
Notes taken from the first problem session — not guaranteed to be free from errors.

Gabor Pete

We consider bootstrap percolation on Cayley graphs (reference: Balogh, Peres, Pete).
Definition: A group is amenable if ∃ (or, equivalently, ∀) Cayley graph with F1 ⊆ F2 ⊆

· · · ⊆ V (G) such that
⋃

n≥1 Fn = V (G), |Fn| < ∞ for all n ≥ 1, and

|∂Fn|/|Fn| → 0,

where ∂Fn is the set of vertices in Fn with a neighbor outside Fn.
For example Zd is amenable. The Diestel-Leader graph DL(2, 2), a Cayley graph of the

lamplighter group, is also amenable. Exercise: DL(2, 2) is amenable.
Question: prove or disprove: a group is amenable if and only if for every generating set

S and for every k-rule bootstrap percolation,

pc(Cay(Γ, S), k) ∈ {0, 1}.

For Zd (amenable) and any group containing a free group with two generators (very non-
amenable), the result holds. But for DL(2, 2), it is unknown. The Heisenberg group may
also be good to look at.

James Martin

Close sites on Zd independently with probability p. Consider a two-player game on this site-
percolated board, where players alternate moving the location of a token in some specified
set of directions D (to a site which are not closed), never repeating a location. A player loses
when they can no longer make a move. If play goes on forever, then the game is a draw.
What is the probability of a draw?

When p is so large that there are no infinite components, the game is forced to end, so
there is no draw. When p is sufficiently small, is there some positive probability of a draw?

Consider the case D = {e1, . . . , ed}, the standard basis (in the positive direction(s)). For
d = 2, it is known that the probability of a draw is 0 for all p: label each site with whether
the first or second player wins when the token starts at that site. If we know the labels of
the diagonal x+ y = c, then we can determine the labels of the diagonal x+ y = c− 1. This
looks like a 1-dimensional cellular automata which has a unique stationary distribution.

Conjecture: For d ≥ 3 and D = {e1, . . . , ed}, there is a positive probability of a draw
for sufficiently small p.

We can prove it for D = {e1 ± ei : i ≥ 2} and d ≥ 3. In this case, the game in dimension
d is related to a hard-core model (and the uniqueness of stationary measure) on dimension
d− 1.

Conjecture: For D = {±ei : i ∈ [d]}, the probability of a draw is 0 for d = 2 but there
is a posiive probability of a draw for d = 3 and sufficiently small p.
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This problem is somewhat related to bootstrap percolation (the Froböse model) because
enough closed sites ‘force’ other sites to be closed, as a player would never move to the site
if it is a losing position for them.

How much advantage does one player have over the other? The probability of the first
player (in dimension 2) is related to a markov chain computation on a hard-core model. How
does closing only even sites of Zd shift this advantage?

Consider playing this game on finite graphs (without the site percolation, but, as before,
the token may never repeat a site). It is an exercise that the first player wins if and only
if the token starts at a vertex which is contained in every maximum matching. To transfer
this to the infinite volume, we ask: are the vertices in every maximum matching sensitive to
boundary conditions?

Ivailo Hartarsky

Conjecture: for any subcritical U -bootstrap percolation process (i.e. one with pc > 0), we
have for all p > pc that there exists c > 0 such that Pp(τ ≥ n) ≤ e−cn.

This is known to hold if U is “oriented” in the sense that there exists a half space H
through the origin containing all of the rules U ∈ U .

One open case is the directed triangle bootstrap percolation.

Maksim Zhukovskii

We consider graph bootstrap percolation. The weak saturation number wsat(G,F ) is the
minimum number of edges in a spanning subgraph H of G (comprising activated edges)
which percolates to G: as soon as an edge completes a copy of F , then add it to H.

Example: wsat(Kn, Ks) =
(
n
2

)
−
(
n−s+2

2

)
. The upper bound is contructive: take an (s−2)-

clique in Kn and all edges incident to the clique. There are other constructions. In general,
wsat(Kn, F ) is linear in n, i.e. wsat(Kn, F ) = (cF + o(1))n.

It is known that for constant p, wsat(G(n, p), Ks) = wsat(Kn, Ks) w.h.p. (due to Korándi
and Sudakov, 2017).

Conjecture 1: for all F and constant p, wsat(G(n, p), F ) = wsat(Kn, F ) w.h.p.
We know for some graphs F for which Question 1 is true, but we do not know wsat(Kn, F )

(in particular, for unbalanced complete bipartite graphs, though it is known up to an additive
constant, proved by Kalinicheko, Zhukovskii, 2023).

There exists some ps such that if p ≫ ps then wsat(G(n, p), Ks) = wsat(Kn, Ks) w.h.p.;
and if p ≪ ps, then they are not equal (Bidgoli, Mohammadian, Tayfeh-Rezaie, Zhukovskii,
2024).

Question 2: Find ps.
For the second question, we just know

n−g(s) < ps < n−f(s).

For triangles, Peled and Zhukovskii proved p3 = n−1/3+o(1) (unpublished).
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Tibor Szabó

Given two graphs H and G0, the H-bootstrap percolation process starting with G0 involves
iteratively setting Gi to consist of Gi−1 together with any edges that produce a copy of H.
We let ⟨G0⟩ be the graph obtained at the end of the process. We define MH(n) to be the
maximum time it takes for the H-boostrap percolation on some n-vertex graph G0 with
⟨G0⟩ = Kn to terminate. There are many open questions, here are a few:

Question: Is MK5(n) = o(n2). Note that we have a lower bound of n2−o(1) and it’s
known that for larger cliques we have MKr(n) = Θ(n2).

Question: Is MT (n) ≤ e(T ) for all n sufficiently large. Would be tight for the star.
Current best known bound is O(e(T )2). It’s theoretically possible that one might be able to
prove a bound of the form O(∆(T )).

Question: do there exist H with a degree 1 vertex v such that MH)n) = o(MH−v(n))
and MH(n) = ω(1).

Conjecture: if MH(n) = o(n), then MH(n) = Θ(log n) or MH(n) = O(1). Note that
cycles and trees show that either of these behaviors can happen.

Conjecture: H having tree width 2 implies MH(n) = O(n).
Question: Does there exist H1, H2 such that MH1∪H2(n) = ω(MH1(n) +MH2(n)).

Janko Gravner

Consider bootstrap percolation on the Hamming graph of dimension 2, say on Z2
+. The

process is parameterized by a Young diagram Z called the zero set. For a given point p,
count the number of occupied sites in p’s column and the number of occupied sites in p’s
rows; if this ordered pair is outside the Young diagram, we occupy p, but otherwise, we do
nothing. Let γ(Z) be the size of the smallest set that percolates to the plane.

Theorem: when Z is a rectangle, then γ(Z) = |Z|, the area of the rectangle.
It is know that 1

4
|Z| ≤ γ(Z) ≤ |Z|. (The upper bound is just using the initial set Z.)

Question: Is there some algorithm that computes γ(Z) (efficiently)? Can you approxi-
mate γ(Z)?

Suspicion: γ(Z) ≥ 1
2
|Z|. (It is known that this can be realized.)

Omer Angel

The goal is to understand if certain models of bootstrap percolation are local.
Suppose you are given some sequence of functions fn : {0, 1}V → {0, 1} where each

function determines an update rule for a process on a vertex transitive graph. The vague
question is when do we have

pc(fn) → pc(f∞), (1)

where f∞ is some suitably defined limit object (that the reader may choose). One might
require that the sequence (fn) is increasing. Perhaps the answer depends on whether the
models are subcritical, critical, or supercritical.
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More concretely, suppose a sequence of graphs Gn tends to a graph G in the Benjamini-
Schramm sense and pick your favorite bootstrap rule.

Question: Is it true that pc(Gn) → pc(G).

Sam Spiro

The zero forcing process for a graph G starts with some initial set of activated vertices B0.
Iterativelyif there exists v ∈ Bi such that there exists a unique neighbor u ∈ N(v) which
is not in Bi, then u gets added to Bi+1 together with all previous vertices of Bi. We write
B0 ∈ ZFS(G) if B∞ = V (G). Note that this property is monotone in that if B ∈ ZFS(G)
then so is any superset of B.

There is a lot of literature studying deterministic B0, but the case when we start with a
p-random set Bp has only been studied very recently. There are many questions to explore
here, the main one being the following:

Conjecture: if G is an n-vertex graph and p ∈ [0, 1], then Pr[Bp ∈ ZFS(G)] ≤ Pr[Bp ∈
ZFS(Pn)]. That is, the path is the easiest graph to completely activate with a p-random
set of vertices. This is known to hold if G has a hamiltonian path via a simple coupling
argument (which fails for general graphs), and is also known to hold for trees of sufficiently
large order.

Bob Krueger

The firefighting (single-player) game on a (infinite) graph G is the following: a fire breaks
out at a vertex v. You may protect (with a ‘firefighter’) k non-burning vertices of G each
turn as “unburnable” for the rest of the game (protecting a vertex is equivalent to deleting
it from the graph). Between your turns, the fire spreads along the edges of the graph, and
a vertex which catches fire burns forever. What is the minimum k needed so that the fire
eventually stops spreading? (See a 2009 survey of Finbow and MacGillivray.)

On Z2, it is an easy exercise to show that 1 firefighter per turn is not enough, but 2 is.
Conjecture: For the infinite triangular grid, 2 firefighters per turn is not enough (but 3

clearly are).
Conjecture: For the infinite hexagonal grid, 1 firefighter per turn is not enough.
It is known that if you are allowed 1 firefighter per turn, but at on some turn you are

given an extra firefighter, then it is possible to contain the fire on the hexagonal grid. There
is some relationship between strategies on the triangular grid and strategies on the hexagonal
grid.

It is somewhat constraining to allow the same number of firefighters on every turn. You
could instead have a (deterministic or random) sequence that tells you how many firefighters
you can use. There are many natural variations.
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