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ABSTRACT

Model testing is common in coastal and offshore engineer-
ing. The design of such model tests is important such that the
maximal information of the underlying physics can be extrapo-
lated with a limited amount of test cases. The optimal design
of experiments also requires considering the previous similar ex-
perimental results and the typical sea-states of the ocean envi-
ronments. In this study, we develop a model test design strategy
based on Bayesian sampling for a classic problem in ocean engi-
neering – nonlinear wave loading on a vertical cylinder. The new
experimental design strategy is achieved through a GP-based
surrogate model, which considers the previous experimental data
as the prior information. The metocean data are further incor-
porated into the experimental design through a modified acqui-
sition function. We perform a new experiment, which is mainly
designed by data-driven methods including several critical pa-
rameters such as the size of the cylinder and all the wave con-
ditions. We examine the performance of such a method when
compared to traditional experimental design based on manual
decisions. This method is a step forward to a more systematic
way of approaching test designs with marginally better perfor-
mance in capturing the higher-order force coefficients. The cur-
rent surrogate model also made several ‘interpretable’ decisions
which can be explained with physical insights.

1 Introduction
Offshore wind turbine foundations are exposed to the haz-

ardous ocean environment and must be designed to survive the
ultimate loads. For the wave loading on the monopile foun-
dations, the relatively small Keulegan-Carpenter (KC) number
indicates that for non-breaking waves, inertia loading tends to
dominate the total inline forcing and it is common to neglect the
drag force effect. Nonlinear physics further introduces higher-
frequency components, which could contribute significantly to
the total inline force for very steep and nonlinear waves. The
linear part of the inertia loading has the same frequency as the
incoming wave field, which by design is away from the typi-
cal structural natural frequency of monopile foundations (around
two or three times the frequency of severe storm waves [1]).
These higher-frequency harmonics, however, can be much closer
or even overlap with the structural natural frequency. This over-
lap is of concern to the structural and geotechnical design of the
monopile foundations and can potentially lead to the excitation
of a structure resonance, which is usually referred to as ‘ringing
effect’ [2–4].

Various theoretical works have looked at these higher or-
der harmonics [5–8]. Experiments and numerical simulations
[9, 10] are also used to further explore the underlying physics of
these higher-order harmonics, including our recent work, where
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a phase decomposition method is applied to further separate
the higher frequency components from the linear loading and
Stokes type force expansion is used to predict the higher fre-
quency forces as a nonlinear function of the linear loading in
time [11–13]. With the increasing number of experiments and
numerical datasets produced at various laboratories and research
groups, the new experiential design should be based on various
pieces of information together to further explore the underlying
nonlinear physics. This includes a consistency check against pre-
vious experimental data and suggestions for new experimental
cases to check the reliability. Additionally, new cases should be
representative of real sea-state conditions in the operational wind
farm.

Rather than relying on physical intuition or past experience,
a systematic experimental design strategy is preferred to address
these challenges. In this study, we take a data science approach
to design our new experiment and use Bayesian interference as a
small step forward. The Bayesian interference is a widely used
optimisation tool in computer science and machine learning [14].
Recent studies in ocean engineering [15–17] also further utilised
this technique to design numerical simulations based on previous
results, which can lead to a significant saving of computational
resources with a properly designed sequential sampling strategy.

In this study, we performed an experiment that is primarily
designed by machine learning at the University of Strathclyde. A
surrogate model based on Gaussian Process is used to interpolate
previous experimental results and a new acquisition function is
proposed to integrate metocean data from the ECWMF dataset.
The proposed design strategy allows the integration of different
types of information: experiments, and metocean data to assist
the decision-making process in the design of new experiments.
This model provides information to assist the choice of several
critical experimental parameters including the size of the cylin-
der and all the wave conditions. We compare the performance of
the proposed model against the traditional experimental design
strategy and observed some improvement in the final predictions
of nonlinear loading on a vertical cylinder.

We structure this paper as follows. We first introduce the ex-
perimental setup in section 2 and provide a brief introduction of
the metocean and experimental data used in this study in sections
3 and 4. We then provide details of the machine learning models
in sections 5 and 6 and present results in section 7.

2 Experimental setup
In this paper, we aim at designing a new set of experiments

in the large flume (76 m long, 4.6 m wide with a constant wa-
ter depth of 1.8 m) at the Kelvin Hydrodynamics Laboratory, the
University of Strathclyde. We are primarily interested in the non-
linear wave loads on a single bottom-mounted surface-piercing
vertical cylinder placed 35.3 m away from the wavemaker. There
is a parabolic beach at the far end of the flume away from the

wavemakers for wave absorption. Reflections from the beach are
expected, however, the reflected wave packets reach the cylin-
der at a later time and are excluded from the analysis. Hinged-
flap type wavemakers are installed at the other end of the flume.
Linear wave generation theory was applied, and the impact of
second-order error waves on the overall wave loading was anal-
ysed carefully. We can also confirm that the second-order error
wave packet is separated from the main group at the time of in-
teraction with the cylinder.

In this study, we are primarily interested in focused wave
groups, which are also interconnected with the averaged shape
of the largest events in the random time series (according to
NewWave theory [18,19]). The focus point of these wave groups
is at the centre of the cylinder. In the experiments, the waves are
generated based on the JONSWAP spectrum [20] with peak en-
hancement factor, γ = 3.3. As the wave group propagates along
the wave tank, significant nonlinear evolution is expected for
steep wave groups [21–23]. Local properties of wave group pro-
files at focus are measured without the presence of the cylinder
and are used for further analysis. Wave breaking occasionally oc-
curs before the wave group arrives at the position of the cylinder
and these cases are excluded from our analysis.

3 Previous experiments
Datasets obtained from the previous three experiments are

used as the prior information for guiding the design of this new
experimental campaign (details are given in [11–13]). Similar
focused wave group profiles were generated during these exper-
iments with the same JONSWAP spectrum (γ = 3.3) but with
different peak periods and amplitudes. The relative water depths
and the cylinder sizes also vary due to the physical constraints in
the experimental facilities. The detailed design of these experi-
ments in terms of three non-dimensional parameters (kA, kd and
kR) is given in Figure 7, where k is the peak wavenumber, A is
the wave group amplitude at the focus point if the wave evolves
linearly, d is the water depth of the flume and R is the radius of
the cylinder. The similar experimental setup and wide range cov-
erage of these previous experimental data provide the basic infor-
mation to start the design of our new experimental campaign.

All the experiments including the previous and current cases
are primarily focused on the unidirectional wave conditions (ex-
cept for [11] where spreading sea states are also considered),
which is different for the directionally spread waves in the open
ocean [24].

4 Metocean data
Realistic experimental data is critical to the design of new

experiments as these data provide information on the typical sea-
states which are representative of ocean environments where off-
shore wind turbines are and will be constructed in the near future.
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The design of new experiments should be tailored to metocean
data to avoid any cases that are unlikely to occur in realistic sea
states.

In this study, we obtain the metocean data from the ERA5
reanalysis dataset from ECWMF [25]. We have downloaded the
sea-states parameters at 36 current and potential locations of off-
shore wind farms around UK, as shown in Figure 1. The res-
olution of ocean wave data is 0.5◦ x 0.5◦ and the nearest node
to the location of the wind farm is used for the analysis herein.
Rigorous data quality control and validation of this dataset has
been done previously in [25] and missing entries are carefully
checked throughout. In this study, we are primarily interested in
three metocean parameters: significant wave height (Hs), hourly
maximum wave height (Hmax) and peak period (Tp). We have
collected the hourly variation of these three data at all 36 wind
farm locations between the period of 2004 and 2024, which con-
tains a total of 87600 hourly sea-sates. We have also collected
the monopile size information and the averaged water depth of
the wind farm from the company official or project website for
these 36 UK based wind farms.

We also performed a data pre-filtering to these collected sea-
sates, where only 50% of sea-states with large (based on Hmax)
and 50% sea-states with long waves (based on Tp) are considered
(see Figure 2 for details). The threshold for this pre-filtering is
arbitrary but is a compromise based on the limited availability
of experimental facilities. Nonlinear wave-wave interactions are
more pronounced for steeper wave groups [12], and these cases
are favoured given limited tank time in terms of both scientific in-
terests and the importance of extreme loading conditions during
severe winter storms. Additionally, the wavemaker also strug-
gles for high frequency wave groups, where the accuracy of the
wave generation is more of a concern. We also note that such
pre-filtering is not critical for the current proposed experimental
design method and potential improvements will be further dis-
cussed in section 7.3.

5 Gaussian Process as a surrogate model
To separate the nonlinear loading on a vertical cylinder from

the linear components, we use a four-phase harmonic extrac-
tion method [26]. This method is also used in previous studies
[12, 13], which decomposes nonlinear forces into different har-
monics in frequency by repeating the experiments with four dif-
ferent phases (see Eqn 2 in [13] for details). These decomposed
higher-order frequency components can be further fitted based
on the linear force envelope raised to the appropriate power. The
fitted amplitude and phase coefficients can be used to predict the
nonlinear force inertial loading on a vertical cylinder based on
linear wave force only.

In this study, we describe the variation of force amplitude
coefficients F(x) with three non-dimentionalised parameters kA,
kd and kR with a Gaussian Process (GP) using a mean function
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FIGURE 1. SITE MAP FOR 36 LOCATIONS OF UK-BASED
WIND FARMS.

m(x) and a covariance function k(x,x∗):

F(x)∼ G P (m(x),k (x,x∗))

m(x) = E[F(x)]

k (x,x∗) = cov(F(x),F (x∗))
(1)

where x ∈ (kA,kd,kR) is a parameters space input vector with
three dimensions, F(x) and F (x∗) are force amplitude coeffi-
cients response indexed by x and x∗. Generally, ke(x,x∗) is also
referred to as a kernel function, which is further parameterised
by a hyperparameter θ .

GP is a common Bayesian non-parametric model used for
both regressions and parameterisation purposes. This method is
particularly suitable in our prediction model because of its strong
resistance to under-fitting the problems. In this study, one of the
key challenges for the accurate prediction of force coefficients
is the limited data available from previous experiments. A GP’s
expressiveness in proportion to the size and complexity of the
growing dataset avoids the under-fitting problem [27] for small
datasets. Additionally, the ability to provide uncertainty quantifi-
cation based on the prior modelled system also favours the wide
application of the GP model in many engineering problems, such
as system identification [28], control [29] and forecasting [30].

In this study, the variation function of force amplitude co-
efficients F(x) in parameters space x ∈ (kA,kd,kR) is assumed
to be a complex system without existing expert domain knowl-
edge. For systems without any accurate description of the dy-
namics model, a GP model is commonly initialised with a zero
mean function, which leads to the prior in GP is solely dependent
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FIGURE 2. AN EXAMPLE OF SEA-STATE METOCEAN DATA
OBTAINED FROM EAR5 DATASET FROM ECWMF FOR (a):
SIGNIFICANT WAVE HEIGHT, (b): HOURLY MOST PROBA-
BLE MAXIMUM WAVE HEIGHT, AND (c): PEAK PERIOD. THE
TWO RED LINES INDICATE THE THRESHOLD FOR DATA PRE-
FILTERING, WHERE ONLY 50% OF SEA-STATES WITH LARGE
(BASED ON Hmax) AND 50% SEA-STATES WITH LONG WAVES
(BASED ON Tp) ARE CONSIDERED.

on the choice of the covariance function k(x,x∗). Although the
covariance functions k(x,x∗) is fully customisable for any func-
tion, which can provide a positive definite covariance matrix, the
selection of this function determines the periodicity and smooth-
ness of the trained GP model. Hence, a suitable covariance func-
tion type and hyperparameter θ initial values are required during
the initialisation of a GP prior.

In this study, we follow the most common covariance func-
tion: squared exponential, which is also noted as Radial Basis
Function:

k (xi,x j) = h2
1 exp

[
−
(

xi − x j

λ

)2
]
, (2)

which can be further optimised by using a loss function based on
the log marginal likelihood function following [31].

The trained GP model can make the prediction F∗ for a new

given input X∗ based on the extended joint distribution as:

[
F∗

y

]
∼
([

m(X∗)
m(X)

]
,

[
k (X∗,X∗) k (X∗,X)
k (X ,X∗) K +σ2I,

])
(3)

where k (X∗,X)= k (X ,X∗)T = [k (X1,X∗) , · · · ,k (XN ,X∗)], X are
observation datasets, σ2 is the noise variance, and I is the identity
matrix.

According to the properties of joint Gaussian distributions,
the prediction results for the outputs can be obtained as:

µ (F∗) = m(X∗)+ k (X∗,X)
[
K +σ

2I
]−1

(Y −m(X))

var(F∗) = k (X∗,X∗)− k (X∗,X)
[
K +σ

2I
]−1

k (X ,X∗) ,
(4)

where µ (F∗) is the predicted force amplitude coefficients and
var(F∗) is the variance of the predicted force amplitude coeffi-
cients (see an example of GP prediction in Figure 3).

FIGURE 3. AN ILLUSTRATION OF PREDICTION FROM GP AS
A SURROGATE MODEL FOR SECOND ORDER FORCE COEF-
FICIENTS FOR (a) PREDICTION RESIDUAL AND (b) CONFI-
DENCE INTERVAL. BLUE CIRCLES REPRESENT THE PREVI-
OUSLY ACQUIRED SAMPLING POINTS VIA EXPERIMENTS.

For a limited size of dataset, the random split of the training
and validation data may also introduce bias in the prediction re-
sults. To minimise the impact of this split, a bootstrapped k-fold
cross-validation process [32] is applied to further examine the
accuracy of our GP model. In this study, the dataset is uniformly
divided into n subsets and n− 1 uniform-sized subsets are used
for GP model training. The performance of the currently trained
GP model can be evaluated by validating against the out-of-bag
sample. After repeating the training and validation process cov-
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ering all the data points as the out-of-bag sample, the overall
performance measurements can be calculated as the average of
across the k-folds.

6 Acquisition function

Uncertainty sampling is a common active sampling method,
which locates the next best sampling point (X̂) to be the position
where the predictive variance achieves a maximum value:

x̂ = argmaxx var[(F∗)]. (5)

This acquisition function is easy to use and particularly use-
ful when limited data are available [15]. However, for this partic-
ular engineering problem, the acquisition function requires fur-
ther modification as the largest uncertainly will inevitably occur
at the parameter space x ∈ (kA,kd,kR) where the test case can
not be physically achieved (i.e. too steep waves locally exceeded
the breaking limits), as shown in Figure 3 (b) as an example.

Hence, we further modify the likelihood-weighted acqui-
sition functions proposed in [33] to incorporate the conditional
statistics calculated from Section 4 as:

x̂ = argmaxx var[(F∗)w(x)], (6)

where the w(x) is the conditional statistics estimated from the
probability of such a combination of parameters occurring at the
location of UK-based wind farms, which can be visualised in
the bin scatter plot in Figure 4. This acquisition function allows
direct assimilation and integration of the filed data into the ex-
perimental design, which provides realistic oceanographic con-
ditions.

We note that the current experimental campaign also bene-
fits from batch sampling as the automated wave generation sys-
tem allows performing experiments overnight. The data anal-
ysis and surrogate model training, however, still require man-
ual supervision. Batching the experimental design for running
overnight provides more observations over a limited tank time
slot. As such, we follow the batching procedure suggested in [34]
in searching for sub-optimal sampling points at multiple local
minima of the acquisition function.

To find multiple regions with local optima from the acqui-
sition function, a condition that no Bayesian sample may occur
closer than a specified distance is introduced [34] as:

rmin = rl

(
ND

∑
d=1

(
xd,+− xd,−

)2

)2

, (7)

where xd,+ and xd,− are the maximal and minimal domain
bounds (i.e. the maximum and minimum value of kA,kd,kR
that is achievable with the current experimental setup), and rl
is a user-defined percentage, where we choose a static value of
rl = 0.05 and ND is the batch size which is 45 due to the physical
constraints of the current experimental setup. Trading marginally
reduced performance with more completed experiments is bene-
ficial to the experimental campaign overall.

7 Results
In this section, we will first summarise the typical sea-sates

at 36 locations of UK-based offshore wind farms. We will then
reveal the ML interpretation of the best design of the current ex-
perimental campaign and compare the performance against the
traditional grid search method.

7.1 Metocean data
We present the distribution of hourly sea-states parameters

(i.e. Hs, Hmax and Tp) for all 36 locations of UK offshore wind
farms in Figure 4. We have also calculated the peak wavenumber
kp based on the finite depth dispersion relationship with the aver-
aged water depth information of the local wind farm. We also ap-
proximate the amplitude (A) of the hourly maximum wave as the
half of the maximum wave height (Hmax), as the wave height dis-
tributions are less affected by the second order bound waves [35].

From Figure 4, we found that the majority of sea-states for
UK-based wind farms are in finite water depth with the relative
water depths kpd < 3. This is expected as other configurations of
wind turbines such as the floating turbines would be preferred for
deeper water locations. The striped pattern is also clear from the
kpd vs. kpR plot, which is primarily due to the fixed water depth
(d) to the monopile radius (R) ratio. Apart from 4 wind farm sites
with a large d/R ratio on the top left corner, the majority of the
wind farms tend to have a similar d/R ratio and cluster towards
the right bottom corner. This indicates there is a correlation be-
tween the monopile radius and relative water depths, which is
expected as larger monopile foundations would be required for
wind farms in deeper water.

7.2 Bayesian interference-based design
It is of interest to investigate how the GP model will design

a new experiment based on previous experimental results. As
such, we have visualised the acquisition function for second or-
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FIGURE 4. BIN SCATTER FOR SEA-STATE PARAMETERS DISTRIBUTIONS BETWEEN 2004 AND 2024 FOR 36 LOCATIONS OF UK
OFFSHORE WIND FARMS.

der force coefficients for three water depths in Figure 5. As the
acquisition function is assembled based on three parts: prediction
residual, variance and conditional statistics from the metocean
data (see details in section 6), a larger value in the acquisition
function indicates a more important sampling region in the pa-
rameter space suggested by the GP model. This could be due to
either less accurate predictions during cross-validation, uncertain
predictions from the confidence interval or important sea-states
that commonly occur in these wind farms (or maybe a combina-
tion).

The acquisition function from the GP model suggested low
importance for the cases with kA values greater than 0.23 regard-
less of the value for kd and kR. This is simply because such
very steep wave groups are unlikely to happen in the realistic
water wave system, where wave breaking dissipates the energy
and limits the maximum height. This constraint primarily comes
from the conditional statistics of the sea-states input to the GP
model. Additionally, the GP model also shows very limited im-
portance for the cases with small kA values below 0.1 regardless
of the value for kd and kR. This is expected as for these quasi-
linear wave groups, the overall behaviour can be well captured
very simply with small nonlinearity. It seems that the prior in-
formation provided from previous experiments is self-consistent
based on cross-validation results and can provide sufficient data
to make accurate predictions. GP model also shows increasing
importance for the cases with larger kR values if the kd value in-
creases. This could be because of the fact that for the wind farms
in deeper waters, the radius of the monopile foundation is usu-
ally larger, and hence GP model weights the cases with a larger

relative radius as more important to explore. It is also interesting
to find out that the effect of kd on the nonlinear wave loading
seems to have an asymptotic behaviour, where the importance
(i.e. maximum of the acquisition function) shifts significantly
from relatively shallow water to intermediate water depth from
Figure 5 (a) to 5 (b) compared to the shift from intermediate
water depth to relatively deep water ((b) to (c) ).

Other physical constraints need to be considered in the de-
sign of such an experimental campaign. The first and foremost
constraint comes from the fixed d/R ratio available for the test
in the Strathclyde flume. This is similar to the fixed d/R ratio
for the monopile foundations in UK-based wind farms. Vary-
ing the cylinder size simply requires replacing the cylinder and
re-calibrate the load cells, which takes about an entire day to
finish. Varying water depth is also difficult to achieve and fur-
ther requires the re-calibration of wavemakers and wave probes.
As such, instead of directly using the location in the parame-
ter space, where the acquisition function reaches the maximum,
finding the optimal d/R ratio is necessary.

The final suggested Bayesian sampling points and the tradi-
tional grid search sampling points are shown in Figure 7. The
sampling points based on the grid search method are determined
based on intuition. Due to the fixed cylinder radius constraint,
both experimental design approach results overlapped on the
same d/R constant line in Figure 7 (c). We have also presented
the test matrix of three previous experiments as the prior informa-
tion. It seems that the current Bayesian sampling model focuses
on a cluster region with less interest in exploring the short but
steep wave region. This could be due to fewer short but steep sea
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FIGURE 5. VISUALISATION OF AN EXAMPLE ACQUISITION FUNCTION FOR SECOND ORDER COEFFICIENTS AT DIFFERENT WA-
TER DEPTHS. A MOVING AVERAGE SMOOTH FUNCTION IS APPLIED HEREIN WITH A SMOOTHING WINDOW SIZE OF 4 DATA
POINTS.

FIGURE 6. INTEGRATED ACQUISITION FUNCTION FOR DIF-
FERENT VALUES OF CYLINDER RADIUS BASED ON THE WA-
TER DEPTH OF THE FLUME d = 1.8m. VALUES OF ACQUI-
SITION FUNCTION ARE NORMALISED BY THE TRIPLE INTE-
GRAL ALONG kA,kd AND kR AXIS.

states being observed in metocean data. It is interesting to find
that during the experiments, some of the short but steep wave
group designs shown in the top right corner of Figure 7 (a) sug-
gested by the grid search method are not achievable as the wave
breaks before reaching the cylinder, whereas the wave breaking
causes less impact on the Bayesian sampled points.

7.3 Improvements in nonlinear load predictions
We now finally look at the sampling efficiency by comparing

the novel metocean data integrated Bayesian sampling strategy
against the traditional grid search method in this classic nonlinear
wave loading prediction problem.

We first present the final prediction of the higher frequency
components of nonlinear forces from the GP model trained from
Bayesian sampling and from the traditional grid search design of
the experiments in Figure 8. In general, both GP models perform
well in capturing high-frequency nonlinear loads on a vertical
cylinder. This could be attributed to the fact that the previous
three experiments already provided a broad and sufficient sam-
ple. The GP model trained with Bayesian sampling outperforms
slightly over the one trained with grid search design. The advan-
tage of training with Bayesian sampling is more significant for
the nonlinear force components with high frequencies as more
noise is expected in these signals.

The results are also consistent for the k-fold cross-validated
error (see details in Section 5) when predicting the second-order
force amplitude coefficients shown in Figure 9. For both the
Bayesian sampling method and the grid search method, the over-
all error is reduced when more experimental cases (i.e. new sam-
ples) are input into the training dataset. The Bayesian sampling
strategy outperforms the traditional grid search sampling method
based on purely physics intuition.

8. Discussion and conclusions
In this paper, we present a Bayesian sampling-based experi-

mental design strategy, which also incorporates metocean data as
conditional statistics in a classic wave-structure interaction prob-
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lem. Based on three previous experimental datasets as the prior
information, a GP-based surrogate model is trained to predict the
higher frequency force amplitude coefficients. An acquisition
function is used to incorporate the metocean data into the exper-
imental design. One of the critical experimental parameters –
the size of the cylinder is optimised based on the proposed ac-
quisition function with extra physical constrained imposed. New
experiments are to be performed with wave group loads on a ver-
tical cylinder at the University of Strathclyde. The GP model
trained with Bayesian sampled experimental data shows a slight
edge when compared to the traditional experimental design with
grid search.

In this study, the modified acquisition function suggested
by the machine learning model also helps us to rank the non-
dimensional parameters in their space, each according to its im-
portance. We found that the machine learning model can make
interesting decisions which are compatible with physical intu-
ition but in a more systematic way. For example, the machine
learning model gives less importance to quasi-linear cases as
these wave groups exhibit almost no nonlinear physics. The
current machine learning model also gives less importance to
strongly nonlinear cases, which avoid very short but steep wave
group profiles. These wave groups are found later in the ex-
periment to be impractical to investigate as the wave group will

break before reaching the cylinder in the middle of the tank. It
is worth mentioning that neither previous experiments nor meto-
cean data are actually aimed at investigating wave breaking, but
wave breaking occasionally affects both datasets.

Incorporating machine learning with metocean data is help-
ful in many aspects. Firstly, metocean data usually have a large
amount of information with hidden underlying physics, data-
driven methods could potentially better utilise this as an external
source for experimental design (e.g. the current model avoids
suggesting breaking cases). Secondly, metocean data also pro-
vides machine learning with real engineering conditions, which
allows the decision to be made in a realistic way. The cur-
rent model proposes increasing the monopile size in experiments
when performed in deeper water, which superficially agrees with
the current trend in the offshore wind industry. As such, we be-
lieve the machine learning-assisted model could help to some
extent with experimental design in a systemic manner.

In this study, we have also observed several challenges of
implementing machine learning for a complete design of an ex-
periment. This is primarily because the simplified acquisition
function cannot take all the physical constraints into considera-
tion. For example, the GP model would suggest using 18 differ-
ent sizes of cylinders for the optimal sampling strategy without
considering the difficulties of varying the sizes and also the time
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FIGURE 8. THE FINAL PREDICTION OF HIGHER FREQUENCY
COMPONENTS OF NONLINEAR FORCES FROM THE GP MODEL
TRAINED FROM BAYESIAN SAMPLING SUGGESTED BY SUR-
ROGATE MODEL AND GRID SEARCH DESIGN OF EXPERI-
MENT.

taken to reinstall the cylinders. Manual modifications are still
required for this study. However, it is possible to develop an
improved acquisition function that provides a penalty when the
size of the cylinder varies. This could minimise the manual input
and automate the experimental design in the future. Addition-
ally, the choice of experimental data is prior information and the
metocean data could potentially introduce bias that leads to the
designed experiment being suitable for a specific area but of less
scientific interest (for example, less extreme conditions are con-
sidered for the GP model). Finally, although these results need to
be extrapolated with great care as limited data are available and
from a single experimental campaign, we do believe the machine
learning method could help the experimental design in the future.
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