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We perform simulations of random seas based on narrow-1

banded spectra with directional spreading. Our wavefields2

are spatially homogeneous and non-stationary in time. We3

truncate the spectral tail for the initial conditions at different4

cut-off wavenumbers to assess the impact of the spectral tail5

on the kurtosis and spectral evolution. We consider two cases6

based on truncation of the wavenumber tail at |kkk|/kp = 2.47

and |kkk|/kp = 6. Our simulations indicate that the peak kur-8

tosis value increases if the tail is truncated at |kkk|/kp = 2.49

rather than |kkk|/kp = 6. For the case with a wavenumber cut-10

off at |kkk|/kp = 2.4, augmented kurtosis is accompanied by11

comparatively more aggressive spectral changes including12

redevelopment of the spectral tail. Similar trends are ob-13

served for the case with a wavenumber cut-off at |kkk|/kp = 6,14

but the spectral changes are less substantial. Thus, the spec-15

tral tail appears to play an important role in a form of spectral16

equilibrium that reduces spectral changes and decreases the17

peak kurtosis value. Our findings suggest that care should18

be taken when truncating the spectral tail for the purpose of19

simulations/experiments. We also find that the equation of20

Fedele (2015, J. Fluid Mech., vol. 782, pp. 25–36) provides21

an excellent estimate of the peak kurtosis value. However,22

the bandwidth parameter must account for the spectral tail to23

provide accurate estimates of the peak kurtosis.24

INTRODUCTION25

Rogue wave occurrence in random seas and the evolu-26

tion of free-surface kurtosis remain active areas of research.27

Dispersive focusing based on wave components with differ-28

ent frequencies and directions can result in the formation of29

extreme waves (see, for example, Fedele et al. [1]). Nonlin-30

ear interactions between wave components can also alter the31

dispersive characteristics of a wave field, allowing for self32

focusing (Janssen [2]). The relative importance of nonlinear 1

interactions in the formation of rogue waves has been a focus 2

of previous studies with comprehensive reviews [3, 4, 5, 6]. 3

In the context of random seas, a deviation from Gaus- 4

sian statistics indicates the presence of nonlinear interac- 5

tions. The kurtosis of the free surface, Kur=⟨η4⟩/⟨η2⟩2, 6

has received particular attention, as an indicator of nonlin- 7

ear interactions and rogue wave occurrence (see, e.g., Mori 8

& Janssen [7]). Here, η denotes the free-surface elevation 9

and the angled brackets denote a statistical average. The ex- 10

cess kurtosis, denoted as C4, quantifies the deviation from 11

Gaussian statistics: 12

C4 =
⟨η4⟩

3⟨η2⟩2 −1, (1)

yielding C4 = 0 for a Gaussian process, associated with linear 13

seas. The excess kurtosis C4 is comprised of dynamic (Cd
4 ) 14

and bound (Cb
4) contributions such that C4 =Cd

4 +Cb
4 where 15

the dynamic contribution accounts for the build-up of phase 16

correlation and the bound contribution accounts for the pres- 17

ence of bound harmonics (see, e.g., [8, 9] for a more detailed 18

discussion on bound harmonics). Dynamics excess kurtosis 19

values of Cd
4 > 0 and Cd

4 < 0 are respectively indicative of 20

focusing and defocusing due to nonlinear interactions. 21

An analytical solution for dynamic kurtosis (Cd
4 ) has 22

been presented by Fedele [10], based on narrow-band di- 23

rectional waves with a Gaussian-type spectrum. The ini- 24

tial condition is based upon Gaussian statistics, Cd
4 (t0) = 0, 25

with random component phases and amplitudes. Fedele [10] 26

assumes that the wave field is spatially homogeneous and 27

non-stationary in time. Analysis of this problem originates 28

from Janssen [2], providing an expression for the dynamic 29

excess kurtosis of weakly nonlinear unidirectional seas. [7] 30



extended the work of [2] based on the assumption of narrow-1

bandedness. [11] and [12] considered the role of directional2

effects. Fedele [10] provides an expression for dynamic kur-3

tosis in the directional case, based on:4

dCd
4 (τ)

dτ
= BFI2 dJ

dτ
. (2)

Here, τ represents nondimensional time, τ = ν2ω0t, where5

ν is the spectral width and ω0 = 2π/T0 is the characteristic6

frequency based on the characteristic wave period T0. The7

Benjamin-Feir index (BFI) is given by:8

BFI =
µ
√

2
ν

, (3)

based on the wave steepness µ = k0σ where k0 is the char-9

acteristic wavenumber and σ is the standard deviation of the10

free surface, σ2 = ⟨η2⟩. Note that the definition in (3) is a11

factor of
√

2 smaller than the one used in some other studies,12

e.g., Onorato et al. [13]. The function J(τ,R) in (2) depends13

upon the short-crestedness parameter R:14

R =
1
2

σ2
θ

ν2 . (4)

Here, σθ is the angular width of the spectrum which quanti-15

fies the directional spreading of the waves. Fedele [10] cal-16

culates the angular width σθ based on the spreading function17

of the spectrum, D(θ):18

σθ =

√√√√∫ π/2
0 θ2D(θ)dθ∫ π/2

0 D(θ)dθ

. (5)

Using the short-crestedness parameter R and nondimensional19

time τ, Fedele [10] found the expression:20

dJ
dτ

= 2Im
(

1√
1−2iτ+3τ2

√
1+2iRτ+3R2τ2

)
, (6)

required to evaluate (2). Here, Im(x) denotes the imaginary21

part of x. Figure 1 shows the evolution in kurtosis predicted22

for a range of R values. As can be seen, the peak kurtosis23

value is significantly impacted by the value of R, suggesting24

a strong dependency on the bandwidth and spreading of the25

waves, as well as the steepness.26

Previous studies have investigated the evolution of kur-27

tosis for random seas, including the experiments of Ono-28

rato et al. [13] as well as the Higher-Order Spectral (HOS)29

and Modified Nonlinear Schrödinger (MNLS) simulations of30

Toffoli et al. [14] and Xiao et al. [15]. In this study, we per-31

form random seas simulations using the MNLS equation of32

Trulsen et al. [16] based on an exact linear dispersion oper-33

ator. Our simulations are based on the sea-state parameters34
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Fig. 1. Dynamic excess kurtosis normalized by the square of the
Benjamin-Feir index (C4

d/BFI2) as a function of nondimensional
time (τ = ν2ω0t) for different values of R, based on Fedele [10].

used in Experiment B of Onorato et al. [13], a case also con- 1

sidered by Toffoli et al. [14] and Xiao et al. [15]. Thus, we 2

compare our results with those of previous studies. We note 3

that the experiments of Onorato et al. [13] are based upon 4

wave fields which are inhomogeneous in space but station- 5

ary in time for a given location. In contrast, our simulations 6

are based upon a spatially homogeneous random sea which 7

is non-stationary in time, as simulated by Xiao et al. [15] 8

and Toffoli et al. [14]. However, for narrow-banded seas 9

with low directional spreading, mapping between space and 10

time can be performed with the group velocity, although we 11

note this is an extra approximation. Toffoli et al. [14] per- 12

formed MNLS simulations of both types (spatially homoge- 13

neous and non-stationary as well as spatially inhomogenous 14

and stationary) and found that the kurtosis curves agreed well 15

for the narrow-banded case considered in this study. Thus, 16

we use the experimental results of Onorato et al. [13] in our 17

comparisons. Our investigation focuses on the impact of the 18

spectral tail on kurtosis evolution, exploring the role of the 19

tail in establishing a form spectral equilibrium that reduces 20

the peak kurtosis. 21

The concept of spectral equilibrium has been considered 22

by previous studies. Non-equilibrium sea states are charac- 23

terised by comparatively rapid spectral changes that eventu- 24

ally slow down as the sea state moves towards a better rep- 25

resentation of equilibrium for the given conditions. As dis- 26

cussed by [18], wave-current interactions, sudden changes 27

in bathymetry and meteorological conditions are all possi- 28

ble causes of non-equilibrium, provoking the occurrence of 29

rapid spectral changes (see, e.g., [19, 20, 21]). The investi- 30

gation of Barratt et al. [22] showed that steep wave groups 31

formed under non-equilibrium conditions may exhibit aug- 32

mented kinematics and a prolonged lifespan—the presence 33

of a fully-developed spectral tail was found to reduce the 34

nonlinear features of the wave groups. Physical mechanisms 35

which may impact the development of the spectral tail have 36

also been identified by previous studies. Background cur- 37

rents have been shown to possibly suppress the development 38

of the spectral tail [23]. Ice sheets also tend to dissipate the 39



energy associated with high-wavenumber components in the1

spectral tail [24, 25]. Simulations based on initial spectra that2

do not include a fully-developed tail also tend to exhibit rapid3

spectral evolution in the early stages (see, e.g., [26, 15]). Our4

simulations are focused on the impact of the spectral tail on5

the evolution of random seas initialised with Gaussian statis-6

tics.7

We perform simulations based on JONSWAP spectra8

truncated at different wavenumbers to alter the bandwidth9

and prominence of the spectral tail. We monitor the conse-10

quent kurtosis evolution and explain the trends based on the11

spectral evolution we observe. Lastly, we calculate approx-12

imate R values and compare our results to (2) to assess the13

extent of the agreement.14

NUMERICAL DETAILS15

We perform random-sea MNLS simulations based on16

Rayleigh distributed component amplitudes with a uniform17

phase distribution. We consider two distinct cases, each with18

a different cut-off wavenumber for the spectral tail. Each19

case has been simulated a total of 20 times with a new ran-20

dom seed generated for each instance. Our analysis of the21

spectral evolution is based upon ensemble averaging of the22

resultant spectra.23

Initial Conditions24

We define the variance density spectrum F(ω,θ) as the25

product of a frequency spectrum S(ω) and a spreading func-26

tion D(θ), where ω represents the angular frequency and θ27

represents the direction of the wave component:28

F(ω,θ) = S(ω)D(θ). (7)

Following Onorato et al. [13], we use the JONSWAP formu-29

lation as the frequency spectrum:30

S(ω) =
αg2

ω5 exp
[
− 5

4

(
ω

ωp

)−4]
γ

exp [−(ω−ωp)
2/(2σ2ω2

p)],

(8)
where ω is the angular frequency and ωp the peak frequency,31

α the Phillips parameter, γ the peak enhancement factor, and32

the parameter σ is frequency dependent: σ = 0.07 for ω ≤33

ωp and σ = 0.09 for ω > ωp. We use the cosine-squared34

spreading function:35

D(θ) =

{ 2
Θ

cos2
(

πθ

Θ

)
for |θ| ≤ Θ/2.

0 for |θ|> Θ/2.
(9)

Here, θ is the wave propagation direction and Θ is the direc-36

tional spreading width of the cosine-squared function. We37

note the relationship between σθ in (5) and Θ in (9), given38

by:39

σθ = Θ

√
π2 −6
12π2 . (10)

Table 1. Sea-state parameters.

γ ωp kp Θ Hs ε

6.0 0.5257 s−1 0.02796 m−1 12◦ 11.2 m 0.16

The product of (8) and (9) yields the variance density 1

spectrum in the (ω,θ) coordinate system. The corre- 2

sponding wavenumber spectrum in (kx,ky) can be calcu- 3

lated with the Jacobian: Ŝ(kx,ky) = (1/k)(dω/dk)S(ω,θ) = 4

(g2/(2ω3))S(ω,θ), where kkk is the wavenumber vector kkk = 5

(kx, ky) and we have used the deep-water dispersion relation- 6

ship. 7

To perform random-sea simulations, we require 8

Rayleigh distributed component amplitudes, ai, with ex- 9

pected values, µi, that are consistent with the defined 10

wavenumber spectrum, Ŝ(kkk). The expected amplitude for 11

component kkki follows from the wavenumber spectrum: 12

µi =

√
2Ŝ(kkki). (11)

Thus, the scale parameter of the Rayleigh distribution is 13

given by
√

2/πµi and we generate the random amplitude, 14

ai, for component kkki using: 15

ai =
√

2/π µi
√

−2lnχ, (12)

where χ is a uniformly distributed random variable within 16

the range [0,1] and ln is the natural logarithm. A random 17

phase offset ϕi is also generated for each wavenumber com- 18

ponent kkki in the range [0,2π]. We compute the linear surface 19

elevation at each point in space xxx = (x, y) as a superposition 20

of the components: 21

ηL(xxx, t) = ∑
i

ai cos(kkki · xxx−ωit +ϕi), (13)

using the deep-water linear dispersion relationship ωi = 22√
g|kkkiii| to calculate the component frequencies. For the 23

MNLS simulations, we calculate the initial complex enve- 24

lope B(xxx, t0) using the linear surface elevation ηL and the 25

corresponding Hilbert transform ηH
L [27]: 26

B(xxx, t0) =
{

ηL + iηH
L
}

exp(−i[kkk0 · xxx−ω0t0]). (14)

Here, kkk0 and ω0 represent the characteristic wavenumber and 27

frequency of the carrier wave. 28

The parameters used in this study are listed in Table 1. 29

We use a peak enhancement factor (γ) of 6.0. The spectral 30

peak of the JONSWAP, in terms of angular frequency (ωp) 31

and wavenumber (kp) are both listed in Table 1 (note that ωp 32

and kp are not simply related by the linear dispersion relation 33

due to the presence of a Jacobian). The characteristic time 34

and length scales associated with kp are also listed in Table 35



Table 2. Low-pass filter parameters for spectral tail truncation.

Case β1 β2 Cut-off wavenumber

ST 2.4 20 |kkk|/kp = 2.4

LT 6 35 |kkk|/kp = 6

3. We use a directional spreading width (Θ) of 12◦, based on1

the spreading function defined in (9), the same value as [15].2

Our significant wave height (Hs) of 11.2 m corresponds to3

a wave steepness (ε = kpHs/2) of 0.16. As calculated by4

Fedele [10], the parameters listed in Table 1 correspond to a5

Benjamin-Feir index (BFI = µ
√

2/ν) of 0.78, where µ = ε/26

and ν is a measure of spectral bandwidth.7

We use an exponential low-pass filter to truncate the tail8

of the spectrum following [15]:9

Ω(|kkk|/kp,β1,β2) = exp

(
−
[

|kkk|
β1kp

]β2
)
. (15)

We consider two test cases labelled Case ST and Case LT,10

where “ST” refers to a short tail and “LT” refers to a long11

tail for the spectrum. The β1 and β2 values are listed in Ta-12

ble 2 together with the corresponding cut-off wavenumbers.13

Case ST and LT feature truncation of the spectral tail at ap-14

proximately |kkk|/kp = 2.4 and |kkk|/kp = 6, respectively, based15

on the β1 and β2 listed in Table 2. The resultant initial con-16

ditions are shown in Fig. 3(a) for Case ST and Fig. 4(a) for17

Case LT. We note that approximately 21% of the total energy18

for Case LT is associated with wavenumber components with19

|kkk|/kp > 2.4.20

MNLS Simulations21

We perform our random-sea simulations using the22

MNLS equation of Trulsen et al. [16], a modified version23

of the Trulsen & Dysthe [17] equation:24

∂B
∂t

+LB+
1
2

iω0k2
0|B|

2B+
3
2

ω0k0|B|2
∂B
∂x

+
1
4

ω0k0B2 ∂B∗

∂x
+ ik0

∂φ

∂x
B = 0.

(16)

Here, B∗ denotes the conjugate of the complex envelope25

and φ denotes the mean flow potential. The carrier wave26

is aligned with the x-axis, kkk0 = (k0,0), so that k0 in (16)27

represents the carrier wavenumber and the characteristic28

frequency ω0 is related to the carrier wavenumber k0 by29

the deep-water linear dispersion relationship, ω0 =
√

gk0.30

The dispersion operator L in (16) is based upon a pseudo-31

differential operator that preserves the exact linear dispersion32

relationship, as explained by Trulsen et al. [16]: 1

LB =

1
4π2

∫
∞

−∞

i[ω(kkk0 +µµµ)−ω0]exp(iµµµ · (xxx− yyy))B(yyy, t)dyyydµµµ.

(17)

Here, µµµ = (λ,µ) is the modulation wavenumber. Direct nu- 2

merical evaluation of (17) avoids expansion and truncation of 3

the linear dispersion relation, increasing the bandwidth limits 4

of the MNLS equation and improving the resolution of four- 5

wave interactions while reducing energy leakage (see [28] 6

and [29] for a discussion on MNLS energy leakage), with 7

almost no additional computational cost. Barratt et al. [30], 8

building on [31, 32], performed a detailed comparison of the 9

exact and truncated versions of the dispersion operator for 10

focused wave groups. The MNLS equation in (17) is subject 11

to free surface and bottom boundary conditions, as well as 12

continuity for the mean flow potential φ: 13

∂φ

∂z
=

ω0

2
∂

∂x
|B|2 at z = 0, (18)

14∂φ

∂z
= 0 at z =−∞, (19)

15∇
2
φ = 0 for −∞ < z < 0. (20)

We incorporate the boundary conditions, (18) and (19), di- 16

rectly into the MNLS equation, (16), using the continuity 17

condition for the mean flow, (20), as done with the fourth- 18

order envelope equation of Janssen [33]. A single governing 19

equation is, thus, obtained: 20

∂B
∂t

+LB+
1
2

iω0k2
0|B|

2B+
3
2

ω0k0|B|2
∂B
∂x

+
1
4

ω0k0B2 ∂B∗

∂x
+ ik0BF −1

{
ikx

|kkk|
F
{

ω0

2
∂

∂x
|B|2

}}
= 0.

(21)

where F denotes a 2D Fourier transform in x and y and 21

F −1 denotes the inverse operation. The expression in (21) 22

is based upon the evaluation of the bottom boundary condi- 23

tion (19) at z =−∞ and is, therefore, a deep-water equation. 24

Thus, we obtain the initial complex envelope using (14) and 25

the envelope is marched forward in time with (21). We dis- 26

cretize and numerically solve (21) using a split-step algo- 27

rithm. We use spectral methods to evaluate the linear dis- 28

persion operator LB in (17) and we use fourth-order finite 29

differencing with symmetric stencils for the spatial deriva- 30

tives in the nonlinear terms. Time marching is performed 31

with the classic fourth-order Runge-Kutta scheme. The de- 32

tails of the discretisation are listed in Table 3, including the 33

length (L) and width (W ) of the domain. The number of grid 34



Table 3. Discretization Parameters.

Characteristic scales Wavelength (λ0) 225 m
Wave period (T0) 12.0s

Numerical domain Length (L) 30.72 km
Width (W ) 20.48km

Discretisation Nx = 2049, ∆x = 15 m
Ny = 1025, ∆y = 20 m
Nt = 4501, ∆t = 0.4 s

points in the x-direction and y-direction are listed, denoted as1

Nx and Ny respectively, together with the corresponding grid2

spacings, ∆x and ∆y. The size of the domain ensures 1363

characteristic wavelengths (λ0) in the x-direction and 91λ0 in4

the y-direction, where λ0 = 2π/k0. The characteristic length5

scales of the wave envelope can be approximated with:6

Λx =
2π

kw
, Λy =

2π

k0σθ

, (22)

based on the characteristic length scales for the wavenumber7

(k0), bandwidth (kw) and spreading parameter (ς0). Dimen-8

sionless metrics for grid resolution, in the x and y-directions9

can, thus, be defined as:10

nx =
Λx

∆x
, ny =

Λy

∆y
, (23)

which approximately represent the number of grid points11

spanning the length scale of the wave envelope in the x and12

y-directions. Based on the initial conditions, we use the peak13

of the wavenumber spectrum, k0 = 0.02796 m−1, and we use14

(5) to obtain σθ = 0.04 rad. We estimate the bandwidth kw15

for Case ST and Case LT using the spectral half-width and16

obtain kw = 0.004 m−1. Combined with the grid resolution17

listed in Table 3, we obtain nx ≈ 105 and ny ≈ 281. The18

simulations are time marched for a total of 150 wave peri-19

ods (T0), where T0 = 2π/ω0, with a time step (∆t) of 0.4 s.20

Using the group velocity of the wave envelope as the char-21

acteristic velocity, we calculate a Courant–Friedrichs–Lewy22

(CFL) condition of 0.25 for our MNLS simulations, based on23

the discretisation parameters listed in Table 3. To assess the24

diffusivity of our simulations, we have considered the con-25

served quantity I2 [34]:26

I2 = ∑
i, j
|B(xi,y j)|2, (24)

typically associated with energy conservation. We found the27

quantity I2 to be conserved within 1% of the initial value over28

the entire duration of all our simulations, indicating permis-29

sibly low levels of diffusivity. We find that the |B|2 ∂B/∂x30

term in (16) is particularly prone to causing simulation diver-31

gence. Thus, we apply spectral filtering to eliminate high-32

frequency contributions from this term—we set all compo-33

nents above |kkk|/kp = 5 to zero when calculating |B|2 ∂B/∂x.34

Spectral parameters 1

We analyse the spectral evolution of Case ST and Case 2

LT using statistical parameters to characterise the spectral 3

peak, bandwidth and directional spreading. Our selection 4

of the spectral parameters is largely based on the review 5

by Serio et al. [35]. For each simulation, we perform 6

a two-dimensional discrete Fourier transform (in x and y) 7

on the surface elevation once per wave period, and use the 8

result to calculate the variance density spectrum in terms 9

of wavenumber S(kx,ky, t) based on a Cartesian co-ordinate 10

system: 11

S(kx,ky, t) =
1
2
|η̂(kx,ky, t)|2, (25)

where η̂ represents the Fourier components of the surface 12

elevation. Arithmetic averaging over the ensemble (Ni = 20) 13

at time t yields the ensemble-averaged spectrum S(kx,ky, t): 14

S(kx,ky, t) =
1
Ni

Ni

∑
i

Si(kx,ky, t). (26)

Converting to a polar co-ordinate system with the use of a 15

Jacobian, S(k,θ, t) = kS(kx,ky, t), we characterise the direc- 16

tional spreading of the ensemble-averaged variance density 17

spectrum: 18

ς(t) =

√√√√∑ j θ2
j S(k j,θ j, t)

∑ j S(k j,θ j, t)
. (27)

Here, k represents the magnitude of the component 19

wavenumber |kkk| for convenience of notation. To characterise 20

the spectral peak and the bandwidth, we calculate the fre- 21

quency spectrum S( f ,θ, t) = J S(k,θ, t) where J = 4π
√

k/g. 22

Integration over θ yields the omnidirectional frequency spec- 23

trum S( f , t) used to estimate the peak frequency: 24

fp(t) =
∑ j f j [S( f j, t) ]4

∑ j [S( f j, t) ]4
, (28)

based on the omnidirectional frequency spectrum raised to 25

the fourth power, as recommended by Young [36]. We 26

also estimate the bandwidth based on the omnidirectional 27

frequency spectrum, using the peakedness parameter intro- 28

duced by Goda [37]: 29

Qp(t) =
2

m2
0

∫
∞

0
f [S( f , t) ]2d f , (29)

where, 30

m0 =
∫

∞

0
S( f , t0)d f . (30)
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Fig. 2. Kurtosis evolution for Case ST (red line) and Case LT (blue
line) compared against other studies, including (△) the experiments
of Onorato et al. [13]. The shaded grey bands represent 95% confi-
dence intervals. The simulation results of Xiao et al. [15] are shown:
(−−−) MNLS and (——) HOS as well as the simulation results of
Toffoli et al. [14]: (#) MNLS and (+) HOS. All the results are based
upon JONSWAP spectra (γ = 6) with steepness ε = 0.16 and a
Benjamin-Feir index (BFI) of 0.78 based on the definition in (3).

We use the trapezoidal method to perform the numerical inte-1

gration in (29) based on unequal point spacing. Our estimate2

of spectral bandwidth (ν) relates inversely to the peakedness3

parameter Qp:4

ν(t) =
1√

πQp
, (31)

consistent with the bandwidth metric used by Serio et al. [35]5

to calculate the Benjamin-Feir index (BFI). We also use ν in6

(31) as our bandwidth metric when calculating the BFI. The7

spectral parameters defined in (27), (28) and (31) thus form8

the basis of our spectral evolution analysis.9

RESULTS AND DISCUSSION10

We analyse the kurtosis evolution for Case ST and Case11

LT and explain the observations based on the spectral evolu-12

tion, using contour plots of the ensemble-averaged spectra as13

well as the parameters defined in (27), (28) and (31). Lastly,14

we compare the simulation results for kurtosis with the the-15

ory of Fedele [10] and we briefly discuss the selection of an16

appropriate bandwidth parameter to characterise each case.17

Kurtosis Evolution18

The evolution of kurtosis for our MNLS simulations is19

shown in Fig. 2, including both dynamic and bound contribu-20

tions up to the third order. The shaded grey bands represent21

95% confidence intervals for the ensemble-averaged MNLS22

results. The experimental results of Onorato et al. [13] are23

also shown. Both Toffoli et al. [14] and Xiao et al. [15] per-24

formed similar simulations to those in this study, using the25

MNLS equation as well as a Higher-Order Spectral (HOS)26

code, and the results are depicted in Fig. 2. As discussed in 1

the introduction, the results of Onorato et al. [13] are based 2

on waves propagating along a tank. We perform space/time 3

mapping with the group velocity for the purposes of compar- 4

ing our simulation results to the experiments of Onorato et 5

al. [13]. The x-axis in Fig. 2 shows the corresponding spa- 6

tial x/λ0 or temporal t/(2T0) parameter with kurtosis shown 7

on the y-axis (excluding the contribution of bound harmon- 8

ics). Here, λ0 and T0 represent the characteristic wavelength 9

and wave period, respectively. We see good agreement be- 10

tween the MNLS simulations results of Toffoli et al. [14], 11

Xiao et al. [15] and Case ST of this study. A peak kurto- 12

sis value of 3.89 is observed for Case ST and agreement be- 13

tween the MNLS simulations appears to be particularly good 14

in the vicinity of the peak. Similar to Case ST of this study, 15

the MNLS simulations of both Toffoli et al. [14] and Xiao 16

et al. [15] effectively truncated the wavenumber spectrum 17

of the surface elevation at |kkk|/kp = 2, by limiting the mod- 18

ulation wavenumber of the envelope to |µµµ|/kp ≤ 1. Here, 19

µµµ = (λ,µ) is the modulation wavenumber defined relative 20

to the wavenumber of the carrier wave, kkk = (kp,0). Thus, 21

Fig. 2 also serves to verify our simulations. The HOS results 22

of Toffoli et al. [14] and Xiao et al. [15] differ, however, 23

from the MNLS results for Case ST and agree better with the 24

MNLS results for Case LT as well as the experimental results 25

of Onorato et al. [13]. Case LT is based upon a spectral tail 26

truncated at |kkk|/kp = 6 and, thus, features a more prominent 27

spectral tail. Likewise, the experiments of Onorato et al. [13] 28

and the HOS simulations of Toffoli et al. [14] and Xiao et al. 29

[15] all included a fully-developed spectral tail in the initial 30

conditions. Thus, the differences between Case ST and Case 31

LT appear to be the result of the spectral tail and the findings 32

are consistent other studies. Case LT, in this study, reaches a 33

peak kurtosis value of 3.52, approximately 10% lower than 34

the peak kurtosis value for Case ST. Inclusion of the spectral 35

tail up to |kkk|/kp = 6 in the initial conditions, thus, appears to 36

reduce the peak kurtosis value while artificial truncation of 37

the spectral tail at |kkk|/kp = 2.4 augments the peak kurtosis 38

value. The relatively good agreement between Case LT and 39

the experiments/HOS results also suggests that the MNLS 40

equation provides better kurtosis estimates if the spectral tail 41

is included, despite the narrow-bandwidth limitations of the 42

equation. 43

Spectral Evolution 44

To clarify the trends in kurtosis observed in the previ- 45

ous section, we have analysed the evolution of the ensemble- 46

averaged variance density spectrum, S(kx,ky), for Case ST 47

and Case LT with the results shown in Fig. 3 and 4 respec- 48

tively. The wavenumbers kx and ky have been normalised by 49

the characteristic wavenumber k0 = 0.02796 m−1, the initial 50

spectral peak listed in Table 1. The contour plots in each 51

figure are shown at times: (a) t/T0 = 0; (b) t/T0 = 50; and 52

(c) t/T0 = 100. Note that the contour levels are logarithmi- 53

cally distributed. As can be seen in Fig. 3(a), Case ST fea- 54

tures a narrow-banded spectrum with truncation of the tail in 55

the vicinity of |kkk|/kp = 2.4. Fig. 3(b) and 3(c) reveal the 56



Fig. 3. Contour plots of the ensemble-averaged variance density spectrum S(kx,ky) for Case ST featuring truncation of the spectral tail in
the vicinity of |kkk|/kp = 2.4: (a) t/T0 = 0; (b) t/T0 = 50; (c) t/T0 = 100. The contour levels are logarithmic, ranging from 1× 10−5 to
1×10−2.

Fig. 4. Contour plots of the ensemble-averaged variance density spectrum S(kx,ky) for Case LT featuring truncation of the spectral tail in
the vicinity of |kkk|/kp = 6: (a) t/T0 = 0; (b) t/T0 = 50; (c) t/T0 = 100. The contour levels are logarithmic, ranging from 1× 10−5 to
1×10−2.
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Fig. 5. Evolution of ensemble-averaged spectral parameters for Case ST (red line) and Case LT (blue line): (a) spectral bandwidth ν defined
in (31); (b) spreading parameter ς defined in (27); (c) peak frequency fp defined in (28).

rapid broadening of the spectrum which occurs during the1

simulation—the truncated tail partially redevelops and the2

directional spreading increases. Similar features are appar-3

ent for Case LT, shown in Fig. 4. Case LT features a more4

prominent spectral tail for the initial conditions since trun-5

cation is performed in the vicinity of |kkk|/kp = 6. However,6

rapid broadening of the spectrum over time is also observed7

for Case LT, although less directional spreading is apparent8

in Fig. 4(b) and 4(c) than the corresponding plots in Fig. 3. 1

The differences in spectral evolution between Case ST and 2

Case LT are best captured by the statistical parameters de- 3

fined in (27), (28) and (31). 4

Figure 5 shows the evolution of the ensemble-averaged 5

spectral parameters for Case ST and Case LT. The spectral 6

bandwidth parameter ν, defined in (31), is shown in Fig. 5(a). 7

The spreading parameter ς, defined in (27), is shown in Fig. 8
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Fig. 6. Kurtosis evolution for Case ST (red line) and Case LT (blue
line) compared against the solution of Fedele [10] based on different
bandwidth parameters: (dashed, −−−) bandwidth based on spec-
tral half-width for both Case ST and Case LT yields R = 0.031; (dot-
ted, · · · · ··) bandwidth based on (31) for Case ST yields R = 0.052;
(solid, ——) bandwidth based on (31) for Case LT yields R = 0.022.
The shaded grey bands represent 95% confidence intervals for the
ensemble-averaged results.

5(b). The peak frequency fp, defined in (28), is shown in1

Fig. 5(c). All of the parameters have been normalised by2

their initial value, at time t0. Figure 5(a) shows that Case ST3

and Case LT both exhibit an increase in spectral bandwidth,4

however the increase in ν/ν0 is more rapid for Case ST and5

the final value of 1.85 exceeds the final value of 1.48 for Case6

LT by approximately 25%. Similarly, the spreading param-7

eter in Fig. 5(b) also exhibits an increase in ς/ς0 for both8

cases—the values are similar towards the start and end of the9

simulations however Case ST exhibits a more rapid increase10

in between. Lastly, Fig. 5(c) demonstrates a reduction in11

the peak frequency for both cases, consistent with the down-12

shift of the spectral peak observed in other studies (see, e.g.,13

[36-37]). The frequency downshift is also observed to occur14

more rapidly for Case ST than Case LT and the final value of15

0.903 for Case ST is approximately 4% lower than the final16

value of 0.935 observed for Case LT. Thus, all the spectral17

parameters indicate that the spectral changes for Case ST oc-18

cur more rapidly and are more pronounced than those of Case19

LT. Inclusion of a more prominent spectral tail in Case LT20

thus appears to reduces the spectral changes observed dur-21

ing the simulations. Truncation of the spectral tail close to22

the spectral peak in Case ST conversely augments the spec-23

tral changes which occur during the simulations. Thus, the24

spectral tail appears to play an important role in establishing25

the spectral equilibrium of the sea state and care should be26

taken when truncating the tail in a simulation or laboratory27

setting. The kurtosis results shown in Fig. 2 indicate that the28

rapid spectral changes in Case ST augment the peak kurtosis29

value, relative to Case LT, demonstrating the importance of30

the tail in determining the peak kurtosis.31

Comparison with Theory 1

We compare our ensemble-averaged kurtosis results 2

with the solution of Fedele [10], with the results shown in 3

Fig. 6. The kurtosis curves for Case ST and Case LT are 4

both shown, expressed as dynamic excess kurtosis, see (1), 5

normalised by the square of the Benjamin-Feir index, see 6

(3). The kurtosis curves have been plotted against non- 7

dimensional time, τ = ν2ω0t, based on the spectral band- 8

width (ν) and the characteristic frequency (ω0). Our calcu- 9

lation of the shortcrestedness parameter R is based upon (4) 10

using the angular width in (5). The dashed line in Fig. 6, 11

calculated by Fedele [10], bases the bandwidth parameter ν 12

on the spectral half-width and, thus, yields R = 0.032 with 13

the same curve for Case ST and Case LT (since the spec- 14

tral half-width is not altered by truncation of the tail). The 15

solid (R = 0.022) and dotted (R = 0.052) lines in Fig. 6 are 16

based on the bandwidth parameter in (31), which does ac- 17

count for truncation of the spectral tail. As can be seen, 18

the kurtosis curves based on (31) provide better agreement 19

with the simulation results, compared with the curve based 20

on the spectral half-width. We note that the peak kurtosis 21

value is particularly well predicted, although the long-term 22

behaviour differs—the kurtosis decline after the peak occurs 23

faster for the simulations than predicted by the theoretical 24

results. Thus, we find that Fedele [10] provides an excel- 25

lent estimate for the peak kurtosis value in our simulations. 26

However, the bandwidth parameter ν must account for the 27

spectral tail to accurately predict the kurtosis peak. We find 28

that the bandwidth parameter in (31), based on the peaked- 29

ness parameter of Goda [37], appears to be suitable for this 30

purpose, consistent with the recommendations of Serio et al. 31

[35]. 32

CONCLUSION 33

Our findings indicate that artificial truncation of the 34

spectral tail augments the peak kurtosis value of a random 35

sea initialised with Gaussian statistics. Truncation of the 36

tail results in more aggressive spectral changes during the 37

simulation, characterised by spectral broadening in terms of 38

bandwidth and spreading as well as downshifting of the spec- 39

tral peak. The spectral tail is also observed to redevelop 40

during the course of the simulation. Thus, the spectral tail 41

appears to play an important role in establishing a form of 42

spectral equilibrium that reduces spectral changes and de- 43

creases the peak kurtosis value. Care should, thus, be taken 44

when artificially truncating the tail for the purpose of sim- 45

ulations/experiments. We find that the MNLS equation of 46

Trulsen et al. [16] can be used to estimate the peak kurtosis 47

value, by including the spectral tail in the initial conditions, 48

despite the bandwidth limits of the equation. 49
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