measure µ is weakly ε-close to µ̃ if

d(µ, µ̃) ≡
∞∑
k=1

2−k

(
sup
A∈Fk

|µ(A)− µ̃(A)|
)

≤ ε,

where Fk is the σ-algebra of k-length histories defined earlier. Given two strategy vectors

f and g (belonging to the general strategy-vector space F ), f plays weakly ε-like g if µf

is weakly ε-close to µg. The product topology on F is metrized by d. Intuitively, if two

strategy vectors play weakly ε-like one another, then they induce two probability measures

on histories that assign similar probabilities for all measurable events except perhaps those

that may only be observed in the distant future (i.e. only in later Fk’s).

If beliefs converge to strategies in the metric d, we have the case of “weak merging” of

beliefs with true play. Nachbar’s (2005) inconsistency result, however, employs a weaker

notion of merging than this. Say that N◦ ⊆ N has density 1 if and only if

lim
n→∞

|{1, . . . , n} ∩ N◦|
n

= 1.

Definition 1 Given beliefs π1, π2 and the belief-equivalent strategies f 1
2 , f

2
1 , player i weakly

learns to predict the path of play generated by the behavior strategy vector f if and only if

the following conditions hold:

i. for any history h ∈ H, µf (C(h)) > 0 implies µ(fi,f i
−i)

(C(h)) > 0; and

ii. for any η > 0 and µf -almost any path of play z, there is a set NP (η, z) ⊆ N of density

1 such that, for any n ∈ NP (η, z) and any a−i ∈ Σ−i,∣∣f−i|z(n)(a−i)− f i
−i|z(n)(a−i)

∣∣ < η.

Given beliefs π1 and π2: a set F̂ ⊆ F of strategy vectors satisfies weak learnability if and

only if, for any f1 ∈ F̂1 and any f2 ∈ F̂2, each player weakly learns to predict the path of

play; F̂ satisfies pure weak learnability if and only if the set Ĝ of pure strategies in F̂ is

weakly learnable.

For given beliefs then, any element of a weakly learnable set of strategy vectors is close to

beliefs for all but finitely many periods. This corresponds in the repeated-game setting to
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Lehrer and Smorodinsky’s (1996) more general concept of “almost weak merging”, which

is implied by “weak merging” in the metric d above. If requirement ii in Definition 1 is

replaced by the stronger condition that, for any η > 0 and µf -almost any path of play z,

there exists an n(z) ∈ N such that f |z(n) plays weakly η-like f i|z(n) for all n ≥ n(z), then I

will say that player i learns to predict the path of play.

In order to restrict the strategy set without implicit coordination on particular out-

comes, we require some properties of such a restricted set, and here I follow Nachbar

(2005), who provides further discussion.

Definition 2 (Nachbar 2005) A set F̂ ⊆ F of strategy vectors satisfies caution and

symmetry (CS) if and only if, for any pure strategy g1 belonging to the set Ĝ1 of pure

strategies in F̂1 and for any function γ12 : Σ1 → Σ2 there is a pure strategy g2 belonging to

the set Ĝ2 of pure strategies in F̂2 such that the following is true. Let z be the path of play

generated by (g1, g2). There is a set Nγ(z) ⊆ N of density 1 such that for any n ∈ Nγ(z),

g2(z(n)) = γ12(g1(z(n))).

An analogous statement holds for g2 ∈ Ĝ2 and γ21 : Σ2 → Σ1.

Definition 3 (Nachbar 2005) A set F̂ ⊆ F of strategy vectors satisfies pure strategies

(P) if and only if there is an ν > 0 such that, for each i, the following is true. Consider

any fi ∈ F̂i. There is a pure strategy gi ∈ F̂i such that, for any history h, if gi(h) = ai,

then fi|h(ai) > ν.

A strategy set satisfying both conditions CS and P is said to satisfy CSP.

3 A Weakened Inconsistency Result

In this section, I alter Nachbar’s (2005) notion of learnability, and show that the mod-

ified “optimizing learnability” limits the games and discount factors to which his incon-

sistency result applies. Thus, whilst impossibility problems remain for Bayesian learning,

they present themselves under low discount factors and in a narrower class of games in-

cluding repeated matching pennies but excluding many coordination games. Persistent

inconsistency problems are associated with fully mixed equilibria, which accords with the

impossibility results of Foster and Young (2001).

Nachbar employs the following notion of consistency, which I use to define a notion of

“optimizing learnability”.
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Definition 4 Given beliefs π1, π2, the belief-equivalent strategies f 1
2 , f

2
1 and ε ≥ 0, F̂ ⊆ F

is ε-consistent if and only if, for each i, there exists an fi ∈ F̂i and a full µf i-measure

set A ∈ F such that, for every z ∈ A and all t, fi|z(t) is an ε-best response to f i
−i|z(t).

Given π1, π2, f 1
2 , f

2
1 , ε ≥ 0, an ε-consistent set F̂ and its ε-best responding element f ∈ F̂ ,

the set F̂ then satisfies (weak) optimizing learnability if and only if, for all i, player i

(weakly) learns to predict the path of play generated by f ; F̂ satisfies pure (weak) optimizing

learnability if and only if the set Ĝ of pure strategies in F̂ satisfies (weak) optimizing

learnability.

The first part of this definition is just Nachbar’s notion of consistency. Whilst a best

response must also be a best response following any history with positive µf i-measure, an

ε-best response need not be an ε-best response in such a continuation, and indeed could

be very suboptimal if the history receives low µf i-measure. Nachbar’s inconsistency rests

on the suboptimality of a restricted strategy set on certain paths of play; if a player learns

such a path, his continuation play will then fail to be ε-optimal, which is problematic since

Nachbar requires any possible path of play to be learnable. By weakening learnability

to require only that ε-optimal play is learnable, inconsistency can be avoided in many

games, since such problematic continuations need no longer receive positive µf i-measure.

Intuitively, the “evil twin” strategies that drive Nachbar’s (2005) inconsistency result are

not ε-optimal in all of the games to which the result applies; hence, whilst Nachbar’s

learnability requires these strategies to be believed possible, optimizing learnability can

give them zero µf i-measure. In other words, the player will never need to learn “evil twin”

paths of play under rational learning, and thus there is no implied failure of ε-optimization

in continuation play.

Now, player 1’s minmax payoff (for instance) is

ϕ1 = min
α2∈∆(Σ2)

max
α1∈∆(Σ1)

u1(α1, α2).

Player 1’s pure action maxmin payoff is

Φ1 = max
a1∈Σ1

min
a2∈Σ2

u1(a1, a2).

Definition 5 (Nachbar 1997) The stage game satisfies MM if and only if, for each

player i, the pure action maxmin payoff is strictly less than the minmax payoff, Φi < ϕi.

Matching pennies, rock–scissors–paper, battle of the sexes, and many coordination games

satisfy MM. It is this broad class of games to which Nachbar’s (2005) inconsistency result
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applies, but the inconsistent class of games is narrowed under Definition 4’s notion of

optimizing learnability, as I show in Proposition 1.

Given an action a1 ∈ Σ1 of player 1, let BR2(a1) denote the set of player 2’s stage-game

best responses to a1; player 1’s pure action maxmin∗ payoff is then

Φ∗
1 = max

a1∈Σ1

min
a2∈BR2(a1)

u1(a1, a2).

Definition 6 The stage game satisfies MM∗ if and only if, for each player i, the pure

action maxmin∗ payoff is strictly less than the minmax payoff, Φ∗
i < ϕi.

The following result captures how Nachbar’s inconsistency is altered when his learnability

is replaced by optimizing learnability.

Proposition 1 Suppose that MM∗ holds. Then there is a λ̄ ∈ (0, 1] such that, for any

λ1, λ2 ∈ [0, λ̄), there is an ε > 0 such that, for any F̂ ⊆ F and any beliefs, if F̂ is

ε-consistent and satisfies CSP, then F̂ does not satisfy pure weak optimizing learnability.

The proof of this result is relegated to Appendix A. Informally, if MM∗ holds, the players

are not too patient and the strategy set satisfies optimizing learnability, then player 1

learns to predict that his payoff average is at most Φ∗
1, which is strictly less than his

minmax payoff ϕ1. However, the players of an ε-consistent strategy vector always expect

to earn at least ϕi − ε′ on average, in any continuation game with positive µf -measure,

yielding a contradiction.

MM∗ is a much narrower class of games than MM; whilst matching pennies and rock–

scissors–paper still belong to MM∗, battle of the sexes and coordination games in general

do not. That it should be difficult to learn the mixed-strategy equilibria of games such as

matching pennies and rock–scissors–paper, but not necessarily the pure-strategy equilibria

of coordination games, is in accord with what we would expect from the evolutionary game

theory literature, and indeed with the problematic mixed-strategy equilibrium examples

of Foster and Young (2001). Moreover, as we will see in the next section, it is possible to

learn equilibrium in games outside of the class MM∗. Note also that—by contrast with

Nachbar’s (2005) inconsistency result for the class MM—Proposition 1 imposes a maximum

discount factor, further limiting its scope. The maximum discount factor creates a degree

of myopia in the players’ optimization that is crucial for the inconsistency result, as in

Nachbar’s result for his widest class of games NWD; Proposition 1 would not hold for the

general discount factor in Nachbar’s class MM result. Thus, when we replace Nachbar’s

learnability with optimizing learnability, we derive inconsistency for fewer games and fewer

discount factors.
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An apparently puzzling example in light of Proposition 1 is provided by stochastic fic-

titious play, which can be cast as a special case of Bayesian learning with i.i.d. strategies,

and which converges to approximate equilibrium in repeated matching pennies. The re-

striction to i.i.d. strategies satisfies both CSP and weak learnability, but for games in the

class MM optimal play is not i.i.d., and for games in the class MM∗ this is true even along

the optimizing path of play. Hence, stochastic fictitious play fails to be ε-consistent in this

case.

Proposition 1 is suggestive that the worst of Bayesian learning’s convergence prob-

lems lie in games with interior mixed-strategy equilibria. That the latter are fundamen-

tally problematic remains a consequence of Nachbar’s inconsistency, as the following result

shows. I will say that the strategy vector f ∈ F is fully mixed if f |h(a) > 0 for all h ∈ H

and all a ∈ Σ.

Corollary 1 Suppose that MM holds. For any λ1, λ2 ∈ [0, 1) there is an ε > 0 such that,

for any F̂ ⊆ F and any beliefs π1, π2, if F̂ is ε-consistent and satisfies CSP, and any ε-

optimal strategy vector f ∈ F̂ is fully mixed, then F̂ does not satisfy pure weak optimizing

learnability.

This follows from the second part of Nachbar’s (2005) Theorem 1, since optimizing learn-

ability implies Nachbar’s learnability under a fully mixed f .

4 Learning while Optimizing

But why should we be interested in my notion of optimizing learnability? Because, as I

show in this section, together with ε-consistency this notion is sufficient for convergence of

Bayesian learning to approximate Nash equilibrium. So whilst there remains an inherent

tension between learning and optimization in the class MM∗ of games, outside of this class

learning and optimization can be reconciled. I then offer examples of such reconciliation

in coordination games under ‘dumb’ and ‘smart’ beliefs.4

Given beliefs π1, π2, the belief-equivalent strategies f 1, f 2 and strategies f = (f1, f2)

play eventually weakly ζ-like an ε-Nash equilibrium if there exists a set A ∈ F such that:

i. µf (A) = 1; and

ii. for every z ∈ A, there exists an n̄ such that for all n ≥ n̄, f |z(n) and f i|z(n), i = 1, 2,

play weakly ζ-like an ε-Nash equilibrium.

4. The term ‘smart’ here follows the usage of Noguchi (2015b), rather than Stahl (1993).
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Theorem 1 Let f be a behavior strategy vector, π1, π2 the beliefs of the players and f 1, f 2

the belief-equivalent strategy vectors. For any ε > 0, if f is ε/2-consistent and satisfies op-

timizing learnability, then f and f 1, f 2 play eventually weakly ε-like an ε-Nash equilibrium.

The proof of this result is relegated to Appendix B.

Theorem 1 establishes the joint sufficiency of consistency and optimizing learnability

for Bayesian learning of Nash equilibrium in repeated games. Thus, the tension established

by Nachbar (1997, 2005) between consistency and learnability need pose no problem for

Bayesian learning as long as optimizing learnability can be established. Proposition 1

establishes that this tension carries over to optimizing learnability in the class of games

MM∗. A key issue for the theorem is then the existence of a strategy vector and beliefs

satisfying its conditions in games belonging to MM but not MM∗. Below I offer two

examples of such strategy vectors and beliefs in repeated coordination games.

‘Dumb’ learning under bounded memory Suppose that the stage game is a coordi-

nation game where Σ1 = Σ2 and each a ∈ Σ is a Nash equilibrium if and only if a1 = a2.

Given a t-length history h = (z1(t), z2(t)), let its transpose τ(h) = (z2(t), z1(t)) be the

history obtained by swapping the players associated with each action. A strategy vector

f ∈ F is symmetric if, for all h ∈ H, f1|h = f2|τ(h).
A natural strategy set satisfying Nachbar’s (2005) CSP condition is the set F κ ⊂ F ,

κ ∈ N, of strategy vectors that have memory at most κ in the sense that, for all f ∈ F κ, all

h ∈ Hκ and all h′, h′′ ∈ H, f(h′h) = f(h′′h). If both players know that strategies lie in F κ,

then the support of each belief πi is a subspace of F κ
−i (although Aumann’s πi-equivalent

strategy vector f i need not belong to F κ).5 I will refer to the resulting game as one of

bounded memory. We know from Nachbar (1997) that a best response to a belief with full

support on F κ
−i will lie outside of F

κ
−i along some play paths. But I now show that F κ may

nonetheless satisfy ε/2-consistency and optimizing learnability.

Proposition 2 Suppose that the stage game is a coordination game with Σ1 = Σ2, and

that each a ∈ Σ is a Nash equilibrium if and only if a1 = a2. Then there exists κ̄ ∈ N
sufficiently high that, if each player i has a uniform prior belief π̃i on F κ̄

−i, then F κ̄ is

ε/2-consistent and satisfies optimizing learnability.

Proof. Given π̃i, f̃ i is the belief-equivalent strategy vector. Given any ε′ > 0 and any

κ ∈ N, consider the restriction π̃ε′ of π̃ to an ε′-neighborhood Y of the opponent’s strategy

5. The support of πi is the largest closed subset of F−i for which every open neighborhood of every
point of the set has positive πi-measure.
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f−i in F
κ
−i, and the probability measures µ̃ and µ̃ε′ that π̃ and π̃ε′ induce on the cylinder

sets. µ̃ε′ is absolutely continuous with respect to µ̃, and hence for any ε′′ > 0 and µ̃ε′-

almost every z, there exists an n̄ ∈ N such that f |z(n) plays weakly (ε′ + ε′′)-like f̃ i|z(n)
for all n ≥ n̄ by the Blackwell and Dubins (1962) theorem.6 To extend this statement to

µf -almost every z, let Â ∈ F be a set of full µf -measure. Since π̃ε′ puts strictly positive

measure on every open subset of Y , µ̃ε′ puts strictly positive probability on every (cylinder)

subset of Â—i.e. on every history possible under f . Thus, the players learn to predict the

path of play generated by f .

Given ε > 0, fix each κ̄ ∈ N sufficiently high that, for each player i, F κ̄
i contains a

strategy f ∗
i such that f ∗

i |h is an ε/3-best response to f̃−i|h for every h ∈ H with µf̃ i(h) > 0.

Let f̂ ∈ F κ̄ be a symmetric strategy vector that plays a pure action profile in any period

following the play of a symmetric action profile, and a full mixture of actions otherwise.

There exists for µf̃ i-almost every h some maximum probability p̄(h) > 0 that a mixture

of f ∗
i and f̂i may place on f̂i|h and remain an ε/2-best response to f̃−i|h. Let f̄ ∈ F κ̄

be a mixture of f ∗
i and f̂i such that f̄ |h places probability p̄(h) on f̂ |h for all such h; I

claim that there exists an n ∈ N such that p̄(z(n)) = 1 for all n ≥ n and µf̃ i-almost

every z. Supposing otherwise, for any n ∈ N, there must exist an n ≥ n and a z with

µf̃ i(z(n)) > 0 such that p̄(z(n)) = 1 is inconsistent with an ε/2-best response. But

symmetric play is absorbing under f̂ , and with probability 1 a symmetric action profile is

eventually played, after which each subsequent action profile is symmetric. Thus, the path

of play induced by f̂ is eventually symmetric, and hence f̂ is eventually a Nash equilibrium.

Moreover, if the value of (ε′ + ε′′) above is ε/4, then there exists an n̄ ∈ N such that, for

all n ≥ n̄, supA∈Fn
|µf̄ |z(n)

(A)− µf̃ |z(n)
(A)| ≤ ε/2 by weak (ε′ + ε′′)-closeness of µf̄ |z(n)

and

µf̃ |z(n)
. Hence, if p̄(z(n)) = 1, f̄i|z(n) is an ε/2-best response to f̃−i|z(n) for each i (by the

normalization of payoffs to lie in the unit interval, and the continuity and per-period scale

of Ui), contradicting the supposition and establishing the claim.

Note that there are paths with zero µf̄ -measure that do not yield eventual symmetric

play, but which can be generated by other elements of F κ̄; Nachbar’s weak learnability

requires such paths to be weakly learnable, but f̄ does not eventually induce ε/2-best

responses along them, and hence does not establish ε/2-consistency of F κ̄ under weak

learnability.

Thus, consistency and optimizing learnability may be reconciled for the CSP strategy

set F κ̄ in games belonging to MM but not MM∗. It follows by Theorem 1 that the strategies

and beliefs employed in the proof of Proposition 2 will eventually play weakly ε-like an ε-

6. Recall that µ is absolutely continuous with respect to µ̃ if µ(A) > 0 implies µ̃(A) > 0 for every A ∈ F .
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Nash equilibrium. Intuitively, consider strategies that eventually yield symmetric play with

probability one, and the restriction of uniform priors on each F κ̄
−i to an ε′-neighborhood of

those strategies. This restriction approximates a Nash equilibrium, and since the restriction

is absolutely continuous with respect to the original uniform prior, the latter must also

eventually approximate a Nash equilibrium.7 Given sufficiently high κ̄, there must then

exist approximately optimal strategies that place increasing weight on such symmetric

strategies. Learnability would not be achievable in this way if we required it to hold along

any possible play path, as opposed to along just the realized play path; for instance, paths

with persistent asymmetric play would not yield eventual Nash equilibrium, but they also

could not be generated by approximately optimal play, and hence pose a problem for

Nachbar’s learnability but not for optimizing learnability.

It is essential for the result that the players know not only that strategies have finite

memory, but that there is a known bound on that memory. This is because the argument

relies on the perpetual closeness of a strategy with respect to every strategy in its ε′-

neighborhood in F κ̄
−i. If the players did not know a bound on the memory of strategies,

then the ε′-neighborhood would be in the superspace of all finite-memory strategy vectors;

hence it would be an infinite-dimensional neighborhood, with no uniform bound on the

future differences in play of members of the neighborhood, i.e. no limit on the novelty

arising in an open set of strategies in the infinite future.

As an instance of his characterization of the learnability of a set of probability measures,

Noguchi (2015b, p. 425) shows that there exists a prior belief that leads its holder to learn to

predict any finitely complex strategy vector. Using this characterization, Noguchi (2015a)

proves that there exist prior beliefs that guarantee weak convergence of Bayesian learning

to approximate Nash equilibrium under smooth near-optimal behavior and a complexity

condition; in particular, prior beliefs in his model are carefully chosen to incorporate a

fictitious-play-like learning procedure with “random search and (statistical) testing” in the

style of Foster and Young (2003). In effect, a hypothesis-testing procedure is rendered

rational in his model by the anticipation of its consequences in the players’ prior beliefs.

In general, Noguchi (2015b, p. 431) views his learnability characterization as enabling

us “to find out various types of ‘smart’ prior beliefs. . . [that lead] the player to learn to pre-

7. Effectively, we have a reversal of Sandroni’s (1998) approximate absolute continuity idea: beliefs
merge with a strategy vector that forever weakly approximates the true one, rather than forever weakly
approximating a strategy vector that merges with the true one. Lehrer and Smorodinsky’s (1996) result
that “diffusion” around a probability measure implies almost weak merging is not quite sufficient for the
learning part of the result; the freedom that almost weak merging allows in a finite set of periods is unsuited
to the continuity of utility and finite-game approximations on which Lemmas 6 and 7 rely. This is also
the reason for the condition that players (not just weakly) learn the path of play in Theorem 1.
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dict as many strategies of her opponents as possible”. Proposition 2 shows that, in the case

of such coordination games with bounded memory, a ‘dumb’ diffuse prior is sufficient to

guarantee learnability of strategies, which moreover may be approximately optimal along

the realized path of play. Note the manner in which this result escapes Nachbar’s inconsis-

tency: There are asymmetric histories inducing asymmetric, sub-optimal play, but these

have zero µf -measure, and eventually low µf i-measure. Thus, whilst not ε/2-consistent

under Nachbar’s weak learnability, F κ is ε/2-consistent under optimizing learnability.

‘Smart’ learning by “principled players” A second example satisfying the condi-

tions of Theorem 1 is provided by Sandroni (2000) in repeated coordination games with

two actions and a single “cooperative” outcome that yields the highest payoffs for both

players. Here, to avoid a further proliferation of notation, I informally outline an instance

of Sandroni’s result, and refer the reader to the original paper for a formal presentation of

the general case.

Consider the game in Figure 1, which belongs to Sandroni’s class of games, and also

to MM, but not to MM∗. Sandroni’s Proposition 1 shows that there exist discount factors

and beliefs (that believe in “strict reciprocity” in the opponent’s play) under which it is

optimal for the players always to “cooperate” by playing (H,T ), and such that they are

eventually confident that their opponent will also cooperate. The belief-equivalent strategy

for a belief in strict reciprocity is of bounded complexity (Kalai and Stanford 1988), and

hence belongs to a CSP strategy set F̂ ; since the optimal response of “always cooperate”

has zero complexity, it is also contained in F̂ , which thus satisfies consistency. Moreover,

because the players learn to predict the path of play generated by the optimal strategies,

F̂ satisfies optimizing learnability and play eventually approximates a Nash equilibrium.

Sandroni’s result essentially provides ‘smart’ prior beliefs that allow rational learning of

equilibrium play in his class of coordination games; his “principled players” adopt beliefs

that anticipate the properties of optimal play in those games, in a seemingly natural way

that improves upon the sort of ‘dumb’ belief (a diffuse prior, for instance) that would be

required to learn any possible play. This ‘smart’ learning is not possible for fully mixed

equilibria; Nachbar’s inconsistency applies even to optimizing learnability in games such as

repeated matching pennies.8 However, the class of such problematic games is much smaller

than those without a stage-game weakly dominant action.

8. Noguchi (2015a) provides ‘smart’ prior beliefs that guarantee weak convergence of Bayesian learning
to approximate Nash equilibrium (under smooth near-optimal behavior and a complexity condition) for
any perturbed finite stage game, but the presence of a payoff perturbation means that this result is not a
counterexample to the inconsistency of Bayesian learning in games such as repeated matching pennies.
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5 Conclusion

Nachbar’s (1997, 2005) inconsistency dealt a heavy blow to the enterprise of rational learn-

ing in repeated games, seemingly confining its scope to stage games of little strategic

interest. More recently, positive results such as those of Noguchi (2015a, 2015b) have

indicated that such a pessimistic conclusion is premature. This paper has located room

for manoeuvre away from Nachbar’s impossibility via a natural modification in his notion

of learnability, requiring that only optimizing paths of play be learnable rather than any

path of play. Such “optimizing learnability” is sufficient for Bayesian learning of Nash

equilibrium, and is consistent with the restriction of beliefs to interesting strategy sets in a

broad class of games that includes coordination games. The case that remains problematic

is Bayesian learning of fully mixed equilibria, as suggested by Foster and Young (2001).

But the results presented above show that Bayesian learning of pure-strategy equilibria in

strategically interesting games is quite possible.

Appendix

A Proof of Proposition 1

In order to prove Proposition 1, I will need the following key concept.

Definition 7 Fix λ1, λ2 ∈ [0, 1) and ε′ > 0. Then F̂ ⊆ F has the ε′-evil genius property

if and only if, for any g ∈ F̂ and any beliefs f 1
2 , f

2
1 for which both players weakly learn

to predict the path of play generated by g, there exists an h ∈ H with µg(C(h)) > 0 such

that, if g2|h is an ε′-best response to f 2
1 |h, then g1|h is not an ε′-best response to f 1

2 |h, and
similarly for player 2. In this case, each of g1 and g2 is said to be an ε′-evil genius against

the other.

The following is then immediate, and analogous to Nachbar’s (2005) Theorem 2.

Lemma 1 For any λ1, λ2 ∈ [0, 1), any ε′ > 0 and any beliefs, if a set of pure strategies is

ε′-consistent and has the ε′-evil genius property, then it does not satisfy weak optimizing

learnability.

The following is a simple variant of Nachbar’s (2005) Lemma 2.
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Lemma 2 Consider any λ1 ∈ [0, 1), any belief f 1
2 , any ε ≥ 0, any path z ∈ Σ∞, any

behavior strategy f1 such that f1|z(t) is an ε-best response to f 1
2 |z(t) for all t, and any ι > 0.

Consider any pure strategy g1 such that, for any history h ∈ H, if g1(h) = a1 ∈ Σ1, then

f1|h(a1) > ι. Then g1|z(t) is an ε/(1 − λ1)ι-best response to f 1
2 |z(t) for all t. A similar

statement holds for player 2.

Together with the following result (cf. Nachbar’s Theorem 3), condition P, Lemma 1 and

Lemma 4 below, it implies Proposition 1.

Proposition 3 Suppose that MM∗ holds. Then there is an ε′ > 0 and a λ̄ ∈ (0, 1] such

that, for any λ1, λ2 ∈ [0, λ̄), if F̂ ⊆ F satisfies CS, then F̂ has the ε′-evil genius property.

Proof. Define a∗2 : Σ1 → Σ2 by

a∗2(a1) = arg min
a2∈BR2(a1)

u1(a1, a2).

If the right-hand side is not single-valued, an arbitrary selection may be made to be a∗2(a1).

The function a∗1 is defined similarly. Given g1 ∈ F̂1, define G
∗
2(g1) ⊂ G2 to be the set

consisting of all g2 for which there exists a set N⋄ ⊆ N with limn→∞ |{1, . . . , n}∩N⋄|/n = 1

such that, for all n ∈ N⋄, letting z denote the path of play generated by (g1, g2) and letting

h = z(n),

g2(h) = a∗2(g1(h)).

The definition of G∗
1(g2) is analogous.

The following lemma confirms that, for the class MM∗ of games, elements of G∗
2(g1) are

evil geniuses against g1. Informally, if MM∗ holds, then g1(h) is not a stage game ε′-best

response to a∗2(g1(h)) for a density 1 set of periods, for ε′ sufficiently small. Fix λ̄ low

enough to ensure that, for any g ∈ F̂ and any beliefs f 1
2 , f

2
1 for which both players weakly

learn to predict the path of play generated by g, an ε′-best response in any h ∈ H with

µg(C(h)) > 0 must involve infinite repetition of stage-game best responses.

Lemma 3 Suppose that MM∗ holds. Then there is an ε′ > 0 such that, for any λ1, λ2 ∈
[0, λ̄) and any pure strategy g1 ∈ G1, if g2 ∈ G∗

2(g1), then g2 is an ε′-evil genius against g1.

An analogous statement holds for any g2 ∈ G2.

The proof of this result is just that of the second part of Nachbar’s (2005) Lemma 3, with

Φ∗
1 in place of his M1.

The following is a trivial modification of Nachbar’s (2005) Lemma 4.
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Lemma 4 Suppose that a set Ĝ of pure strategies satisfies CS, and consider any g1 ∈ Ĝ1.

There is a g2 ∈ Ĝ2 ∩ G∗
2(g1). An analogous statement holds with the roles of the players

reversed.

The result is then immediate from Lemmas 3 and 4.

B Proof of Theorem 1

In order to prove Theorem 1, I will first offer a number of constituent results. A vector of

strategies, f , is a weak ξ-subjective η-equilibrium if there is a pair of (supporting) strategy

vectors f 1, f 2 such that for each player i:

i. f i
i = fi;

ii. fi is a ξ-best response to f i
−i; and

iii. f plays weakly η-like f i.

Lemma 5 Let f = (f1, f2) be a weak ψ-subjective 0-equilibrium of a finitely repeated game.

There is a ψ-Nash equilibrium f̂ = (f̂1, f̂2) that plays weakly 0-like f .

This is a trivial modification of Fudenberg and Levine’s (1993) Theorem 4. Intuitively, if

f 1, f 2 are f ’s supporting strategy vectors, for each player i ∈ {1, 2} change the play of each

player j ̸= i to that given by f i
j following each history that can be reached if i unilaterally

deviates from f ; the resulting modified strategy vector must play weakly 0-like a ψ-Nash

equilibrium.

Lemma 6 In finitely repeated games, for every θ > 0 there is η̂ > 0 such that for all

η < η̂, if f is a weak ψ-subjective η-equilibrium, then there exists f̂ such that:

i. f plays weakly θ-like f̂ ; and

ii. f̂ is a ψ-Nash equilibrium.

Proof. Suppose to the contrary that there is θ > 0 and a sequence of strategy vectors

f(m) such that (i) f(m) is a weak ψ-subjective ηm-equilibrium, where ηm → 0 as m→ ∞,

and (ii) f(m) does not play weakly θ-like any ψ-Nash equilibrium. Since f(m) is a weak ψ-

subjective ηm-equilibrium, there is a matrix (f(m)ij) which sustains it. In finitely repeated

games, each player has a finite number of pure strategies, so the set of behavior strategies

is sequentially compact. Thus, without loss of generality, the sequences {f(m)}m and
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{(f(m)ij)}m are converging (in the product topology) to, say, f and (f i
j). As the utility

functions are continuous in the product topology metrized by d, f is a weak ψ-subjective

0-equilibrium sustained by (f i
j). Moreover, if ηm is close enough to zero, f(m) plays weakly

θ-like f . Using Lemma 5, we can find a ψ-Nash equilibrium f̂ which plays weakly 0-like f .

Thus, if ηm is sufficiently small, f(m) plays weakly θ-like f̂ , which is a ψ-Nash equilibrium;

a contradiction.

This is Kalai and Lehrer’s (1993b) Remark 2 adapted to the product topology.

Lemma 7 (Kalai and Lehrer 1993b) In infinitely repeated games, for every ε > 0

there is η̂ > 0 such that for all η ≤ η̂, if f is a weak ξ-subjective η-equilibrium, then

there exists f̂ such that:

i. f plays weakly ε/2-like f̂ ; and

ii. f̂ is a (ξ + ε/2)-Nash equilibrium.

Proof. Let ε > 0. Observe first that there is an integer l = l(ε) such that: (i) if a strategy

kli is a ψ-best response to kl−i in the l-fold repeated game, then any strategy ki of the

infinitely repeated game whose l-truncation coincides with kli is a (ψ + ε/4)-best response

to any k−i, whose l-truncation coincides with kl−i; and (ii) if ki is a ξ-best response to k−i

in the infinitely repeated game, then kli is a (ξ + ε/4)-best response to kl−i.

Letting θ = ε/4, there exists an η̂ such that the conclusions of Lemma 6 hold for the

l-fold repeated game. Let f be a weak ξ-subjective η-equilibrium for some η < η̂. f l is

therefore a weak (ξ+ ε/4)-subjective η-equilibrium in the l-fold repeated game. Therefore,

by Lemma 6, it plays weakly ε/4-like some (ξ + ε/4)-Nash equilibrium, say f̂ l.

To conclude the proof I need to define a strategy vector f̂ of the infinitely repeated

game whose l-truncation coincides with f̂ l and, moreover, have f play weakly ε/2-like it.

Thus, I need only define f̂ on histories longer than l. Let h ∈ Hl′ , l
′ > l, be such a history;

define f̂i(h) = fi(h). The argument in Kalai and Lehrer’s (1993b) Theorem 1 proof then

applies unchanged to establish that f plays weakly ε/2-like f̂ .

Recall that f̂ l is a (ξ + ε/4)-Nash equilibrium in the l-fold repeated game. Therefore,

f̂ is a (ξ + ε/4 + ε/4)-Nash equilibrium in the infinitely repeated game.

This is the general-ξ case of Kalai and Lehrer’s (1993b) Theorem 1, the proof of which

it follows closely. Loosely, starting with a weak ξ-subjective η-equilibrium f , consider its

truncation to the finitely repeated game of length l. If l is large, then the truncated f

is a weak ψ-subjective η-equilibrium of the finite game for some ψ > ξ. Moreover, by

Lemma 6 it must approximately play weakly like some ψ-Nash equilibrium f̂ of the finite
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game. I extend f̂ to the infinite game by making it coincide with f after all histories

longer than l. This extension makes f play close to f̂ in the infinite game, and exploit-

ing again the fact that l is large, f̂ must be a (ξ+ε/2)-Nash equilibrium of the infinite game.

Proof of Theorem 1. Given ε > 0, fix η ≤ ε/2 to be at most the value η̂ in Lemma

7. By optimizing learnability, the players learn to predict the path of play, so that for

µf -almost any path of play z there exists an n(z) ∈ N such that f |z(n) plays weakly η-like
f i|z(n) for all n ≥ n(z). It follows by ε/2-consistency of f that, for µf -almost every z and

all n ≥ n(z), f |z(n) is an ε/2-subjective η-equilibrium. By Lemma 7, for all such n there

exists an (ε/2 + ε/2)-Nash equilibrium f̂ that plays weakly ε/2-like f |z(n), from which the

result follows.
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