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Abstract
It is shown that, in infinitely-repeated games between two arbitrarily patient play-

ers, strategy profiles with inefficient pure stage-Nash continuations are not strategi-
cally stable (Kohlberg and Mertens, Econometrica 1986, 54: 1003–1039). By contrast,
a set of strategy profiles similar to the Prisoners’ Dilemma’s “perfect tit-for-tat” is
“uniformly robust to perfect entrants” (Swinkels, Journal of Economic Theory 1992,
57: 333–342), and hence contains a strategically stable set. Moreover, this set satis-
fies iterated dominance and a version of forward induction, whilst its stable subset
is admissible. Journal of Economic Literature Classification: C72.
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1 Introduction

Kohlberg and Mertens (1986) argue that Nash equilibrium—and indeed any point-valued

solution concept—misses important aspects of rational game-theoretic decision-making

that are captured by their set-valued notion of “strategic stability”. Moreover, the de-

fects of point-valued solution concepts are at their most acute in repeated games, where

there are already indications of the refinement potential of strategic stability: Osborne

(1990) shows that, in finitely repeated coordination games, among the set of pure outcome

paths that consist of sequences of one-shot Nash equilibria, only those with nearly Pareto

efficient payoffs are stable.1

∗I thank All Souls College, Oxford. Email thomas.norman@magd.ox.ac.uk.
1Van Damme (1989) also offers examples of the sometimes dramatic effects of stability in finitely

repeated games. Whilst I am not aware of applications of stability to infinitely repeated games, Aumann
and Sorin (1989) select the optimal outcome of an infinitely repeated two-person game of common interests
using a perturbation in which every strategy with finite memory is used with positive probability. Their
solution concept is, however, single-valued. Demange (1992) also applies stability to a game of indefinite
length.
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Figure 1: Prisoners’ Dilemma

Game theorists have long been suspicious of repeated-game strategy profiles that are

“unforgiving” in the sense that they can become locked into perpetual inefficiency. This

paper shows that well-known unforgiving strategy profiles are strategically unstable with

two arbitrarily patient players, whilst certain forgiving profiles are stable. In particular,

sets of strategy profiles with inefficient pure stage-Nash continuations are not strategically

stable. For instance, in the Prisoners’ Dilemma of Figure 1, infinite repetition of the

stage-Nash equilibrium is unstable, as is the famous “grim–trigger” equilibrium (Friedman

1971). By contrast, a set of strategy profiles similar to “perfect tit-for-tat” does contain a

strategically stable set.

There is a simple intuition behind these results. In perpetual inefficient stage-Nash

equilibrium, it is an alternative best reply for an arbitrarily patient player to experiment

with efficient play, and if it is not reciprocated, revert to playing stage Nash; she can do

no worse than under stage Nash if she reverts. Stable sets need not include alternative

best replies, but there exists a perturbed game where the experimentation is reciprocated

with positive probability—opponents make exactly the right mistakes—so that experimen-

tation offers a profitable deviation. The same argument can be made of the stage-Nash

continuation under grim–trigger strategies following a mistake, and in the perturbed games

relevant for strategic stability, a mistake occurs with positive probability. By contrast, un-

der perfect tit-for-tat, each player cooperates if and only if both players played the same

action in the previous period. Hence, it has the property that it punishes defections (and

failures to punish defections), but subsequently forgives them in the sense of returning
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to efficient play. This means that it punishes deviations that do not “play like” it (in a

sense to be made precise) both on and off the equilibrium path, and hence it belongs to

a set of strategy profiles that satisfies the evolutionary stability criterion of being “uni-

formly robust to perfect entrants” or URPE (Swinkels 1992), which in turn must contain

a Kohlberg–Mertens stable set.

There are three noteworthy remarks to be made in formalizing this intuition. First, the

strongest instability results are available under time-average payoffs (Section 3), although a

weaker form of instability can be demonstrated in the discounting case (Section 4). Second,

Kohlberg and Mertens (1986) define strategic stability for finite games, and hence I employ

Al-Najjar’s (1995) extension to games with infinitely many pure strategies. Among his

desirable properties of stable sets, only admissibility extends straightforwardly to time-

average payoffs, but iterated dominance and a version of forward induction do apply to

URPE sets (Subsection 5.1). Third, uniform robustness to perfect entrants is also defined

for finite games, and so I extend its definition to an infinite setting, along with Swinkels’

(1992) result that certain such sets contain a stable set (Section 5). I begin, however, by

reviewing the rich body of related literature.

Evolutionary stability In its traditional formulation, evolutionary stability has had

limited success in selecting between the equilibria possible under the various Folk Theorems.

Axelrod and Hamilton (1981) show that “always defect” is not an evolutionarily stable

strategy (ESS) in the repeated Prisoners’ Dilemma with time-average payoffs, since it is

vulnerable to invasion by “tit-for-tat” (whereby a player cooperates in the first period and

thereafter chooses the action her opponent took in the previous round), though this breaks

down under discounting. Axelrod’s (1981, 1984) celebrated evolutionary simulations of

the repeated Prisoners’ Dilemma found selection pressure in favor of tit-for-tat, but the

outcome of such simulations is quite sensitive to the initial distribution of strategies upon

which the selection process acts. On a theoretical level, Axelrod argues in favor of tit-

for-tat as a “collectively stable strategy”, but this concept does not imply evolutionary

stability and gives little sharpening of the Nash Folk Theorem. Moreover, tit-for-tat is

not a subgame perfect equilibrium strategy against itself, and thus is not even sustainable

under the perfect Folk Theorems.

The usual formulation of evolutionary stability suffers from severe existence problems in

infinitely repeated games (Boyd and Lorberbaum 1987, Farrell and Ware 1989, Kim 1994),

whilst a switch to neutral stability gives little refinement of the predictions of the Folk

Theorem. Boyd and Lorberbaum (1987) show that no pure strategy can be evolutionarily

stable in the infinitely repeated Prisoners’ Dilemma, whilst Farrell and Ware (1989) extend
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this to finite mixtures of pure strategies. Kim (1994) generalizes these results to any

strategies, and also to Selten’s (1983) extensive-form concept of direct ESS. But Sugden

(1986) and Boyd (1989) show that ESS’s do exist if players occasionally make mistakes. The

existence problem for direct ESS is the possibility of mutation to strategies that differ from

the existing ones only off the equilibrium path. Selten’s notion of a limit ESS addresses this

problem by perturbing the game—so that every information set is reached with positive

probability—and finding the limit of a sequence of direct ESS’s as the perturbations vanish.

This gives a refinement of sequential equilibrium in symmetric extensive-form games (van

Damme 1987). However, Kim proves that a Folk Theorem obtains for limit ESS’s; the

concept offers no sharpening of the predictions of subgame perfection in the infinitely

repeated Prisoners’ Dilemma.

A similar criticism can be levelled at the relaxation of evolutionary stability to neutral

stability, even with time-average payoffs, where there exist neutrally stable strategies of

the infinitely repeated Prisoners’ Dilemma that are arbitrarily close to “always defect” for

example (Fudenberg and Maskin 1990). Nonetheless, Fudenberg and Maskin (1990) and

Binmore and Samuelson (1992) do find efficiency to be implied by modified versions of

neutral stability. Binmore and Samuelson’s incorporation of complexity costs into neutral

stability destabilizes the off-the-equilibrium-path punishments required to prevent secret

handshakes, and thus provides selection pressure in favor of efficiency. Fudenberg and

Maskin (1990), meanwhile, demonstrate that when players employ finitely complex strate-

gies and have time-average payoffs that are lexicographic in infinitesimally likely mistakes,

neutral stability gives efficiency in the infinitely repeated Prisoners’ Dilemma. The essential

idea is that when players make mistakes, the worst possible history for an inefficient strat-

egy profile will eventually occur—a defection under grim–trigger strategies, for instance.

Such a profile is then vulnerable to invasion by a mutant that mimics the incumbent strat-

egy except after this worst history, at which point it has nothing to lose from engaging

in an evolutionary “secret handshake” (Robson 1990) that cooperates against itself but

continues to defect against incumbents.

This idea is close to the logic in this paper. The Nash equilibrium refinement of (normal-

form) perfection (Selten 1975) explicitly incorporates the mistakes that are implicit in Fu-

denberg and Maskin’s model. However, perfection is inadequate to destabilize inefficiency,

since it requires robustness only against a particular sequence of mistakes. Fudenberg

and Maskin’s symmetric evolutionary setting means that mutants are guaranteed to play

themselves with positive probability, and outside of this setting the required mistakes are

quite special, precisely reciprocating a player’s secret handshake. By requiring robust-
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ness against all possible mistakes, however, we will see that strategic stability also selects

against unforgiving strategies.

Strategic stability In a finite n-player game, a closed set M of Nash equilibria is stable

(Kohlberg and Mertens 1986) if it is minimal with respect to the following property: for any

ε > 0, there exists some β such that, for any completely mixed-strategy profile (φ1, . . . , φn)

and for any (β1, . . . , βn), 0 < βi < β̄, the perturbed game where every strategy µi of player i

is replaced by µ̃i = (1−βi)µi+βiφi has an equilibrium ε-close toM . Intuitively, M is perfect

under all possible perturbations. Such a set satisfies a list of desirable properties that

includes existence, invariance, admissibility, iterated dominance and forward induction.

For this reason, it is Kohlberg and Mertens’ preferred notion of three stability concepts

that they discuss. It does not, however, satisfy connectedness or backwards induction,

whereas subsequent reformulated notions of stability do (Mertens 1989, 1991, Hillas 1990).

Nonetheless, here I use the original Kohlberg–Mertens concept, because Swinkels’ (1992)

concept of a URPE set is closely tied to Kohlberg–Mertens stability alone.

Kohlberg and Mertens argue forcefully for the normal-form sufficiency view that

a game-theoretic solution concept should depend only on a game’s (reduced) nor-

mal form. Perhaps the most striking illustration of this view is the result that any

proper equilibrium (Myerson 1978) of a normal-form game is a sequential equilibrium

(Kreps and Wilson 1982b) of any extensive-form game with that normal form (van

Damme 1984, Kohlberg and Mertens 1986).2 Whilst normal-form sufficiency is not un-

controversial, strategic stability does provide a unified solution to numerous instances of

troublesome behavior under point-valued extensive-form solution concepts: it implies the

“intuitive criterion” of Cho and Kreps (1987), and coincides with a variation of universal

divinity in an appealing class of signaling games (Cho and Sobel 1990); it rejects equilibria

sustained by counterintuitive threats in a two-stage Prisoners’ Dilemma–coordination game

(Glazer and Weiss 1990); it adds a mixed Nash equilibrium to the paradoxical subgame per-

fect equilibrium of the centipede game (van Damme 1989, pp. 482–3); it implies the Kreps–

Wilson (1982a) “plausible-beliefs” solution to the chain-store paradox (Govindan 1995);

and it gives incumbent under-investment in the entry game with avoidable fixed costs

(Bagwell and Ramey 1996), in line with the lack of empirical support for the classic Dixit

(1980) prediction of over-investment.

A number of authors have drawn connections between strategic stability and evolution-

ary stability. Swinkels (1992) shows that a certain “shaped” set that is “uniformly robust

2Note that sequential equilibrium fails to satisfy invariance.
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against equilibrium entrants” contains a stable set (variously defined), whilst the weaker

concept of “uniform robustness against perfect entrants” suffices to contain a Kohlberg–

Mertens stable set. A URPE set need only resist invasion by mutants playing a robust

(normal-form perfect) best reply to the population strategy profile that their presence cre-

ates. An evolutionarily stable set (Thomas 1985), by contrast, must resist invasion by all

mutants, and is hence a refinement of a URPE set. The latter’s perfectness requirement on

mutants limits the “drift” into alternative best replies that plagues evolutionary stability in

infinitely repeated games. Swinkels (1993) shows that if a set meeting a certain topological

condition is asymptotically stable in an evolutionary dynamic from a broad class, then it

contains a hyperstable set of Nash equilibria (Kohlberg and Mertens 1986). Ritzberger

and Weibull (1995) show that every face of strategies that is asymptotically stable in all

evolutionary dynamics from a certain class contains a Kohlberg–Mertens stable set, whilst

Demichelis and Ritzberger (2003) provide a condition that strengthens the inclusion to

Mertens’ (1989) reformulated stability.

2 Stability in Repeated Games

Consider a repeated game with two players i ∈ I ≡ {1, 2}, each with a finite pure action

set Ai, from which she selects an action ai in each of the periods t ∈ N.3 Letting A be

the set A1 × A2 of action profiles, payoffs in each stage game γ are given by a payoff

function u : A → R2. Let G denote the class of such repeated games Γ. Letting C (B)

be the intersection of all convex sets containing the set B, a feasible payoff v ∈ C (u(A))

is strongly dominated by another feasible payoff v′ if v′i > vi for both i. An action profile

a ∈ A is weakly inefficient if it yields the players a payoff that is strongly dominated by

another feasible payoff. There is perfect monitoring of realized action profiles. A (finite)

history ht ∈ H t
is a list (a0, . . . , at−1) of the t action profiles played in periods 0 through

t− 1, with H ≡
⋃∞
t=0H

t
the set of all possible histories, indexed by m = 1, 2, . . .. A play p

is an infinite sequence (a0, a1, . . .) of action profiles, belonging to the space P ≡ A∞. For

every history ht ∈ H, a cylinder with base on ht is the set C(ht) = {p ∈P | p = (ht, . . .)}
of all realized plays whose t initial elements coincide with ht. Let F t be the σ-algebra

on P whose elements are all finite unions of cylinders with base on H
t
. We then have a

filtration

F 0 ⊂ · · · ⊂ F t ⊂ · · · ⊂ F ,

3Extending the results to n-player games would require a public randomization device, which I do not
include here.
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where F 0 is the trivial σ-algebra and F is the σ-algebra generated by the algebra of

histories F0 ≡
⋃
t∈N F t.

Player i’s set of pure strategies is the set Xi of mappings xi : H → Ai. A pure-strategy

profile x ≡ x1 × x2 recursively induces the play a(x) ≡ (a0(x), a1(x), a2(x), . . .) ∈ P.

Given a history ht ∈ H, the continuation game is the infinitely repeated game that begins

in period t, following history ht; x|ht is then the pure-strategy profile induced by x in the

normal form of the continuation game following ht. Taking the discrete topology on stage-

game action profiles, the space X of pure-strategy profiles is endowed with the product

topology over histories, in which it is compact by Tychonoff’s theorem. This is a Cantor

space (see Aliprantis and Border, 2007, p. 98), metrizable by

D(x, y) =
∑
h∈H

1− 1h(x, y)

3m
,

where 1h(x, y) is the indicator function taking the value 1 if a(x|h) = a(y|h), h ∈ H, and

0 otherwise. Note that any cylinder set C(h), h ∈ H, is induced by an open set of pure

strategies in the product topology on X, which will be crucial for a number of the results

to follow. If, for all h ∈ H and all but finitely many t ∈ N, at(x|h) = at(y|h), then x is said

to play like y.

A mixed strategy µi then belongs to the space Φi of mixtures of pure strategies. A

mixed-strategy profile µ ≡ µ1 × µ2 belongs to the space Φ ≡ Φ1 × Φ2, and induces a

probability measure ξµ on the set P of plays. In particular, ξµ is defined inductively on

the cylinder sets, with ξµ(C(h)) giving the probability of the history h; ξµ(C(∅)) = 1 and

ξµ(C(ha)) = ξµ(C(h)) × µ|h(a), h ∈ H, a ∈ A. The Kolmogorov extension theorem then

delivers a unique extension of ξµ from the F t’s to F . The mixed-strategy space Φ is

compact in the weak∗ topology, and metrizable with metric

d(µ, µ′) =
∑
h∈H

1−Ph(µ, µ
′)

3m
,

where Ph(µ, µ
′) is the probability that µ and µ′ induce the same continuation play a(·|h)

following history h.4 In this space, the pure strategy xi is denoted by the Dirac measure

δxi .

Given a pure-strategy profile x ∈ X and a period t, the induced pure action profile

4In the weak∗ topology, a sequence {µk} in Φ converges to µ if, for every continuous function f : X → R,
the sequence of real numbers

∫
X
f dµk converges to

∫
X
f dµ. The mixed strategy space Φ is compact in

the weak∗ topology by the Banach–Alaoglu Theorem.
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at(x) yields a flow payoff of ui(a
t(x)) to player i. I will be concerned first of all with

arbitrarily patient players, in the sense that each player i aggregates her flow payoffs over

time according to the time-average payoff li(x) ≡ lim supT→∞
∑T

t=0 ui(a
t(x))/T .5 However,

I will also be interested in (non-arbitrarily) patient players, who maximize their average

discounted payoffs,

fi(x) = (1− ρ)
∞∑
t=0

ρtui(a
t(x)),

where ρ ∈ [0, 1) will be “sufficiently large”. The corresponding expected payoffs to player

i under the mixed-strategy profile µ are given by

U i(µ) =

∫
X

li(x) dµ and Ui(µ) =

∫
X

fi(x) dµ.

Given a repeated game Γ ∈ G , the normal form of Γ is defined by the triple (I,X, l) or

(I,X, f), where l ≡ (l1, l2) and f ≡ (f1, f2).

A measure ηi on Xi is positive if ηi(E) ≥ 0 for every measurable set E. It is strictly

positive if it is positive and ηi(E) > 0 for every open set E. Al-Najjar (1995) defines a set

of measures Mi on Xi as an (admissible) perturbation class for player i if it satisfies the

following conditions:

1. Mi is a convex set of positive measures of norm no greater than 1;

2. Mi contains 0 and at least one strictly positive measure; and

3. for every Borel set B, and any perturbation ηi in Mi, the restriction ηi[B] of ηi to B

is also in Mi.

Let M̊i denote the subset of Mi consisting of strictly positive measures. If a mixed strategy

µi is such that µi ≥ ηi for some ηi ∈ M̊i (and setwise inequality of measures), then µi is

called completely mixed. Given µ ∈ Φ, let µ−i be the strategy µj of player i’s opponent,

player j 6= i. Given η ∈M ≡M1×M2 and a mixed-strategy profile µ ∈ Φ, let BRi(µ, η) ≡
{φi ∈ Φi | ∀µ′i ∈ Φi : µ′i ≥ ηi ⇒ U i(φi, µ−i) ≥ U i(µ

′
i, µ−i)} be Al-Najjar’s restricted best-

reply correspondence under time-average payoffs, with BR(µ, η) ≡ BR1(µ, η)× BR2(µ, η)

and BRi(·, 0) ≡ BRi(·). Let BRi(µ, η) ≡ {φi ∈ Φi | ∀µ′i ∈ Φi : µ′i ≥ ηi ⇒ Ui(φi, µ−i) ≥
Ui(µ

′
i, µ−i)}, BR(µ, η) and BRi(·, 0) be the analogous objects under average discounted

payoffs.

5Either the limit superior or inferior has the advantage of existence over the classical limit, and the ad-
vantage of integrability over a Banach limit. However, I use the limit superior for its upper semicontinuity,
which is important for existence of a best reply under time-average payoffs.
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Definition 1 (i) Suppose that η̄ ∈ M and that Y ⊂ Φ is an open set containing the

compact set of equilibria M . Then we say that M is (Y, η̄)-pre-stable under time-average

payoffs (resp., average discounted payoffs) if for every η ∈M with η ≤ η̄ the correspondence

BR(·, η) (resp., BR(·, η)) has a fixed point µ in Y .

(ii) A compact set of equilibria M is pre-stable under time-average payoffs (resp., average

discounted payoffs) if for every open Y containing M there exists an η̄ ∈ M̊ such that M

is (Y, η̄)-pre-stable under time-average payoffs (resp., average discounted payoffs).

(iii) A compact set of equilibria M is stable under time-average payoffs (resp., average

discounted payoffs) if it is a minimal pre-stable set under time-average payoffs (resp.,

average discounted payoffs).

Letting Γη be the game obtained from Γ by adding the restriction η on strategies, we can

see that the set of Nash equilibria of Γη is the set of fixed points of the correspondence

BR(·, η) (resp., BR(·, η)).

Since fi is continuous, Ui is weak∗ continuous and linear in Φi by Al-Najjar’s Proposition

2.1. Hence, we have existence of a stable set under average discounted payoffs by his

Proposition 3.2, and his formulations of admissibility, iterated dominance and forward

induction by his Propositions 4.1–4.4. By contrast, li is not continuous when X is endowed

with the product topology. For two strategy profiles may be close in the product topology

even if they are quite different in the distant future; in particular, x, y ∈ X could induce

different action profiles for all t ≥ τ , yet still be close in the product topology for τ

sufficiently large. This is inconsistent with continuity of li, under which players care only

about outcomes occurring infinitely often; if µ ∈ Φ plays like µ′ ∈ Φ, then U i(µ) = U i(µ
′),

by shift invariance of the limit superior. Al-Najjar’s Propositions 2.1, 2.2 and 3.2 thus fail

under time-average payoffs, so that we have no general existence result to invoke.6 Nor

does Carbonell-Nicolau’s (2011) result for discontinuous games apply, since the class G of

repeated games fails his Condition (B) under time-average payoffs. However, BRi(µ, η)

is at least nonempty by upper semicontinuity of U i and the appropriate extension of the

Weierstrass Extreme Value Theorem.7 Moreover, I will later demonstrate the existence of

a stable subset of a URPE set in a class of repeated games that includes the Prisoners’

Dilemma. We will see in Subsection 5.1 that this URPE set satisfies iterated dominance

and a version of forward induction, whilst its stable subset continues to be admissible.

6The linearity of U i does carry over from Al-Najjar’s Proposition 2.1 by Fubini’s Theorem (since li is
integrable), and I will have frequent use for this property.

7The Berge Maximum Theorem applies only in part; see Leininger (1984) for details—his Lemma but
not his Theorem applies here. See also Ausubel and Deneckere (1993).
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3 Unstable Sets with Arbitrary Patience

Let ∆(X) be the set of probability measures on the set X. Given a stage-Nash equilibrium

π∗ ∈ ∆(A) of γ, let stage Nash be the strategy profile µ∗ ∈ Φ of Γ that plays π∗ following

any history h ∈ H.

Lemma 1 For any completely-mixed strategy profile µ̊ ∈ Φ, any history h ∈ H has strictly

positive probability under µ̊, i.e. ξµ̊(C(h)) > 0.

This follows immediately from C(h) being induced by an open set in the product topology

on X, and a completely mixed-strategy profile putting strictly positive probability on any

open set.

Proposition 1 If π∗ ∈ ∆(A) is a weakly inefficient pure equilibrium of γ, and M ⊆ Φ

is a set of strategy profiles of Γ that play like stage Nash µ∗, then M is not stable under

time-average payoffs.

Proof. Since π∗ is weakly inefficient, let p̄ ∈ P be a play that yields the players a time-

average payoff by which π∗ is strongly dominated. Let x̄ be the pure-strategy profile that

plays p̄ following any history. Consider a strategy profile φ ∈ Φ such that, for all t:

• φ|ht = δx̄ if ht = (a0(x̄), a1(x̄), . . . , at(x̄)); and

• φ|ht = µ∗|ht otherwise.

Now consider a strategy profile φ̊κ ∈ Φ such that, for all h ∈ H, φ̊κ|h = (1 − κ)φ|h + κ̊a,

where κ ∈ (0, 1) and å is a full-support mixture over action profiles (i.e. å puts strictly

positive probability on each a ∈ A). Then I claim that there exists κ̄ sufficiently small

that φ̊κ̄ is a completely mixed-strategy profile with U i(φi, φ̊
κ̄
−i) > U i(µi, φ̊

κ̄
−i) for both i

and all µ ∈ M . To see this, note first that if φ̊κ̄ were not completely mixed, there would

exist an open set E ⊂ X such that φ̊κ̄(E) = 0, and hence some history h ∈ H with zero

probability under φ̊κ̄ (i.e. ξφ̊κ̄(C(h)) = 0), contradicting å’s full support. Second, clearly

U i(φ) > U i(µi, φ−i) for all µ ∈M , and U i(·, φ̊κ̄−i)→ U i(·, φ−i) as κ̄→ 0.

Next consider the perturbed game Γβφ̊κ̄ , β ≡ (β1, β2)′ ∈ [0, 1)2, where every pure

strategy δxi of each player i is replaced by δ̃xi = (1 − βi)δxi + βiφ̊
κ̄
i ; any mixed strategy

µi ∈ Mi then becomes µ̃i = (1 − βi)µi + βiφ̊
κ̄
i in Γβφ̊κ̄ .8 By pre-stability of M , for every

open Y containing M there must then exist a β̄ > 0 such that, for every β such that

maxi∈I βi ≤ β̄, Y contains an equilibrium of Γβφ̊κ̄ . But I claim to the contrary that, for

8Note that this need not be the case for µi /∈Mi, which may already satisfy the restriction βiφ̊
κ̄
i .

10



any such Y and any µ̃ ∈ Y , there exists a deviation away from µ̃ for each player i for any

positive βi. To see this, note that playing φi yields player i the same time-average payoff

against µ−i as µi for any µ ∈M , U i(φi, µ−i) = U i(µ). Hence,

U i(φ̃i, µ̃−i) = (1− βi)U i(φ̃i, µ−i) + βiU i(φ̃i, φ̊
κ̄
−i)

= (1− βi)
[
(1− βi)U i(φi, µ−i) + βiU i(φ̊

κ̄
i , µ−i)

]
+ βi

[
(1− βi)U i(φi, φ̊

κ̄
−i) + βiU i(φ̊

κ̄
i , φ̊

κ̄
−i)
]

> (1− βi)
[
(1− βi)U i(µ) + βiU i(φ̊

κ̄
i , µ−i)

]
+ βi

[
(1− βi)U i(µi, φ̊

κ̄
−i) + βiU i(φ̊

κ̄
i , φ̊

κ̄
−i)
]

= (1− βi)U i(µ̃i, µ−i) + βiU i(µ̃i, φ̊
κ̄
−i)

= U i(µ̃)

for all positive βi.

Intuitively, for an inefficient stage-Nash equilibrium, stage Nash leaves nothing to lose from

experimenting with Pareto-improving play and reverting to stage Nash if the experimenta-

tion is not reciprocated.9 Why is strong Pareto dominance required? Because the strategy

profile where one player already plays according to φ plays like stage Nash, and the other

player must be given a strict incentive to switch.

I can in fact generalize Proposition 1 to apply to sets of strategies with an inefficient

stage-Nash continuation, on or off the equilibrium path. This captures the instability of

sets of strategies that are “unforgiving” in the sense of having (inefficient) stage-Nash

continuations, such as “grim–trigger” in the Prisoners’ Dilemma. Given histories g, h ∈ H,

let gh be their concatenation, in the sense that history g is followed by history h. Given a

stage-Nash equilibrium π∗ ∈ ∆(A) of γ and a strategy profile µ̂∗ ∈ Φ of Γ, if there exists

a history ĥ ∈ H such that µ̂∗|ĥ plays π∗ following any (continued) history, then µ̂∗ will be

said to be a trigger-strategy profile of Γ with trigger history ĥ.

Theorem 1 Suppose that π∗ ∈ ∆(A) is a weakly inefficient pure equilibrium of γ, that

µ̂∗ ∈ Φ is a trigger-strategy profile of Γ with trigger history ĥ ∈ H, and that M ⊆ Φ is a

set of strategy profiles that play like µ̂∗. Then M is not stable under time-average payoffs.

9These experimenting strategy profiles are inspired by Fudenberg and Maskin’s (1990) secret-handshake
strategies, but they are not quite the same; in particular, they never switch irrevocably to the Pareto-
improving action profile. This is important under stability, where the secret-handshake signal may be sent
“by mistake” with positive probability in the perturbed game Γβφ̊κ̄ , in which case an irrevocable switch
away from stage Nash may be worse for a player than reversion to stage Nash.
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Proof. As in the proof of Proposition 1, let p̄ ∈ P be a play that yields the players a

time-average payoff by which π∗ is strongly dominated, and x̄ be the pure-strategy profile

that induces p̄ following any history. Consider a strategy profile ψ ∈ Φ such that, for all t:

• ψ|ĥht = δx̄ if ht = (a0(x̄), a1(x̄), . . . , at(x̄)); and

• ψ|ht = µ̂∗|ht otherwise.

Let ν̊ ∈ Φ be such that ν̊|h = å for all h ∈ H, where å is a full-support mixture over

action profiles (i.e. å puts strictly positive probability on each a ∈ A). Now consider a

strategy profile ψ̊κ ∈ Φ such that ψ̊κ = (1 − κ)ψ + κν̊, where κ ∈ (0, 1). Then I claim

that there exists κ̄ sufficiently small that ψ̊κ̄ is a completely mixed-strategy profile with

U i(ψi, ψ̊
κ̄
−i) > U i(µi, ψ̊

κ̄
−i) for both i and all µ ∈ M . To see this, note first that if ψ̊κ̄

were not completely mixed, there would exist an open set E ⊂ X such that ψ̊κ̄(E) = 0,

and hence some history h ∈ H with zero probability under ψ̊κ̄ (i.e. ξψ̊κ̄(C(h)) = 0),

contradicting å’s full support. Second, clearly U i(ψ|ĥ) > U i(µi|ĥ, ψ−i|ĥ) for all µ ∈ M .

Third, because å is a full-support action-profile mixture (so that (ψi|h, ν̊−i|h) will play

like (µi|h, ν̊−i|h)), U i(ψi|h, ν̊−i|h) = U i(µi|h, ν̊−i|h) for all µ ∈ M and all h ∈ H; hence,

U i(ψ̊
κ̄
i |h, ν̊−i|h) = U i(µ̊

κ̄
i |h, ν̊−i|h), where µ̊κ̄ = (1− κ̄)µ+ κ̄ν̊. It follows that

U i(ψ̊
κ̄|ĥ) = (1− κ̄)2U i(ψ|ĥ) + κ̄(1− κ̄)U i(̊νi|ĥ, ψ−i|ĥ) + (1− κ̄)κ̄U i(ψi|ĥ, ν̊−i|ĥ) + κ̄2U i(̊νĥ)

> (1− κ̄)2U i(µi|ĥ, ψ−i|ĥ) + κ̄(1− κ̄)U i(̊νi|ĥ, ψ−i|ĥ) + (1− κ̄)κ̄U i(µi|ĥ, ν̊−i|ĥ) + κ̄2U i(̊νĥ)

= U i(µ̊
κ̄
i |ĥ, ψ̊

κ̄
−i|ĥ),

and since ĥ has strictly positive probability under each of ψ̊κ̄ and (µ̊κ̄i , ψ̊
κ̄
−i) by Lemma 1,

U i(ψ̊
κ̄) > U i(µ̊

κ̄
i , ψ̊

κ̄
−i). Fourth, U i(ψ̊

κ̄
i , ·)→ U i(ψi, ·) and U i(µ̊i, ·)→ U i(µi, ·) as κ̄→ 0.

Next consider the perturbed game Γβψ̊κ̄ , β ≡ (β1, β2)′ ∈ [0, 1)2, where every pure

strategy δxi of each player i is replaced by δ̃xi = (1 − βi)δxi + βiψ̊
κ̄
i . By pre-stability of

M , for every open Y containing M there must then exist a β̄ > 0 such that, for every β

such that maxi∈I βi ≤ β̄, Y contains an equilibrium of Γβψ̊κ̄ . But the trigger history ĥ has

positive probability in Γβψ̊κ̄ for any β ∈ (0, 1)2 by Lemma 1, and the proof of Proposition 1

establishes that ψ|ĥ (and hence ψ) is a profitable deviation away from any µ̃|ĥ (and hence

µ̃) such that µ̃ ∈ Y .

Intuitively, ψ is just like φ in the proof of Proposition 1, except that it waits until the

trigger history ĥ before commencing its experimentation.10 At this point, there is again

nothing to lose from experimenting with Pareto-improving play and reverting to stage Nash

10Of course, Proposition 1 is just the special case of this result with ĥ = ∅.
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if the experimentation is not reciprocated. And since every history has positive probability

under a completely mixed-strategy profile, it does not matter if such a continuation is

off the equilibrium path; the perturbations to which stable sets must be robust lead such

continuations to be possible.

4 (Y, η)-instability with Patient Players

An obvious question to arise at this point is whether these results carry over to the dis-

counting case. In fact, for a given discount factor ρ < 1, the destabilizing experimentation

of the previous section breaks down, because there is now a utility cost to departing from

Nash play temporarily before reverting. However, there remains a sense in which stage

Nash play is unstable as the players become arbitrarily patient, as shown by the following

result.

Proposition 2 Suppose that π∗ ∈ ∆(A) is a weakly inefficient pure equilibrium of γ, that

µ̂∗ ∈ Φ is a trigger-strategy profile of Γ with trigger history ĥ ∈ H, and that M ⊆ Φ is a set

of strategy profiles that play like µ̂∗. Then, there exists a neighborhood Y ⊂ Φ of M such

that, for any η̄ ∈ M̊ , there exists ρ ∈ [0, 1) sufficiently large that M is not (Y, η̄)-pre-stable

under average discounted payoffs.

Proof. Suppose otherwise; then for any neighborhood Y ⊂ Φ of M , there exists an η̄ ∈ M̊

such that, for all ρ ∈ [0, 1), M is (Y, η̄)-pre-stable under average discounted payoffs. Now

consider the perturbed game Γβφ̊κ̄ from the proof of Proposition 1. By (Y, η̄)-pre-stability

of M , there exists a β̄ > 0 such that, for every β with maxi∈I βi ≤ β̄, Y contains an equi-

librium of Γβφ̊κ̄ . But for any µ ∈M , Ui(φi, µ−i)→ Ui(µ) as ρ→ 1, and Ui(φ) > Ui(µi, φ−i)

for any ρ ∈ [0, 1). Hence, there exists a ρ ∈ [0, 1) sufficiently large that Ui(φ̃i, µ̃−i) > Ui(µ̃)

for all βi ∈ (0, β̄]. Hence, for ρ sufficiently large, there exists a deviation away from any

µ̃ ∈ Y for each player i and any βi ∈ (0, β̄]. Extending the argument as in the proof of

Theorem 1, a contradiction is reached.

In words, there exists a neighborhood of a set of trigger-strategy profiles such that we can al-

ways find a small perturbation of the game and a sufficiently high level of patience amongst

the players that there is no equilibrium in that neighborhood. This is a weaker notion of

instability than if, fixing players to be sufficiently patient, there existed a neighborhood

of a set of trigger-strategy profiles such that we could always find a small perturbation

of the game with no equilibrium in that neighborhood. This stronger instability does not

hold: fixing ρ, there exists a neighborhood Y of a set of strategies that plays like stage
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Nash such that, under any sufficiently small perturbation of the game reciprocal experi-

mentation is too unlikely to offer a profitable deviation to a strategy profile outside of Y .

Experimentation can be delayed, in order to reduce the discounted value of its utility cost

in the event of failure, but this brings it closer to the original strategy in the metric d, and

hence within Y under a sufficiently small perturbation. As a result, the weaker form of

instability captured in Proposition 2 requires the players’ degree of patience to depend on

the size of perturbation to the game.

5 A Stable Set with Arbitrary Patience

But then what would constitute a stable set? Indeed, since we have no existence result

under time-average payoffs, will any strategy profiles form a stable set? To answer this

question, I will use the following concepts, which modify those of Swinkels (1992) to the

current setting.

Definition 2 Let M ⊆ Φ, and let Y be a neighborhood of M . A directional retract for M

and Y is a map R : Φ→ Y such that:

1. R is continuous;

2. R(µ̃) = µ̃, ∀µ̃ ∈ Y ;

3. R−1(M) = M ; and

4. ∀σ ∈ Φ\Y , ∃λ ∈ (0, 1) and µ ∈M such that R(σ) = (1− λ)µ+ λσ.

Definition 3 Given a status quo strategy profile µ ∈ Φ, an entrant σ ∈ Φ, and a post-

entry population µ̃ = (1 − λ)µ + λσ, λ ∈ [0, 1], I will say that σ is an α-perfect entrant

taking the population from µ to µ̃ if:

1. σ is completely mixed;

2. σ ∈ BR(µ̃, αη̄α) for some η̄α ∈ M̊ ; and

3. for all i ∈ I, and any Borel set Bi ⊂ Xi, if δxi /∈ BRi(µ̃) for all xi ∈ Bi, then

σi(Bi) ≤ α.

I say that σ is a perfect entrant taking the population from µ to µ̃ if there is

{(µα, σα, µ̃α)}α↓0, (µα, σα, µ̃α) → (µ, σ, µ̃) such that for each α, σα is an α-perfect en-

trant taking the population from µα to µ̃α. A closed set M ⊆ Φ is uniformly robust to
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perfect entrants (URPE) if there is a neighborhood Y ⊆ Φ of M such that for all µ ∈ M ,

if σ is a perfect entrant taking the population from µ ∈M to µ̃ ∈ Y , then µ̃ ∈M . If there

is a directional retract for M and Y , then we say that M admits a directional retract.

Note that condition 2 in Definition 3 modifies the corresponding condition of Swinkels

(1992) by explicitly requiring that σ be a (restricted) best reply in the perturbed game

Γαη̄α , where αη̄α is some strictly positive measure on X of norm no greater than α. This

addition is quite consistent with the standard notion of perfectness (and arguably implicit

in Swinkels’ formulation), and moreover is crucial for Theorem 2 below.

Clearly URPE sets exist, although they need not be subsets of Nash equilibria—the

whole strategy space, for instance. Moreover, if a URPE set M is convex, then a directional

retract may be constructed as follows. Choose any ε > 0 such that M is URPE for

Y ≡ {µ′ ∈ Φ | d(µ′,M) ≤ ε}. For µ ∈ Φ, define V (µ) ≡ arg minµ′∈M d(µ, µ′). By contrast

with Swinkels (1992, p. 337), V (µ) is not uniquely defined, for the following reason.

Lemma 2 The metric d is convex, but not strictly convex.

Proof. Since

d(µ, λµ′ + (1− λ)µ′′) =
∑
h∈H

1−Ph(µ, λµ
′ + (1− λ)µ′′)

3m

=
∑
h∈H

1− λ
∑

x∈X µ(x|h)µ′(x|h)− (1− λ)
∑

x∈X µ(x|h)µ′′(x|h)

3m

=
∑
h∈H

λ(1−Ph(µ, µ
′)) + (1− λ)(1−Ph(µ, µ

′′))

3m

= λd(µ, µ′) + (1− λ)d(µ, µ′′),

the result follows.

Hence, V is not a continuous function, but rather a union of continuous functions and

hence a lower hemicontinuous correspondence. Because Φ is compact and V is lower hemi-

continuous with nonempty closed convex values, there exists a continuous selection v from

V by the Michael Selection Theorem. Let L(µ) ≡ {µ̃ | µ̃ ∈ Y, ∃α ∈ [0, 1] such that µ̃ =

(1 − α)v(µ) + αµ}. Because L(µ) is continuous and convex-valued as a correspondence,

W (µ) ≡ arg minµ̃∈L(µ) d(µ, µ̃) is again a union of continuous functions, and has nonempty

closed convex values. Hence, we can again apply the Michael Selection Theorem to obtain

the required continuous selection from W . Conditions 2–4 of Definition 2 are clear by

construction.
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The following result extends Swinkels’ (1992) Theorem 2 to an infinite strategy space;

much of the proof simply reproduces that of Swinkels for convenience. Intuitively, for any

given perturbed game featuring in the definition of a stable set, the proof constructs a

perfect entrant which is then shown to be an equilibrium of the perturbed game. Whilst

the notation of time-average payoffs is used in the proof of this result, it would also hold

under average discounted payoffs, and indeed in a general n-player infinite normal-form

game.

Lemma 3 Every URPE set M that admits a directional retract contains a stable set.

Proof. For both i, there exists a homeomorphism fi from Xi to the unit interval [0, 1], on

which we may define the Lebesgue measure L . Fix a neighborhood Y of M and directional

retract R. Let {ηk}k∈N be a sequence of measures in M converging to 0 as k → ∞. For

any xi ∈ Xi, define the mixed strategy x̆ki ≡ (1 − ηki (Xi))δxi + ηki that is closest to δxi
satisfying the ηk restriction; for any νi ∈ Φi, define ν̆ki ≡ (1− ηki (Xi))νi + ηki . For α ∈ (0, 1)

and k ∈ N, define

P k
α(µ) =

{
σ

∣∣∣∣∣ (1) σi(Bi) ≥ α
2
L (fi(Bi)) for all i ∈ I, any Borel set Bi ⊂ Xi

(2)
{
∀xi ∈ Bi : x̆i /∈ BRi(µ, η

k)
}
⇒ σi(Bi) ≤ α, ∀i ∈ I,∀Bi ⊂ Xi

}
.

Let Ck
α(·) ≡ P k

α(R(·)). Because P k
α is an upper hemicontinuous, nonempty, compact-

and convex-valued correspondence, R is a continuous function, and Φ is a locally convex

Hausdorff space, Ck
α has a fixed point σkα for each α and k by the Kakutani–Glicksberg–Fan

Theorem. There then exists some η̄kα ∈ M̊ such that σkα ∈ BR(σkα, αη̄
k
α). For any ν ∈ Φ,

let F (ν) ∈ M be such that R(ν) is a convex combination of ν and F (ν). For ν ∈ Φ\Y ,

such an F (ν) exists by Definition 2.4. For ν ∈ Y , ν = R(ν), and so any element of M will

do (since ν is expressible as a convex combination of any element of Φ and itself). Then,

σkα is an α-perfect entrant in Γηk taking the population from F (σkα) ∈M to R(σkα).

For each k, choose a subsequence of {σkα}α↓0 such that σkα converges to some σk. Choose

a convergent subsequence of {σk}k∈N with limit σ. I will now show that σ is a perfect entrant

taking the population from some µ ∈M to R(σ). Choosing α > 0, there exists k such that

d(σ, σk) < α/3 and d(δx, x̆) < α/3, where x̆ is x̆k for this value of k. Using the continuity of

R, k can be chosen such that in addition d(R(σ), R(σk)) < α/3. Let ζα be an α/2-perfect

entrant taking the population from F (ζα) to R(ζα) in Γηk such that d(σk, ζα) < α/3 and

d(R(σk), R(ζα)) < α/3. Since there is a convergent subsequence of {σkα}α↓0 with limit σk,

since R is continuous, and since an α-perfect entrant is also an α′-perfect entrant for any
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α′ > α, such an entrant exists. Since d(R(ζα), ˘R(ζα)) < α/3,

d(R(σ), ˘R(ζα)) ≤ d(R(σ), R(σk)) + d(R(σk), R(ζα)) + d(R(ζα), ˘R(ζα)) < α. (1)

Now, assume that δxi /∈ BRi( ˘R(ζα)) for all xi in some Borel set Bi ⊂ Xi. Then,

x̆i /∈ BRi(R(ζα), ηk), and so ζαi (Bi) ≤ α/2. But,

ζ̆αi (Bi) = (1− ηki (Xi))ζ
α
i (Bi) + ηki ≤ (1− ηki (Xi))

α

2
+ ηki ,

and so as ηki < d(δx, x̆) < α/3 < α/2, ζ̆αi (Bi) < α. Thus, ζ̆α is an α-perfect entrant in Γ

taking the population from ˘F (ζα) to ˘R(ζα).

Take a sequence α → 0. By (1), ˘R(ζα) converges to R(σ). By construction,

d(σ, ζα) ≤ d(σ, σk) + d(σk, ζα) < 2α/3, and so ζα converges to σ. Take a subsequence

such that F (ζα) also converges. Now, by definition of F , each F (ζα) ∈ M and so

as M is closed, limα↓0 F (ζα) ∈ M . As α → 0, ηk → 0, and so d(ν, ν̆) → 0 for

any ν ∈ Φ. Thus, limα↓0 F (ζα) = limα↓0
˘F (ζα), limα↓0R(ζα) = limα↓0

˘R(ζα) = R(σ),

and limα↓0 ζ
α = limα↓0 ζ̆α = σ. So, σ is a perfect entrant taking the population from

limα↓0 F (ζα) ∈M to R(σ) ∈ Y .

As M is URPE by hypothesis, R(σ) must be an element of M . Hence, σ must be an

element of M , and so R(σkα) = σkα for σkα sufficiently close to σ. Thus for k large, σk is

a perfect (and so Nash) equilibrium of Γηk . The existence of a minimal closed subset of

M having the desired property is then given by the following argument. Let Ψ be the

(non-empty) collection of pre-stable sets in Φ, partially ordered by (weak) set inclusion.

By Hausdorff’s Maximality Principle, Ψ contains a maximal nested sub-collection. Let

Ψ′ ⊆ Ψ be such a sub-collection, and let M̃ be the intersection of all sets M ′ for which

M ′ ∈ Ψ′. Since each set M ′ is non-empty and compact, so is M̃ , by the Cantor Intersection

Theorem. Since Ψ′ is nested, for any open Y ∈ Φ containing M̃ , there must be an M ′ ∈ Ψ′

that is also contained in Y . It follows (by pre-stability of M ′) that there exists an η̄ ∈ M̊

such that, for every η ∈ M with η ≤ η̄, BR(·, η̄) has a fixed point µ in Y , i.e. M̃ is

(pre-)stable.

With this result in place, I can analyze the stability of specific strategy profiles of Γ.

An obvious candidate for stability in the Prisoners’ Dilemma is the pure-strategy profile

known as perfect tit-for-tat, whereby each player cooperates if and only if both players

played the same action in the previous period, and which is hence forgiving in the sense

of having no stage-Nash continuations. Consider the class G ∗ of repeated games Γ ∈ G

for which: the stage game g has a pure equilibrium a∗ ∈ A that is strongly dominated
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by the payoff u(ā) in another pure profile ā ∈ A; and the payoff u(ā) is achieved by no

π ∈ ∆(A)\{δā}. Infinite repetition of the Prisoners’ Dilemma in Figure 1 belongs to this

class.

Definition 4 Given Γ ∈ G ∗, the pure-strategy profile x ∈ X is called generalized perfect

tit-for-tat if, for all t:

• at(x) = ā if at−1 ∈ {ā, a∗, ∅}; and

• at(x) = a∗ otherwise.

Theorem 2 Given Γ ∈ G ∗, if M ⊆ Φ is the set of all convex combinations of pure-strategy

profiles that play like generalized perfect tit-for-tat x, then M contains a stable set under

time-average payoffs.

Proof. If σ is a perfect entrant taking the population from δx to δ̃x = (1 − λ)δx +

λσ, λ ∈ [0, 1], then σαi must be a best reply to δ̃αx−i for both i in some sequence of

perturbed games {Γαη̄α}α↓0 with each η̄α ∈ M̊ . In particular, since all h ∈ H have

positive probability under the completely mixed (σαi , δ̃
α
x−i

) by Lemma 1, it follows that

U i(σ
α
i |h, δ̃αx−i |h) ≥ U i(δ

α
xi
|h, δ̃αx−i |h) for all h ∈ H, which holds if and only if

(1− λ)U i(σ
α
i |h, δαx−i |h) + λU i(σ

α|h) ≥ (1− λ)U i(δ
α
x |h) + λU i(δ

α
xi
|h, σα−i|h).

Since this must hold for all sufficiently small λ, it follows that U i(σ
α
i |h, δαx−i |h) ≥ U i(δ

α
x |h).

But since, for all h ∈ H, δx|h = limα→0 δ
α
x |h has both players play ā in all but finitely many

periods, (σi|h, δx−i |h) = limα→0(σαi |h, δαx−i|h) must do likewise, and hence (σi, δx−i) must

randomize over pure-strategy profiles that play like x. This argument can be repeated with

(σi, δx−i) in place of δx, or indeed any convex combination of pure-strategy profiles that

play like δx. Thus, δ̃x = (1− 2λ)δx + λ(σi, δx−i) + λ(δxi , σ−i) is itself a convex combination

of pure-strategy profiles that play like x, i.e. it belongs to M . M is thus URPE, hence it

contains a stable set by Lemma 3.

Intuitively, generalized perfect tit-for-tat is efficient in any continuation, and punishes

a deviation if and only if it does not play like it. Hence, strategy profiles that do play like

perfect tit-for-tat are robust to noisy optimizing mutants—i.e. they constitute a URPE set,

and thus contain a stable set. Swinkels’ (1992) stronger concept of “uniform robustness

against equilibrium entrants” (UREE) is unsuitable for this purpose, because it will admit

any equilibrium alternative best reply. A UREE set in the Prisoners’ Dilemma must hence

include grim–trigger for instance, whereas URPE sets require entrants to perform well in
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the presence of mistakes. Sets that are “closed under better replies”—which also contain

stable sets by Ritzberger and Weibull’s (1995) Proposition 4—will admit any alternative

best reply and are hence inadequate here a fortiori. Strategy profiles that play like gen-

eralized perfect tit-for-tat punish deviations (both on and off the equilibrium path), and

hence any entrant that performs well in the presence of mistakes must likewise punish

deviations. If we could not in this way exclude non-punishing alternative best replies (such

as “always cooperate”), in turn we could not exclude inefficient alternative best replies

to those strategies (such as “always defect”). Such “drift” would prevent us from having

an efficient set closed under better replies (with a stable subset); such sets may be much

bigger than URPE and stable sets in this setting.

5.1 Properties of the stable set

Theorem 2 establishes the existence of a stable set in the class G ∗ of repeated games. But

what of the other properties of stable sets established by Al-Najjar (1995), admissibility,

iterated dominance and forward induction?

An equilibrium µ̄ of Γ is perfect if it is the limit point of a sequence {µk} of equilibria

of the perturbed games Γηk for some sequence of perturbations {ηk} in M̊ converging

to 0. A pure strategy yi ∈ Xi dominates the pure strategy xi ∈ X if U i(δyi , µ−i) ≥
U i(δxi , µ−i) for all µ−i and with strict inequality for at least one µ−i. Following Al-Najjar

(1995): a set Bi ⊂ Xi is called dominated if every strategy in Bi is dominated (by possibly

different strategies); a strategy xi ∈ Xi is strongly dominated if it has a dominated open

neighborhood; and a mixed-strategy profile µ is admissible if, for every player i and every

strongly dominated strategy xi, µi(Yi) = 0 for every dominated open set Yi containing xi.

For any xi ∈ Xi, the mixed strategy that is ‘closest’ to xi satisfying the η restriction is

x̆i ≡ (1 − ηi(Xi))δxi + ηi. The proofs of the following two lemmas are essentially those of

Al-Najjar’s Lemma A.1(iii) and (iv), but avoiding the need for continuous utility functions.

Lemma 4 Fix the perturbation η ∈ M and the Borel set Bi ⊂ Xi. Suppose that µ

is an equilibrium for Γη and that for all xi ∈ Bi, we have U i(δx̆i , µ−i) < U i(µ), then

µi(Bi) = ηi(Bi).

Proof. Suppose, by way of contradiction, that b = µi(Bi) − ηi(Bi) > 0. Since µ is an

equilibrium of Γη, there exists a yi ∈ Xi such that U i(µ) = U i(δy̆i , µ−i) . It follows that

U i(δy̆i , µ−i) > U i(δx̆i , µ−i) for all xi ∈ Bi, and hence U i(δyi , µ−i) > U i(δxi , µ−i). Define the

mixed strategy

µ̂i = µi[Bc
i
]
+ ηi[Bi] + bδyi .
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Since µi[Bc
i
]
+ ηi[Bi] ≥ ηi and b > 0, it follows that µ̂i ≥ ηi. Moreover,

µ̂i − µi = bδyi − (µi − ηi)[Bi],

and hence

U i(µ̂i, µ−i)− U i(µ) = U i(bδyi − (µi − ηi)[Bi], µ−i)

=

∫
Xi

(U i(δyi , µ−i)− U i(δxi , µ−i)) d(µi − ηi)[Bi] > 0,

where the strict inequality follows from the fact that we have an integral of a strictly

positive function evaluated using a positive, non-zero measure. Thus, µi is not a best

reply against µ−i in the perturbed game Γη, contradicting the assumption that µ is an

equilibrium.

Lemma 5 If η−i ∈ M̊−i, µ is an equilibrium for Γη and xi is a dominated strategy, then

U i(δx̆i , µ−i) < U i(µ).

Proof. Suppose that yi dominates xi. Since µ−i is completely mixed, it is clear that

U i(δyi , µ−i) > U i(δxi , µ−i), and hence U i(δy̆i , µ−i) > U i(δx̆i , µ−i). Since µi is a best reply to

µ−i in the perturbed game Γη, we have U i(µ) ≥ U i(δy̆i , µ−i) > U i(δx̆i , µ−i) as required.

Proposition 3 below is essentially Al-Najjar’s Proposition 4.1, adapted for discontinuous

utility. The proof of his Proposition 4.2—that every equilibrium in a stable set is perfect—

makes no use of continuous utility functions, and hence holds for time-average payoffs; I

state it here as Proposition 4 without proof, for convenience.

Proposition 3 (Admissibility) If µ̄ is a perfect equilibrium, then for every dominated

open neighborhood Yi, µ̄i(Yi) = 0. In particular, every perfect equilibrium is admissible.

Proof. Since µ̄ is perfect, it is the limit point of a sequence {µk} of equilibria of the

perturbed games Γηk for some sequence of perturbations {ηk} in M̊ converging to 0.

Suppose, contrariwise to the result, that µ̄i(Yi) > 0 for some dominated open neighborhood

Yi. As in the proof of Al-Najjar’s Proposition 4.1, we know that lim infk→∞ µ
k
i (Yi) ≥ µ̄i(Yi)

and limk→∞ η
k
i (Yi) = 0, and hence µki (Yi) > ηki (Yi) for all large enough k. Lemma 4 now

shows that, for all large k, there must be some x̄ki ∈ Yi such that U i(µ
k) = U i(δx̄ki , µ

k
−i).

But since such x̄ki is dominated by definition and since µk is completely mixed, Lemma 5

yields the opposite conclusion that U i(µ
k) > U i(δx̄ki , µ

k
−i).

Proposition 4 (Al-Najjar 1995) Every equilibrium in a stable set is perfect.
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Thus, we see that admissibility of stable sets readily carries over to the infinite case with

time-average payoffs. By contrast, Al-Najjar’s demonstration that stable sets of infinite

games satisfy iterated dominance and forward induction relies crucially on the continuity of

utility functions. However, the properties of URPE sets compensate for the discontinuity

of time-average payoffs and allow me to prove the following.

Proposition 5 (Iterated Dominance) Suppose that M is a URPE set of the game Γ

and that Bi ⊂ Xi is a set of dominated strategies. Then M contains a URPE set in the

game obtained from Γ by eliminating Bi.

Proof. For any α-perfect entrant σα taking the population from µα to µ̃α, µ̃α is completely

mixed. Hence, for any xi ∈ Bi, δxi /∈ BRi(µ̃
α) and σαi (Bi) ≤ α. And since M cannot be

dominated (by Lemma 3 and Propositions 3 and 4), there exists some set M ′ ⊆ M such

that limα→0 µ̃
α(Bi) = 0 and limα→0 µ̃

α ∈M ′ for all µ ∈M ′.

Note that, by contrast with Al-Najjar’s Proposition 4.3, only dominatedness and not strong

dominatedness of Bi is required here, and moreover Bi is not required to be compact.

Given a set M of equilibria, recall that xi is an inferior response to M if, for every

equilibrium µ ∈M ,

U i(µ) > U i(δxi , µ−i). (2)

In the absence of continuous utility functions, I must strengthen this concept slightly:

Given a set M of equilibria, xi is a strongly inferior response to M if there exists a neigh-

borhood Y of M such that the inequality in (2) holds for every µ ∈ Y . Since the following

result makes use of this stronger notion of an inferior response, I call it “weak” forward

induction.

Proposition 6 (Weak Forward Induction) Suppose that M is a URPE set of equilib-

ria of Γ, and that Bi ⊂ Xi is a set of strongly inferior responses to M . Then M is also a

URPE set in the game obtained from Γ by eliminating Bi.

Proof. There exists a neighborhood Y ⊆ Φ of M such that, for any xi ∈ Bi and any

perfect entrant σ taking the population from µ ∈ M to µ̃ ∈ Y , δxi /∈ BRi(µ̃
α) and hence

σαi (Bi) ≤ α. Hence, σ̃(Bi) = limα→0 σ̃
α(Bi) = 0, and since any µ ∈ M is an equilibrium

and U i(µ) > U i(δxi , µ−i) for any xi ∈ Bi, it follows that µ(Bi) = µ̃(Bi) = 0.

Therefore, Theorem 2’s set M of all convex combinations of pure-strategy profiles that

play like generalized perfect tit-for-tat satisfies iterated dominance and weak forward in-

duction, whilst its stable subset is admissible.
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6 Discussion

Which of these properties is responsible for the results of this paper? It is not admissibility

or iterated dominance, for there are certainly strategies against which inefficient stage Nash

would do better than experimentation with Pareto-improving play. Is it weak forward in-

duction then? Ben-Porath and Dekel (1992) show that, in two-person games with common

interests, only the optimal outcome survives iterated elimination of dominated strategies

when one player is allowed to “burn money”. Forward induction is also key to Osborne’s

(1990) near-optimality in finitely repeated coordination games, but his argument loses force

when equilibrium paths contain outcomes which are not stage-Nash equilibria. Moreover,

the experimentation strategies of this paper involve no explicit signalling. However, for

Kohlberg and Mertens (1986, p. 1029), forward induction means that “a stable set contains

a stable set of any game obtained by deletion of a strategy which is an inferior response

in all equilibria of the set”. And under time-average payoffs, inefficient stage Nash would

be an inferior response (indeed, a strongly inferior response) to a set of strategy profiles

that experimented with Pareto-improving play. Hence, it is (weak) forward induction that

drives the instability of inefficient stage Nash, and the perturbations of strategic stability

that extend this instability to inefficient stage-Nash continuations.

Finally, in no sense do the results of this paper constitute a refinement of the Folk

Theorem. Indeed, I conjecture that any feasible, individually rational payoffs could be sus-

tained by a strategically stable set, including for instance (1, 1) in the Prisoners’ Dilemma

of Figure 1. However, the strategy profiles involved would not include inefficient stage-

Nash continuations. Moreover, they would have to be quite complex; an inefficient version

of perfect tit-for-tat would not be stable, for instance, because there would be nothing to

lose by experimenting with Pareto-improving play. To be stable in fact, inefficient strategy

profiles would have to threaten to punish experimentation, and they would have to do so

in any continuation. Hence, whilst equilibrium payoffs are not constrained by strategic

stability, behavior off the equilibrium path is significantly constrained, and in particular

we have a refinement that rules out the unforgiving play of inefficient stage Nash.
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