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ABSTRACT

We propose the use of techniques from Machine Learning for the

prediction of tidal currents. The classical methodology of har-

monic analysis is widely used in the prediction of tidal currents

and computer algorithms based on the method have been used for

decades for the purpose. The approach determines parameters by

minimizing the difference between the raw data and model output

using the least squares optimization approach. However, although

the approach is considered to be state-of-the-art, it possesses sev-

eral drawbacks that can lead to significant prediction errors, es-

pecially at locations of fast tidal currents and ’noisy’ tidal signal.

In general, careful selection of tidal constituents is required in or-

der to achieve good predictions, and the underlying assumption

of stationarity in time can restrict the applicability of the method

to particular situations. There is a need for principled approaches

which can handle uncertainty and accommodate noise in the data.

In this work, we use Gaussian process, a Bayesian non-parametric

technique, to predict tidal currents. The overall objective is to take

advantage of the recent progress in machine learning to construct

a robust yet efficient algorithm. The development can specifi-

cally benefit the tidal energy community, aiming to harness en-

ergy from location of fast tidal currents.

INTRODUCTION

Tidal waves are produced by a combination of the gravitational

forces of the sun and the moon. Prediction of tidal currents are

necessitated by practical requirements like navigation, protection

from flooding, coastal management to recent developments of en-

ergy extraction. The earliest known tidal predictions dates back

to the eleventh century of that of a bore on the Qiantang river in

China. There have been many advances in methodologies for tidal

analysis since then. The most widely accepted and used method is

that of the harmonic analysis, where the observed tidal variations

are considered as a resultant of various periodic components of

known frequencies, with the amplitudes and phases determined

using the least-squares fitting procedure. Computer codes based

on harmonic analysis have been used for decades for the predic-

tion of tidal heights (1-D) and currents (2-D). The first codes were

based on uniformly sampled raw data, linearized times for nodal

corrections. Over the years various advances have been made to

harmonic analysis approach and Foreman et. al. (2009) recently

incorporated the nodal and astronomical arguments at exact times

and inferences directly in the matrix formulation before the least

squares optimization is performed. As such, the corrections and

the inference directly influence all the constituents rather than any

specific reference one. Most cases of the tidal current analysis

assumes that the process is stationary in time. Investigations of

nearly stationary data records provide valuable understanding of

the tidal dynamics and the harmonic analysis approach is widely

used for the purpose of predictions. However, there are several

shortcomings of this methodology. Selection of appropriate tidal

constituents is a big challenge, the mis-specification of which may

lead to overfitting of data or can compromise with the numerical

stability of the matrix inversion required to obtain the coefficients,

if the frequencies are considered at locations where energy is ab-

sent. Appropriate modelling of noise is another issue. In tidal

analysis, signals which do not contribute to the tidal variations are

classified as ’noise’. In reality, there can be cases where the non-

tidal signal is much stronger than the tidal e.g. the occurrence of a

stormy event. It is difficult to incorporate such effects in the tidal

harmonic analysis formulation. Another aspect of the tidal har-

monic analysis tools is that the confidence intervals are generated

for the current ellipse parameters (the amplitude and Greenwich

phase) through a non-linear mapping from the model parameters.

However, in a lot of practical applications it is more useful to gen-

erate confidence interval estimates directly in the time domain.

In this work, we present an alternate approach to predict tidal

currents using probabilistic machine learning techniques for

time-series analysis, which brings robust, stable, computation-

ally practical and principled approaches for handling uncer-

tainty, and can naturally handle the challenges of real world data

(Roberts et al.; 2013). Data analysis has been performed with

the aid of principled Bayesian approaches in the fields of geo-

statistics where it is known as kriging (Matheron; 1973), mete-



orology (Thompson; 1956), spatial statistics (Ripley; 2005), ma-

chine learning (Rasmussen and Williams; 2006). Gaussian pro-

cesses, a Bayesian non-parametric approach, have been shown

to be well-suited in solving a variety of time-series modelling

problems (Roberts et al.; 2013) and in this work we pursue this

methodology to model tidal current data. In the next sections,

brief introductions to tidal harmonic analysis and Gaussian pro-

cess regression are provided, followed by results and discussion.

TIDES AND HARMONIC ANALYSIS

Theory based on potential fields, which gives the forces due to

the tidal generating bodies (the sun and the moon), predict the

existence of hundreds of unique tidal constituents (frequencies).

Each of such constituent can be expressed as a linear combination

of the rate of change

τ = lunar time (24.8 hr)

s = mean longitude of the moon (27.32 day),

h = mean longitude of the sun (365.24 day)

p = longitude of the perigee (8.85 yr)

N ′ = negative longitude of the ascending node (18.61 yr)

p′ = longitude of the perihelion (21000 yr)

where the mean longitude is the ecliptic longitude of the orbiting

body if the orbit is circular, perigee is the point in the orbit of the

moon at which it is nearest to the earth, perihelion is the point

in the orbit of the earth at which it is closest to the sun, ascend-

ing node is the point at which an orbit crosses the elliptic plane

going north. The effect of the perihelion (p′) is usually ignored

in all computations as it is almost constant over historical time

(Pawlowicz et al.; 2002). The lunar declination is governed by

the plane of motion of the moon which is inclined at an angle of

5◦09′ to the plane of the ecliptic and the inclination of this plane

changes with a period of 18.61 years, with the ascending node

performing one complete backward motion along the ecliptic over

this period of time. The tidal constituents depending on the lunar

declination have a pronounced 18.61 year modulation. Nonlinear

interaction of the astronomical tidal components produces sec-

ondary tides known as overtides or compound tides. And because

nonlinear interactions are predominantly produced in the shallow

water region, they are often referred to as shallow water tides.

The expression for the potential due to a tidal generating body

(which can be the sun, moon) at a location on Earth with longi-

tude λ and latitude θ is given by

V (λ, θ) =
3GMρ2

4R3
0

(R0

R

)3

[

4

3

(1

2
− 3

2
sin2 θ

)(1

2
− 3

2
sin2 δ

)

+sin 2θ sin 2δ cosH + cos2 θ cos2 δ cos 2H

]

(3.1)

where δ is the declination of the tidal generating body, H =
ω0t + λ − A is referred to as the hour angle, A is the right as-

cension of the tidal generating body or the apparent longitude

with respect to Υ, the celestial reference point/origin. The co-

efficient 3GMρ2/4R3 is referred to as the Doodson constant. On

expansion of the trigonometric terms, the potential in (3.1) can be

expressed as

V (λ, θ) =

3
∑

i=1

Vi(λ, θ) (3.2)

where

Vi(λ, θ) = DGi

∑

j

Cj cos(σjt+ iλ+ θj) (3.3)

with

G0 = (1− 3 sin2 θ)/2, G1 = sin 2θ, G2 = cos2 θ,

where D is the Doodson constant and Cj is the amplitude of the

component (see Hendershott; 2005). The harmonic frequency σj

is a linear combination of the angular velocity of the Earth’s ro-

tation ω and the sum and difference of the angular velocities ωk,

which are the five fundamental astronomical frequencies, having

the largest effect modifying the potential. The gravitational force

vectors due to the tidal generating bodies are obtained as the gra-

dient of the scalar potential: F = −∇V . An elegant decomposi-

tion of the tidal constituents into groups with similar frequencies

and spatial variability was developed by (Doodson; 1921) . Using

Doodson’s expansion, each constituent of the tide has a frequency

f = n1f1 + n2f2 + n3f3 + n4f4 + n5f5 + n6f6 (3.4)

where ni are the Doodson number with n1 = 1, 2, 3 and n2 to n6

are between −5 and +5. To avoid negative numbers, Doodson

added five to n2 to n6. Each tidal constituent has a Doodson

number.

The Equilibrium tidal analysis considers the free surface to

be a level surface due to the influence of the tidal forces and

the Earth’s gravity The observed tides are usually larger than

the Equilibrium Tide due to the dynamic response of the ocean

to tidal forces, however their frequencies are the same. The

Equilibrium analysis gives an estimate of the importance of the

tidal constituents, which facilitates the selection of appropriate

constituents for the harmonic analysis. The amplitude ratios and

phase difference between constituents are also used for certain

computations in the latter. The satellites (nodal, in case of just

moon) corrections are computed from the equilibrium response.

The frequencies of the satellites are very close to that of the main

constituents, and it is standard to consider the true amplitude

ratios and phase differences to be the same as in case of the

equilibrium analysis.

Let us consider a time series: y(t), t = t1, t2, ...., tM , where

the observation times are regularly spaced at an interval ∆t. The

model equation with N constituents can be expressed as

y(t) =

N
∑

k=1

(

ak exp
iωkt +a−k exp

−iωkt
)

+ b0 + b1(t− tref )

(3.5)

where b0 is the mean value, the second term with coefficients b1
indicate the trend, while the term inside the summation indicate



the variation of the constituents. The objective is to determine

the coefficients which minimizes the error between the raw data

and the model output. The least square error fit is used for this

purpose such that the coefficients minimizes the relation

E =
∑

m

|x(tm)− y(tm)|2 = ||Ta− y||2 (3.6)

where y = [y(t1), y(t2), ...., y(tm)]′, a =
[a1, a2, ..., aN , a−1, a−2, ...., a−N , b0, b1] and T is a M×2N+2
of linear and sinusoidal basis functions evaluated at the obser-

vation times. Given sufficient amount of raw data available,

the number of observation points M are more than the number

of unknown coefficients, the standard method of obtaining the

solution is the ordinary least squares and can be obtained as

a = (T T )−1THy (3.7)

The standard parameters are then computed as

Lk = |ak|+ |a−k|
lk = |ak| − |a−k|

θk =
(ang(ak) + ang(a−k)

2

)

gk = vk −
(ang(ak)− ang(a−k)

2

)

where Lk and lk are the semi-major and semi-minor axis of the

ellipse respectively, θk is the angle of inclination of the northern

semi-major axis counter-clockwise from due east, and gk is the

Greenwich phase (see Foreman; 1978).

Selection of constituents

Tidal constituents are chosen from a list of 146 constituents (45

astronomical and 101 shallow water constituents). Deciding on

which constituent to select is itself a big challenge. The Rayleigh

criterion (Godin; 1972) states that a time series of minimum

length T is required to distinguish between constituents with a

frequency difference of T−1. An additional criterion is required

for deciding the order of inclusion. Suppose, two particular

tidal constituents (their frequency difference) doesn’t satisfy the

Rayleigh criterion, then the constituent with larger amplitude

from the equilibrium tidal analysis is considered for inclusion

in the harmonic analysis. The automated selection algorithm

developed by (Foreman; 1977) is widely used, where constituents

are selected from a basis of all the 45 astronomical and 24 of

the most important shallow water constituents. Constituents

which do not satisfy the Rayleigh criterion are ignored. However,

if nodal corrections are completely avoided so as to directly

include the satellite and major constituents, the analysis would

involve the evaluation of 529 unknown constituents (see e.g.

Foreman et al.; 2009). The latter also showed with a time series

of length 19 years that the methodology with nodal correction

(satellite amplitude ratios and phases based on tidal potential

theory) gave the same accuracy as that with approach considering

all 529 constituents. Increasing the number of constituents can

enhance the representation of the data (by overfitting), with no

better predictions or correspondence of the results to the physical

processes that are analysed.

The harmonic analysis techniques are not suitable for non-

stationary processes unless they include frequencies of the

non-tidal processes. Theoretically it can be possible to perform

such an analysis, but it requires the knowledge of the exact

frequencies of the non-tidal processes, which in reality is a big

challenge. If the non-tidal frequencies are not included, then

the non-linearity of the least-squares methodology can result in

the interaction of the tidal and non-tidal frequencies, while the

numerical stability of the matrix inversion can be jeopardised

if frequencies are considered at locations where no energy is

present (Jay and Flinchem; 1999).

Inference

At short length scales of records, the frequency resolution of the

classical harmonic analysis approach deteriorates and in cases

dissimilar constituents become unresolvable. If certain important

constituents are not included directly in the analysis, they can be

included indirectly by inferring their major and minor semi-axis

lengths and Greenwich phase lags from the neighbouring con-

stituents that are included. Inference has the effect of reducing

any periodic behaviour of the ellipse parameters and the phase of

the constituents used for inference as it removes the interaction

from the neighbouring inferred constituent (Foreman and Henry;

1989).

Estimation of Confidence Intervals

In the classical harmonic analysis approach, the confidence in-

tervals of the current ellipse parameters, which are non linear

functions of the model parameters, are generated using either a

Monte-Carlo uncertainty propagation method or a linearisation

approach. the correlations between the model parameters which

are complex coefficients are computed using complex bi-variate

normal statistics. The confidence intervals of the constituents for

the colored noise case are derived by estimating the actual resid-

ual spectrum at the appropriate frequencies and then using them

to scale the individual elements of the covariance matrix obtained

from the white noise case (see Codiga; 2011).

GAUSSIAN PROCESS REGRESSION

Gaussian processes represent a non-parametric approach to

modelling unknown functions, and have been widely used in

solving a variety of regression problems (Ghahramani; 2015;

Rasmussen and Williams; 2006). The modelling framework con-

siders a prior distribution directly in the space of functions. A

Gaussian process is described by its mean and covariance func-

tion, similar to the description of a gaussian distribution in terms

of its mean and covariance matrix (MacKay; 2003). Consider a

dataset with n observations D = {(xi, yi)|i = 1, 2, .., n} and the

objective is to make predictions for new inputs x∗. The outputs

are generated by a latent function f(x) with the addition of Gaus-

sian white noise of constant variance (σ2
n)

yj = f(xj) + εj, εj ∼ N (0, σ2

n). (4.1)
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FIGURE 1 The figure plots the variations of a periodic kernel function

for different values of the length scale l and fixed signal variance σ0 and

period p.

A prior distribution is considered on the latent functions such

that for a given set of training points x = {x1, x2, ..., xn}, the

corresponding vector of function evaluations is given by the dis-

tribution f |x ∼ N (0,Kff ), and the properties of the prior are

dictated by the choice of the covariance function Kff(i, j) =
E[f(xi)f(xj)] (with zero prior mean function). The specifica-

tion of the prior is important as it fixes the properties of the func-

tion considered for inference (Rasmussen and Williams; 2006).

Various forms of the kernel function are known and they can be

combined in numerous way (addition, multiplication), depending

upon the problem, to model complex data. Designing an appro-

priate kernel function is an important aspect of a machine learn-

ing problem. The exponentiated quadratic is one kernel function

which is ubiquitously used in solving a wide variety of problems

Kq(i, j) = σ2

f,q exp
( |xi − xj |2

l2q

)

. (4.2)

However, it is a very smooth (infinitely differentiable) function,

which makes it unsuitable in modelling practical data. For such

cases, the Matérn covariance function is considered to be more

appropriate

Kq(i, j) = σ2

f,q

21−ν

Γ(ν)

(√
2ν

|xi − xj |
l

)ν

Kν

(√
2ν

|xi − xj |
l

)

(4.3)

where Γ is the gamma function, Kν is the modified Bessel func-

tion of the second kind. For the particular problem of tidal current

prediction, given the harmonic nature of the variations, a good

choice of a kernel function would be a periodic kernel function

Kq(i, j) = σ2

f,q exp
(−2

l2q
sin2

(

π|xi − xj |
pq

)

)

(4.4)

and given the multiple number of distinct periodic tidal con-

stituents, addition of a finite number of periodic kernel functions

is considered, such that

Kff =

M
∑

q=1

Kq. (4.5)

The variation of a periodic kernel function with same frequency

and signal variance but different length-scales is illustrated in fig-

ure 1. The joint distribution of the training points and test targets

is given by
[

y
y∗

]

∼ N
(

0,

[

Kff + σ2
nIn kf∗

kTf∗ k∗∗ + σ2

n

])

where Kff is the covariance matrix expressing the correlations

between all the training points, kf∗ is the vector of covariance

between the training points and the test target, k∗∗ is the prior

variance and y∗ are the actual output values at the test locations.

Finally, the predictive distribution is obtained as

y∗|x∗, y, x ∼ N (µ∗, σ∗), (4.6)

where the mean (µ∗) and the variance (σ∗) are expressed as

µ∗ = kTf∗(Kff + σ2

nIn)
−1y

σ∗ = k∗∗ − kTf∗(Kff + σ2

nIn)
−1kf∗. (4.7)

All the unknown hyperparameters of the problem are denoted by

θ and they are determined by maximizing the log marginal likeli-

hood (type-II maximum likelihood)

log p(y|θ) = −1

2
yT (K + σ2

nIn)
−1y − 1

2
|K + σ2

nIn| −
n

2
log(2π).

(4.8)

More sophisticated techniques like Markov chain Monte Carlo

are available for determining the hyperparameters, however they

are computationally expensive.

Multi-Output

The formulation described until now does not account for the cor-

relations between the output variables, which in the case of tidal

current prediction are the horizontal velocities u and v. In the GP

framework, the problem of multiple output reduces to the spec-

ification of an appropriate covariance function, which while be-

ing positive semi-definite, captures the dependencies between the

data points across all the outputs (Alvarez and Lawrence; 2011).

The linear model of coregionalization represents the covariance

function as a product of the contribution of two covariance func-

tions, where one of them (the coregionalization matrix) models

the dependence between functions independent of the input vec-

tor, and the other covariance function models the input depen-

dence independently of the particular set of functions. The co-

variance function for multiple output can be expressed as

Kff =
M
∑

q=1

Υq ⊗Kq (4.9)

where,

Kq(i, j) = exp
(−2

l2q
sin2

(

π|xi − xj |
pq

)

)

(4.10)
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FIGURE 2 The figure shows the variations of the horizontal velocities u and v with time. Data for the first 120 days of the year 2014 are used to

predict the tidal current variations for the next 120 days. The green ′
+

′ markers indicate the training points, the red solid line indicates the mean of the

predictions, the black solid line containing the region in grey indicates the 95% confidence interval and the blue dotted line indicates the actual values.

The white dotted line across the centre indicates zero velocity. The figure provides a good macroscopic view of the tidal prediction, however the details

are obscured due to the vast amount of information it contains. An addition figure is provided next illustrating a small section of the v velocity shown in

(b). The computations were performed using the FullGP formulation.

and the matrix Υq is assumed to be of spherical parametrization

kind (Pinheiro and Bates; 1996; Osborne et al.; 2012) with

Υq = diag(eq)S
T
q Sqdiag(eq). (4.11)

Note, in (4.11), e gives a description for the length scale of each

output variable

diag(eq) =

(

lu,q 0
0 lv,q

)

(4.12)

and S is an upper triangular matrix, the i th column of which is

associated with particular spherical coordinates of points of ℜi:

Sq =

(

1 cos θq
0 sin θq

)

(4.13)

The final form of the coregionalization matrix is given by

Υq =

(

l2u,q lu,qlv,q cos θq
lu,qlv,q cos θq l2v,q

)

(4.14)

This method will be referred to as FullGP in the analysis fol-

lowing.

Sparse Spectral representation (SSGP)

Shortcomings of the naı̈ve FullGP implementation include

its high computational costs O(n3) and memory requirements

O(n2), which prohibits its application to problems with large

number of data points. Several methods have been proposed

to address the issue (see e.g. Snelson and Ghahramani; 2005;

Walder et al.; 2008). The goal is to obtain an algorithm which

reduces the computational complexity while still retaining the

predictive accuracy. The sparse spectral GP (SSGP) developed

by (Lázaro-Gredilla et al.; 2010) is a powerful and effective al-

gorithm, reducing the computational costs to O(nm2) and mem-

ory requirements to O(nm), where m is the number of spectral

points which is typically much less than n (no. of data points).

The method makes use of the Weiner-Khitchine theorem which

states that the power spectrum and auto-correlation of the random

process constitute a Fourier pair, and the Bochner’s theorem stat-

ing that any stationary covariance function can be represented as

a Fourier transform of a positive finite measure. The resultant

integral is approximated using a Monte-Carlo approach, by con-

sidering the average of a finite set of samples corresponding to

frequencies which are known as the spectral points. Learning of

these spectral points is equivalent to learning the kernel function.
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FIGURE 3 The figure shows the variation of a small section of the v velocity shown in figure 2(a). The region plotted includes the transition from training

to prediction zone. The green ’+’ indicate the training data points, the red line indicates the mean and grey region indicates the 95% confidence interval

and the blue dotted line plots the actual data values in the prediction zone.

In SSGP, the covariance function is expressed as

k(xi, xj) =
σ2

0

m

m
∑

q=1

cos(2πsTq (xi − xj)) (4.15)

where, sq are the spectral frequencies approximating any station-

ary covariance function, m is the number of spectral points and

σ2

0
is the variance.

The mean, variance and the log marginal likelihood are then ex-

pressed as

µ∗ = φ(x∗)
TA−1Φfy, σ∗ = σ2

n + σ2

nφ(x∗)
TA−1φ(x∗),

(4.16)

log p(y|θ) = −
[yTy − yTΦT

f A
−1Φfy]

2σ2
n

− 1

2
log |A|

+m log
mσ2

n

σ2
0

− n

2
log 2πσ2

n (4.17)

where

φ(x) = [cos(2πsT1 x) sin(2πs
T
1 x).... cos(2πs

T
mx) sin(2πsTmx)]T ,

(4.18)

Φf = [φ(x1), .., φ(xn)] is the design matrix and A = ΦfΦ
T
f +

(mσ2
n/σ

2

0
)I2m.

RESULTS AND DISCUSSION

The data analysed in this paper is taken from a depth-averaged

model of tides in the Pentland Firth. The model was tuned and

compared to field data in Adcock et al. (2013) although only

limited measurements were available. The model was forced with

eight tidal constituents - - M2, S2, N2, K2, MU2, NU2, O1, K1,

and the domain extends to the continental shelf to the west of the

Pentland Firth and an approximately equal distance to the east.

The Pentland Firth, Scotland is considered to be a prime location

for installation of large arrays of tidal turbines (Adcock et al.;

2014). The analysis has been performed on tidal current data

TABLE 1 Longitude and latitude of the five chosen locations

Case no. Longitude (◦) Latitude (◦)

1 -3.1921 58.7368

2 -3.1280 58.6540

3 -3.0013 58.6839

4 -3.0436 58.7791

5 -3.0889 58.7160

for approximately 8 months (240 days). Data for first 120 days

are used as input for training, while the remaining 120 days

are used for validation. Five randomly chosen locations in the

Pentland Firth region are considered for the analysis (see Table 1).

The classical harmonic analysis is performed using the state-

of-the-art Unified Tidal analysis toolbox (UTide) developed
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FIGURE 4 A zoomed section of figure 3, clearly showing the predicted mean (red) and confidence interval (grey), along with the periodic nature of the

variations.

by (Codiga; 2011). Computations for all the three approaches

(UTide, FullGP, SSGP) are performed with the same no.

of tidal constituents, chosen by the auto-selection algorithm

developed by (Foreman; 1977). The frequencies of the periodic

covariance functions in the FullGP formulation and the spectral

points in SSGP are specified to be the frequencies determined

by the auto-selection procedure (Foreman; 1977). Figure 2 plots

the variation of the horizontal velocities (u and v) versus time

for one of the locations obtained using FullGP. The mean and

confidence margins of the predictions agree well with the data.

Due to the vast amount of information contained in figure 2,

the short-term variations and the details are not properly visible.

Figure 3 presents a short section of the figure 2(b) illustrating

the details of the input, output parameters and the short term

variations of the u velocity. A comparison of the root mean

squared error (RMSE) in the predictions is shown in Table 2 .

The predictions from the SSGP have the largest RMSE, however

those from UTide and FullGP are quite similar to each other,

with the FullGP giving slightly better predictions in general

(average) because of more accuracy in its u predictions. Note,

the SSGP formulation does not consider the cross correlations

between the two velocities (u and v). This is possibly one of the

reasons leading to the increase in the root mean squared error.

Also, the computations for the classical tidal harmonic analysis

include nodal corrections, which although small (due to short

time-span considered), can contribute in lowering RMSE. The

auto-selection algorithm choose 35 tidal constituents for the input

data considered in this analysis, with a minimum threshold factor

of one in the Rayleigh criterion. However, the Rayleigh criterion

is considered to be overly conservative in case of strongly tidal

signal, rejecting constituents that may be well resolved from

each other (Codiga; 2011). In order to investigate this aspect,

computations are performed with 59 tidal constituents using the

UTide and SSGP formulation. A comparison of the RMSE from

the two methods with 59 constituents is presented in Table 3.

There is a general reduction in the error from both the methods

compared to the previous case (with 35 constituents). However

the magnitudes of the RMSE from the SSGP in this case (with

larger number of tidal constituents) are similar to those from

the UTide. Some computations were also performed with even

TABLE 2 Comparison of root mean squared error in (m/s) with con-

stituents chosen by the auto-selection criterion

Velocity UTide FullGP SSGP

u1 0.2654 0.2370 0.3669

v1 0.1612 0.1721 0.2794

u2 0.3048 0.2817 0.3530

v2 0.0592 0.0613 0.0954

u3 0.3115 0.2969 0.3515

v3 0.2904 0.2780 0.3221

u4 0.1864 0.1881 0.1920

v4 0.2096 0.2190 0.2393

u5 0.2988 0.2582 0.3954

v5 0.1915 0.1829 0.2265

higher number of constituents including some low frequencies.

An obvious increase in the RMSE was observed in both the

methods (UTide and SSGP), however the magnitude of the

RMSE was much more with the harmonic analysis, suggesting

that the latter is more sensitive to the over-specification of the

tidal constituents than SSGP.

TABLE 3 Comparison of root mean squared error (m/s) with 59 tidal

constituents

Velocity UTide SSGP

u1 0.1932 0.2329

v1 0.1560 0.1549

u2 0.2303 0.2323

v2 0.0570 0.1583

u3 0.2734 0.2815

v3 0.2531 0.2592

u4 0.1813 0.1755

v4 0.1829 0.1875

u5 0.2255 0.2314

v5 0.1681 0.1744



CONCLUSION

The problem of tidal current prediction is formulated in the

framework of Bayesian Gaussian processes. The unknown

hyperparameters of the covariance functions, expressing correla-

tions between data points, are determined using an optimization

procedure which aims to maximize the log marginal likelihood.

Given the harmonic nature of the tidal variations with determin-

istic frequencies, periodic covariance functions were used in this

analysis. The full (complete) version of the Gaussian process

produces a slightly better overall accuracy (average of mean

squared errors is the least) in the predictions than the harmonic

analysis. However the approach is computationally expensive,

and to address the issue an alternative SSGP technique is explored

which is found to produce similar predictive accuracy (slightly

worse) as the harmonic analysis with larger number of tidal

constituents. The probabilistic machine learning approach can

handle uncertainty and noise, and generates confidence intervals

directly in the time-domain (unlike harmonic analysis), which

would be useful in practical applications. Several aspects could

be investigated in the future including the consideration of more

complex kernel functions (rougher periodic covariance function)

which could appropriate for real-world data analysis. It is envis-

aged that the ideas and approaches presented in this work could

be useful in the prediction and analysis of ocean waves in general.

The results presented here are preliminary outputs of the

ongoing investigation. More detailed analysis will be presented

in the near future.
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