Orbits of irreducible binary forms over $\operatorname{GF}(p)$

Michael Vaughan-Lee

May 2017

Abstract

In this note I give a formula for calculating the number of orbits of irreducible binary forms of degree n over $\operatorname{GF}(p)$ under the action of $\mathrm{GL}(2, p)$. This formula has applications to the classification of class two groups of exponent p with derived groups of order p^{2}.

1 Introduction

A binary form of degree n over a field F is a homogeneous polynomial

$$
\alpha_{0} x^{n}+\alpha_{1} x^{n-1} y+\alpha_{2} x^{n-2} y^{2}+\ldots+\alpha_{n} y^{n}
$$

in x, y with coefficients in F. Two binary forms are taken to be identical if one is a scalar multiple of the other. We define an action of $\mathrm{GL}(2, F)$ on binary forms as follows. Let $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, F)$, and let

$$
f=\alpha_{0} x^{n}+\alpha_{1} x^{n-1} y+\alpha_{2} x^{n-2} y^{2}+\ldots+\alpha_{n} y^{n}
$$

Then we define

$$
f g=\alpha_{0}(a x+b y)^{n}+\alpha_{1}(a x+b y)^{n-1}(c x+d y)+\ldots+\alpha_{n}(c x+d y)^{n} .
$$

Binary forms over the complex numbers are an important research topic, but there is very little published in the literature on binary forms over $\operatorname{GF}(p)$. However binary forms over $\operatorname{GF}(p)$ do have applications to the classification of class two groups of exponent p with derived groups of order $p^{2}(p>2)$. There is an important paper by Vishnevetskii [2] in which he classifies the indecomposable groups of this form. (A group of this form is indecomposable if it cannot be expressed as a central product of two proper subgroups.) Let
us call a class two group G of exponent p with derived group of order p^{2} a $(d, 2)$ group if $\left|G / G^{\prime}\right|=p^{d}$, so that G has d generators. Vishnevetskii shows that if d is odd then there is only one indecomposable $(d, 2)$ group. If $d=3$ then it has a presentation on generators a_{1}, a_{2}, a_{3} with a single relation $\left[a_{1}, a_{3}\right]=1$ in addition to the relations making it a class two group of exponent p. If d is odd and $d>3$ then it has presentation on generators $a_{1}, a_{2}, \ldots, a_{d}$ with relations

$$
\begin{gathered}
{\left[a_{1}, a_{2}\right]=\left[a_{3}, a_{4}\right]=\left[a_{5}, a_{6}\right]=\ldots=\left[a_{d-2}, a_{d-1}\right],} \\
{\left[a_{2}, a_{3}\right]=\left[a_{4}, a_{5}\right]=\ldots=\left[a_{d-1}, a_{d}\right],}
\end{gathered}
$$

where all other commutators of the generators are trivial. If d is even, say $d=2 n$, then the indecomposable groups of type $(2 n, 2)$ correspond to orbits of binary forms f of degree n which have the form $f=g^{k}$ where g is irreducible. Corresponding to an orbit representative f of degree n we have an indecomposable group V_{f} on generators

$$
x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}, z_{1}, z_{2}
$$

The relations on V_{f} are given by a pair of $n \times n$ Scharlau matrices A, B where A is the identity matrix, and B is the companion matrix of the polynomial $f(x, 1)$. We set $\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=1$ for all i, j. Let A have (i, j)-entry $a_{i j}$ and let B have (i, j)-entry $b_{i j}$. Then we set $\left[x_{i}, y_{j}\right]=z_{1}^{a_{i j}} z_{2}^{b_{i j}}$. (The generators z_{1}, z_{2} are assumed to be central, of course.) The type $(2 n, 2)$ groups obtained in this way form a complete and irredundant set of indecomposable groups of type $(2 n, 2)$. For example, consider the case $n=4$. If $f=g^{k}$ where g is irreducible, then $k=1,2$ or 4 . If $k=1$ then then f is irreducible, and there are $\frac{p+1}{2}$ orbits of irreducible quartic binary forms over $\operatorname{GF}(p)$. If $k=2$ then $f=g^{2}$ where g is an irreducible quadratic, and there is only one orbit of irreducible quadratics. And if $k=4$ then $f=g^{4}$ where g is irreducible of degree 1 , and there is only one orbit of irreducible binary forms of degree 1. So there are $\frac{p+5}{2}$ indecomposable groups of type $(8,2)$, and if we pick representatives for the orbits of irreducible binary forms of degrees 1,2 and 4 we can write down presentations for the groups.

Vishnevetskii [1] gives a formula to compute the number of orbits of irreducible binary forms of degree n over $\operatorname{GF}(p)$ for the cases when n is coprime to $p+1$. I have managed to extend Vishnevetskii's formula to cover all $n>2$. (When $n \leq 2$ there is exactly one orbit for all p.) When $n=3$ there is one orbit for all p. When $n=4$ there is one orbit for $p=2$ and $\frac{p+1}{2}$ orbits for $p>2$. When $n=5$ there is one orbit for $p=2$, six orbits for $p=5$ and $\frac{1}{5}\left(p^{2}-1+2 \operatorname{gcd}\left(p^{2}-1,5\right)\right)$ orbits for $p \neq 2,5$. In general if p is an
odd prime coprime to n then the number of orbits is one of $\varphi(n)$ polynomials in p, with the choice of polynomial depending on $p \bmod n$. (If p is coprime to n, then $p \bmod n$ is coprime to n.) So the number of orbits is polynomial on residue classes (PORC). I have a MAGMA program which computes these $\varphi(n)$ polynomials (with symbolic p) for any given n. I also have a Magma program which computes the number of orbits for any given prime p and any given n, including the prime 2 and primes dividing n. The programs are superficially quite complicated, but their complexity is bounded by k^{2} where k is the number of divisors of n. The programs can be found on my website http://users.ox.ac.uk/~vlee/PORC/orbitsirredpols.

2 Vishnevetskii's method

Let S be the set of irreducible binary forms of degree n over GF (p), and let $G=\mathrm{GL}(2, p)$. We have an action of G on S, and the number of orbits is given by Burnside's Lemma:

$$
\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g)
$$

where fix (g) is the number of elements $s \in S$ such that $s g=s$. Since we have a group action, fix (g) depends only on the conjugacy class of g, and so we only need to compute fix (g) for one representative g from each conjugacy class. There are four types of conjugacy class.

1. There are $p-1$ conjugacy classes of size one, each containing an element of the form $g=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)$. For g of this form

$$
\operatorname{fix}(g)=|S|=\sum_{d \mid n} \mu(d) p^{n / d}
$$

where μ is the Möbius function.
2. There are $p-1$ conjugacy classes of size $p^{2}-1$, each containing an element $g=\left(\begin{array}{cc}\lambda & \lambda \\ 0 & \lambda\end{array}\right)$. For each of these elements

$$
\operatorname{fix}(g)=\operatorname{fix}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

We will show in Section 3 that this is given by Vishnevetskii's function $B(p, n)$ from [1], where $B(p, n)=0$ if $p \nmid n$ and where

$$
B(p, n)=\frac{p-1}{n} \sum_{d \mid n, p \nmid d} \mu(d) p^{n / p d}
$$

if $p \mid n$.
3. There are $\frac{1}{2}(p-1)(p-2)$ conjugacy classes of size $p^{2}+p$ each containing an element $g=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right)$ with $\lambda \neq \mu$. We will show in Section 4 below that if $g=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right)$ then fix (g) depends only on the multiplicative order of $\frac{\lambda}{\mu}$. We will show that if the order of $\frac{\lambda}{\mu}$ does not divide n then fix $(g)=0$, and that if the order is e where e divides n then $\operatorname{fix}(g)$ is given by Vishnevetskii's function $A(p, n, e)$ from [1]. If $e \mid n$ then we write $\frac{n}{e}=k r$ where k is the largest possible divisor of n which is coprime to e and then

$$
A(p, n, e)=\frac{\varphi(e)}{n} \sum_{d \mid k} \mu(d)\left(p^{k r / d}-1\right)
$$

Note that for each $e>1$ dividing $p-1$ there are $\varphi(e) \frac{p-1}{2}$ conjugacy classes containing an element $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right)$ with $\frac{\lambda}{\mu}$ of order e.
4. There are $\frac{1}{2} p(p-1)$ conjugacy classes of size $p^{2}-p$, containing elements $g \in G$ whose eigenvalues do not lie in $\operatorname{GF}(p)$. Let N be the central subgroup of G consisting of the matrices λI. We will show in Section 5 that if g lies in one of these conjugacy classes then fix (g) depends only on the order of $g N$. Note that this order must divide $p+1$, and that for every $e>1$ dividing $p+1$ there are $\varphi(e) \frac{p-1}{2}$ conjugacy classes of this form containing elements g with $g N$ of order e. We will show that if $g N$ has order e where $e \nmid n$, then $\operatorname{fix}(g)=0$. Vishnevetskii does not have an expression for fix (g) when $e \mid n$, and this is why his formula only applies when n is coprime to $p+1$. We will obtain a function $C(p, n, e)$ in Section 5 which gives fix (g) in the case when $e \mid \operatorname{gcd}(n, p+1)$.

Putting all this together we see that the number of orbits is

$$
\frac{1}{|G|}(a+b+c+d),
$$

where

$$
\begin{aligned}
a & =(p-1) \sum_{d \mid n} \mu(d) p^{n / d}, \\
b & =(p-1)\left(p^{2}-1\right) B(p, n), \\
c & =\sum_{e \mid(n, p-1), e \neq 1} \varphi(e) \frac{p-1}{2}\left(p^{2}+p\right) A(p, n, e), \\
d & =\sum_{e \mid(n, p+1), e \neq 1} \varphi(e) \frac{p-1}{2}\left(p^{2}-p\right) C(p, n, e) .
\end{aligned}
$$

3 Vishnevetskii's formula $B(p, n)$

We need to calculate fix (g) when $g=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. We take $x^{n}, x^{n-1} y, x^{n-2} y^{2}$, \ldots, y^{n} as a basis for the space of homogeneous polynomials of degree n in x, y over $\mathrm{GF}(p)$. Then g maps these basis elements to

$$
(x+y)^{n},(x+y)^{n-1} y, \ldots, y^{n}
$$

and so the matrix A giving the action of g is an upper triangular matrix with 1 's down the diagonal, and entries $n, n-1, \ldots, 2,1$ down the superdiagonal. The only eigenvalue is 1 , and we need to count the number of eigenvectors corresponding to irreducible polynomials. (We treat two eigenvectors as being equal if one is a scalar multiple of the other.) An eigenvector of A corresponding to an irreducible polynomial must have non-zero first entry, but $(1, *, *, \ldots, *)$ can only be an eigenvector if the (1,2)-entry of A is zero. So the number of eigenvectors corresponding to irreducible polynomials is zero unless $n=0 \bmod p$. So suppose that $p \mid n$. Then the superdiagonal of A has $\frac{n}{p}$ zero entries, and $\frac{(p-1) n}{p}$ non-zero entries. This implies that the dimension of the eigenspace of A is at most $1+\frac{n}{p}$. Now y and $x^{p}-x y^{p-1}$ are both fixed by g, and so if we let $k=\frac{n}{p}$ then we see that the following $1+\frac{n}{p}$ polynomials are all fixed by g :

$$
\left(x^{p}-x y^{p-1}\right)^{k},\left(x^{p}-x y^{p-1}\right)^{k-1} y^{p}, \ldots,\left(x^{p}-x y^{p-1}\right) y^{(k-1) p}, y^{k p} .
$$

So the eigenspace of A corresponding to eigenvalue 1 has dimension $1+\frac{n}{p}$ and these polynomials form a basis for the space of all polynomials of degree n which are fixed by the g. So we need to count the number of irreducible polynomials
$\left(x^{p}-x y^{p-1}\right)^{k}+\alpha_{k-1}\left(x^{p}-x y^{p-1}\right)^{k-1} y^{p}+\ldots+\alpha_{1}\left(x^{p}-x y^{p-1}\right) y^{(k-1) p}+\alpha_{0} y^{k p}$
with $\alpha_{0}, \alpha_{1}, \ldots, a_{k-1} \in \operatorname{GF}(p)$.
Let $F=\mathrm{GF}(p)$, let $K=\mathrm{GF}\left(p^{k}\right)$ and let $L=\mathrm{GF}\left(p^{n}\right)$. We want to count the number of irreducible polynomials $f\left(x^{p}-x\right)$ where $f(x)$ is a polynomial of degree k. Clearly, if $f\left(x^{p}-x\right)$ is irreducible then $f(x)$ is irreducible, and so $f(x)$ splits in K and $f\left(x^{p}-x\right)$ splits in L. Let α be a root of $f(x)$ in K. Then $x^{p}-x-\alpha \in K[x]$ divides $f\left(x^{p}-x\right)$, and so $x^{p}-x-\alpha$ splits in L. We then have $K=F(\alpha), L=F(\beta)$ if β is any root of $x^{p}-x-\alpha$. So $f(x)$ is the minimum polynomial over F of an element $\alpha \in K$ where α does not lie in any proper subfield of K and $\alpha \neq \gamma^{p}-\gamma$ for any $\gamma \in K$.

Conversely let $\alpha \in K$, and assume that α does not lie in any proper subfield of K. Also assume that $\alpha \neq \gamma^{p}-\gamma$ for any $\gamma \in K$. Let $f(x)$ be the minimum polynomial of α over F. Since α does not lie in any proper subfield of K, we have $K=F(\alpha)$, and so f has degree k. Also since $\alpha \neq \gamma^{p}-\gamma$ for any $\gamma \in K$ we see that $x^{p}-x-\alpha \in K[x]$ does not split in K. Let β be a root of $x^{p}-x-\alpha$ in a splitting field M for $x^{p}-x-\alpha$. The the other $p-1$ roots are $1+\beta, 2+\beta, \ldots, p-1+\beta$. Since $\beta \notin K$ the minimum polynomial of β over K has a root $i+\beta$ with $i \neq 0$, and so there is an automorphism θ in the Galois group of M over K such that $\theta(\beta)=i+\beta$. But then θ has order p so that $|M: K|=p$ and $|M: F|=p^{n}$. So the minimum polynomial of β over F has degree n. But $f\left(x^{p}-x\right)$ has a root β and has degree n, so must be irreducible.

So we need to count the number of elements $\alpha \in K$ which do not lie in any proper subfield of K and which cannot be expressed in the form $\gamma^{p}-\gamma$ with $\gamma \in K$.

The $\operatorname{map} \varphi: K \rightarrow K$ given by $\varphi(\gamma)=\gamma^{p}-\gamma$ is an additive homomorphism of K with kernel F. So $|\operatorname{Im} \varphi|=p^{k-1}$, and the set $S=K \backslash \operatorname{Im} \varphi$ contains $\frac{p-1}{p} p^{k}$ elements. We need to count the number of elements of S which do not lie in a proper subfield of K. So let M be a proper subfield of K. We show that if p divides $|K: M|$ then $M \cap S=\varnothing$, and that if $|K: M|$ is coprime to p then $|M \cap S|=\frac{p-1}{p}|M|$.

First consider the case when p divides $|K: M|$. If $\alpha \in M$ is not equal to $\gamma^{p}-\gamma$ for any $\gamma \in M$ then, as we saw above, the splitting field of $x^{p}-x-\alpha$ over M has degree p over M and so must be contained in K. So $M \cap S=\varnothing$.

Now consider the case when $|K: M|$ is coprime to p. We show that if $\beta \in K \backslash M$ then $\beta^{p}-\beta \in K \backslash M$. For suppose that $\beta \in K \backslash M$ and $\beta^{p}-\beta=$ $\alpha \in M$. Then the splitting field of $x^{p}-x-\alpha$ over M has degree p over M and is contained in K, which is impossible. It follows that $\varphi(K \backslash M) \subset K \backslash M$ so that $|S \cap(K \backslash M)|=\frac{p-1}{p}|K \backslash M|$ and $|S \cap M|=\frac{p-1}{p}|M|$.

Putting all this together we see that the number of elements of S which
do not lie in any proper subfield of K is

$$
\frac{p-1}{p} \sum_{d} \mu(d) p^{n / p d}
$$

where the sum is taken over all d dividing k which are coprime to p. It follows from this that the number of polynomials $f(x)$ of degree k with $f\left(x^{p}-x\right)$ irreducible is

$$
\frac{p-1}{n} \sum_{d} \mu(d) p^{n / p d}
$$

and this is Vishnevetskii's function $B(p, n)$.

4 Vishnevetskii's function $A(p, n, e)$

Let $g=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right)$ with $\lambda \neq \mu$. Then $\operatorname{fix}(g)=\mathrm{fix}(h)$ where $h=\left(\begin{array}{ll}\nu & 0 \\ 0 & 1\end{array}\right)$, with $\nu=\frac{\lambda}{\mu}$. We take $x^{n}, x^{n-1} y, x^{n-2} y^{2}, \ldots, y^{n}$ as a basis for the space of homogeneous polynomials of degree n in x, y over $\operatorname{GF}(p)$. Then h maps these basis elements to

$$
\nu^{n} x^{n}, \nu^{n-1} x^{n-1} y, \nu^{n-2} x^{n-2} y^{2}, \ldots, y^{n}
$$

So the matrix M giving the action of h is a diagonal matrix with entries $\nu^{n}, \nu^{n-1}, \ldots, 1$ down the diagonal. We need to count eigenvectors of M corresponding to irreducible polynomials, and such an eigenvector must have non-zero first entry and non-zero last entry. So fix $(h)=0$ unless $\nu^{n}=1$. So suppose that ν has order e where $e \mid n$. Then the eigenspace corresponding to eigenvalue 1 is spanned by $x^{n}, x^{n-e} y^{e}, x^{n-2 e} y^{2 e}, \ldots, y^{n}$, and so if we set $\frac{n}{e}=k r$ where k is the largest possible divisor of n which is coprime to e, we need to count irreducible polynomials of the form

$$
x^{n}+\alpha_{1} x^{n-e} y^{e}+\alpha_{2} x^{n-2 e} y^{2 e}+\ldots+\alpha_{k r} y^{n} .
$$

This is equivalent to counting the number of irreducible polynomials $f\left(x^{e}\right)$ where $f(x)$ is a polynomial of degree $k r$.

Let $F=\mathrm{GF}(p), K=\mathrm{GF}\left(p^{k r}\right)$ and let $L=\mathrm{GF}\left(p^{n}\right)$. Let $f(x) \in F[x]$ have degree $k r$ and suppose that $f\left(x^{e}\right)$ is irreducible. Then L is the splitting field of $f\left(x^{e}\right)$. Also, $f(x)$ must be irreducible over F, so that K is the splitting field of $f(x)$. Let $\alpha \in K$ be a root of $f(x)$, so that $K=F(\alpha)$, and α does not lie in any proper subfield of K. Then $x^{e}-\alpha$ divides $f\left(x^{e}\right)$ over K, and
so $x^{e}-\alpha$ has a root $\beta \in L$, and $L=K(\beta)$. Since $|L: K|=e, x^{e}-\alpha$ must be irreducible over K, and so α must be non-zero and cannot be the $q^{\text {th }}$ power of an element of K for any prime q dividing e.

Conversely, suppose that α is a non-zero element of K which does not lie in any proper subfield of K, and suppose that α is not equal to a $q^{\text {th }}$ power of an element of K for any prime q dividing e. Let $f(x)$ be the minimum polynomial of α over F. Since we must have $K=F(\alpha), f(x)$ is an irreducible polynomial of degree $k r$. We show that $f\left(x^{e}\right)$ is irreducible over F.

Let M be the splitting field of $x^{e}-\alpha$ over K, and let $\gamma \in M$ be a root of $x^{e}-\alpha$. Since $p=1 \bmod e$, there is a primitive $e^{t h}$ root of unity $\zeta \in F$, and the roots of $x^{e}-\alpha$ in M are

$$
\gamma, \zeta \gamma, \zeta^{2} \gamma, \ldots, \zeta^{e-1} \gamma
$$

So the conjugates of γ over K have the form $\zeta^{i} \gamma$, and the set of powers ζ^{i} such that $\zeta^{i} \gamma$ is conjugate to γ form a subgroup of $\langle\zeta\rangle$. Let this subgroup have order m dividing e. Then the minimum polynomial of γ over K is $x^{m}-\gamma^{m}$ (with $\gamma^{m} \in K$). So

$$
\alpha=\gamma^{e}=\left(\gamma^{m}\right)^{e / m} .
$$

Our assumption that α is not equal to a $q^{\text {th }}$ power of an element of K for any prime q dividing e implies that $m=e$. So $|M: K|=e$ and $M=L=F(\gamma)$. This implies that the minimum polynomial of γ over F has degree n. But $f\left(x^{e}\right)$ is a polynomial of degree n which has γ as a root, and so $f\left(x^{e}\right)$ must be the minimum polynomial of γ over F, and must be irreducible.

So to count the number of irreducible polynomials of the form $f\left(x^{e}\right)$ where f has degree $k r$ we need to count the number of elements $\alpha \in K$ which do not lie in any proper subfield of K and are not $q^{\text {th }}$ powers of elements of K for any prime q dividing e. Let S be the set of elements in K which are not $q^{t h}$ powers of elements in K for any prime q dividing e. The non-zero elements of K form a cyclic group G of order $p^{k r}-1$, and $e \mid p-1$, so $|S|=\frac{\varphi(e)}{e}\left(p^{k r}-1\right)$. However we need to take account of elements of S which lie inside proper subfields of K. So let M be a proper subfield of K, with $|K: M|=t$.

First consider the case when $q \mid t$ for some prime q dividing e. Then if $\alpha \in M$ is not a $q^{t h}$ power of an element in M then $x^{q}-\alpha$ is irreducible over M. (This uses the fact that F contains primitive $q^{\text {th }}$ roots of unity.) So the splitting field of $x^{q}-\alpha$ over M has degree q over M, and must be contained in K since q divides $|K: M|$. So $|S \cap M|=0$.

Next consider the case when t is coprime to e. Note that this implies that $t \mid k$. We show that in this case $|S \cap M|=\frac{\varphi(e)}{e}(|M|-1)$. To see this suppose that $\alpha \in M \backslash S$. Then $\alpha=\gamma^{q}$ for some $\gamma \in \stackrel{e}{K}$ and some prime $q \mid e$. If $\gamma \notin M$
then $x^{q}-\alpha$ is irreducible over M, so that the splitting field of $x^{q}-\alpha$ over M is an extension of M of degree q. But this is impossible since this splitting field is $M(\gamma)$ which is a subfield of K, and q does not divide $|K: M|$. So if $\alpha \in M \backslash S$ then α is a $q^{\text {th }}$ power of some element of M for some $q \mid e$. Hence $|S \cap M|=\frac{\varphi(e)}{e}(|M|-1)$.

It follows from this that the number of elements of S which do not lie in proper subfields of K is

$$
\frac{\varphi(e)}{e} \sum_{d \mid k} \mu(d)\left(p^{k r / d}-1\right)
$$

Each of these elements has a minimal polynomial $f(x)$ of degree $k r$ with $f\left(x^{e}\right)$ irreducible, and so the number of these polynomials is

$$
\frac{\varphi(e)}{n} \sum_{d \mid k} \mu(d)\left(p^{k r / d}-1\right)
$$

5 My function $C(p, n, e)$

If $e \mid \operatorname{gcd}(n, p+1)$ and $e>1$ then we write $\frac{n}{e}=k r$ where k is the largest possible divisor of n which is coprime to e. We define

$$
C(p, n, e)=\frac{\varphi(e)}{n} \sum_{d \mid k} \mu\left(\frac{k}{d}\right)\left(p^{r d}-1+2(r d \bmod 2)\right)
$$

We show that if $g \in G$ has eigenvalues that do not lie in $\operatorname{GF}(p)$, and if $g N$ has order e then $\operatorname{fix}(g)=0$ if $e \nmid n$, and $\operatorname{fix}(g)=C(p, n, e)$ if $e \mid n$.

Let $g \in G$ have eigenvalues that do not lie in $\operatorname{GF}(p)$. Then g is conjugate to an element $h=\left(\begin{array}{cc}0 & r \\ 1 & s\end{array}\right)$ where $x^{2}-s x-r$ is irreducible over $\operatorname{GF}(p)$, and $\operatorname{fix}(g)=\operatorname{fix}(h)$. So we assume that $g=\left(\begin{array}{cc}0 & r \\ 1 & s\end{array}\right)$. Let λ, λ^{p} be the eigenvalues of g in $\operatorname{GF}\left(p^{2}\right)$. Then g has eigenvectors $(1, \lambda),\left(1, \lambda^{p}\right)$ with these eigenvalues. Let U be the space of homogeneous polynomials of degree n in x, y over $\operatorname{GF}\left(p^{2}\right)$, and let V be the space of homogeneous polynomials of degree n in x, y over $\operatorname{GF}(p)$. Then U has a basis

$$
(x+\lambda y)^{n},(x+\lambda y)^{n-1}\left(x+\lambda^{p} y\right),(x+\lambda y)^{n-2}\left(x+\lambda^{p} y\right)^{2}, \ldots,\left(x+\lambda^{p} y\right)^{n}
$$

The element g acts as a linear transformation T_{g} on U, and these basis vectors are eigenvectors for T_{g} with eigenvalues $\lambda^{n}, \lambda^{n-1} \lambda^{p}, \ldots, \lambda^{p n}$. We show that
fix $(g)=0$ unless $\lambda^{n}=\lambda^{p n}$. (Note that if $\lambda^{n}=\lambda^{p n}$ then $g^{n}=\left(\begin{array}{cc}\lambda^{n} & 0 \\ 0 & \lambda^{n}\end{array}\right) \in$ N, and the order of $g N$ divides n.)

The element g acts as a linear transformation S_{g} on V, and $v \in V$ is fixed by g if and only if v is an eigenvector for S_{g}. So let $v \in V$ and suppose that $v S_{g}=\mu v$ with $\mu \in \mathrm{GF}(p)$. The eigenvalues of S_{g} are also eigenvalues of T_{g}, and so

$$
\mu \in\left\{\lambda^{n}, \lambda^{n-1} \lambda^{p}, \ldots, \lambda^{n p}\right\}
$$

Now $\mu=\mu^{p}$, and so if $\lambda^{n} \neq \lambda^{n p}$ then

$$
\mu \in\left\{\lambda^{n}, \lambda^{n-1} \lambda^{p}, \ldots, \lambda^{n p}\right\} \backslash\left\{\lambda^{n}, \lambda^{n p}\right\} .
$$

But this implies that v lies in the GF $\left(p^{2}\right)$ span of

$$
(x+\lambda y)^{n-1}\left(x+\lambda^{p} y\right),(x+\lambda y)^{n-2}\left(x+\lambda^{p} y\right)^{2}, \ldots,(x+\lambda y)\left(x+\lambda^{p} y\right)^{n-1}
$$

and hence that v has a factor

$$
(x+\lambda y)\left(x+\lambda^{p} y\right)=x^{2}+s x y-r y^{2}
$$

and is not irreducible. (We are assuming that $n>2$.) So if $\lambda^{n} \neq \lambda^{n p}$ then fix $(g)=0$, as claimed.

So assume that $\lambda^{n}=\lambda^{n p}$ and let $g N$ have order e dividing n. Then $e \mid p+1$, and e is the smallest value of s such that $\lambda^{s} \in \mathrm{GF}(p)$. As we have seen, if v is an irreducible polynomial in V then v is an eigenvector for S_{g} with eigenvalue λ^{n}. The dimension of this eigenspace is $1+\frac{n}{e}$ and we obtain a basis for the eigenspace as follows. As in the definition of $C(n, p, e)$ let $\frac{n}{e}=k r$ where k is the largest divisor of n which is coprime to e. Let

$$
\begin{aligned}
& a(x, y)=\frac{1}{2}\left((x+\lambda y)^{e}+\left(x+\lambda^{p} y\right)^{e}\right) \\
& b(x, y)=\frac{1}{e\left(\lambda-\lambda^{p}\right)}\left((x+\lambda y)^{e}-\left(x+\lambda^{p} y\right)^{e}\right)
\end{aligned}
$$

Then a and b are homogeneous polynomials of degree e in $\operatorname{GF}(p)[x, y]$. The coefficient of x^{e} in a is 1 , and the coefficient of y^{e} in a is λ^{e}. The coefficients of x^{e} and y^{e} in b are zero, and the coefficient of $x^{e-1} y$ is 1 . The eigenspace of S_{g} for eigenvector λ^{n} has basis

$$
a^{k r}, a^{k r-1} b, a^{k r-2} b^{2}, \ldots, b^{k r}
$$

So to calculate fix (g) we need to count the number of irreducible polynomials of the form

$$
\alpha_{0} a^{k r}+\alpha_{1} a^{k r-1} b+\alpha_{2} a^{k r-2} b^{2}+\ldots+\alpha_{k r} b^{k r}
$$

Since b is divisible by x we can assume that $\alpha_{0}=1$.
So assume that

$$
h(x, y)=a^{k r}+\alpha_{1} a^{k r-1} b+\alpha_{2} a^{k r-2} b^{2}+\ldots+\alpha_{k r} b^{k r}
$$

is irreducible, and let

$$
f(x)=x^{k r}+\alpha_{1} x^{k r-1}+\alpha_{2} x^{k r-2}+\ldots+\alpha_{k r} .
$$

Then f must be irreducible, and so f has splitting field $K=\operatorname{GF}\left(p^{k r}\right)$. Let $F=\operatorname{GF}(p)$, and let $L=\operatorname{GF}\left(p^{n}\right)$. Since $h(x, 1)$ is irreducible over F it splits over L. Let β be a root of $f(x)$ in K. Then $a(x, 1)-\beta b(x, 1) \in K[x]$ divides $h(x, 1)$, and so splits in L. Let γ be a root of $a(x, 1)-\beta b(x, 1)$ in L, so that $L=F(\gamma)$. So $|K(\gamma): K|=|L: K|=e$, which implies that $a(x, 1)-\beta b(x, 1)$ is irreducible over K.

Conversely, suppose that $\beta \in K$ generates K over F, and suppose that $a(x, 1)-\beta b(x, 1)$ is irreducible over K. Let

$$
f(x)=x^{k r}+\alpha_{1} x^{k r-1}+\alpha_{2} x^{k r-2}+\ldots+\alpha_{k r}
$$

be the minimum polynomial of β, and let

$$
h(x, y)=a^{k r}+\alpha_{1} a^{k r-1} b+\alpha_{2} a^{k r-2} b^{2}+\ldots+\alpha_{k r} b^{k r} .
$$

Since $a(x, 1)-\beta b(x, 1)$ is irreducible over K its splitting field over K is L. Let γ be a root of $a(x, 1)-\beta b(x, 1)$ in L, so that $L=K(\gamma)=F(\beta, \gamma)$. Provided $b(\gamma, 1) \neq 0$ we see that $\beta \in F(\gamma)$, so that $L=F(\gamma)$ which implies that the minimum polynomial of γ over F has degree n. This implies that $h(x, 1)$ is the minimum polynomial of γ over F so that $h(x, 1)$ and $h(x, y)$ are irreducible. However we cannot have $b(\gamma, 1)=0$ since this would imply that $a(\gamma, 1)=b(\gamma, 1)=0$ and this would imply that $a(x, 1)$ and $b(x, 1)$ have a common factor over F so that $a(x, 1)-\beta b(x, 1)$ would not be irreducible over K.

So to count irreducible polynomials of the form $h(x, y)$ we need to count elements $\beta \in K$ such that β generates K over F and such that $a(x, 1)-$ $\beta b(x, 1)$ is irreducible over K. As a step towards this we prove the following lemma.

Lemma 1 Let $M=G F\left(p^{m}\right)$. If m is even then the number of elements $\beta \in M$ such that $a(x, 1)-\beta b(x, 1)$ is irreducible over M is $\frac{\varphi(e)}{e}\left(p^{m}-1\right)$, and if m is odd then the number of elements $\beta \in M$ such that $a(x, 1)-\beta b(x, 1)$ is irreducible over M is $\frac{\varphi(e)}{e}\left(p^{m}+1\right)$.

Proof. First suppose that m is even. Then λ and λ^{p} lie in M, and the set of M-linear combinations of $a(x, 1)$ and $b(x, 1)$ is the same as the set of M-linear combinations of $(x+\lambda)^{e}$ and $\left(x+\lambda^{p}\right)^{e}$. So the number of irreducible polynomials of the form $a(x, 1)-\beta b(x, 1)$ with $\beta \in M$ is the same as the number of irreducible polynomials of the form $(x+\lambda)^{e}-\beta\left(x+\lambda^{p}\right)^{e}$ with $\beta \in$ M. Since $e \mid p+1, M$ contains the $e^{t h}$ roots of unity, and so $(x+\lambda)^{e}-\beta\left(x+\lambda^{p}\right)^{e}$ is reducible if and only if β is a $q^{\text {th }}$ power of some element of M for some prime q dividing e. So the number of irreducible polynomials $(x+\lambda)^{e}-\beta\left(x+\lambda^{p}\right)^{e}$ is

$$
\sum_{d \mid e} \mu(d) \frac{p^{m}-1}{d}=\frac{\varphi(e)}{e}\left(p^{m}-1\right)
$$

Next, suppose that m is odd, so that $\lambda, \lambda^{p} \notin M$. Let $L=\operatorname{GF}\left(p^{2 m}\right)$. So L is an extension field of M with $|L: M|=2$. The field L contains λ, λ^{p}, and also contains the $e^{t h}$ roots of unity. Since m is odd, $\lambda^{p}=\lambda^{p^{m}}$. If $\beta \in M$ then $a(x, 1)-\beta b(x, 1)=\left(\frac{1}{2}+\frac{\beta}{e\left(\lambda-\lambda^{p^{m}}\right)}\right)(x+\lambda)^{e}+\left(\frac{1}{2}-\frac{\beta}{e\left(\lambda-\lambda^{p^{m}}\right)}\right)\left(x+\lambda^{p^{m}}\right)^{e}$. If we set $\gamma=\frac{1}{2}+\frac{\beta}{e\left(\lambda-\lambda^{p^{m m}}\right)} \in L$ then

$$
a(x, 1)-\beta b(x, 1)=\gamma(x+\lambda)^{e}+\gamma^{p^{m}}\left(x+\lambda^{p^{m}}\right)^{e}
$$

Conversely, if $\gamma \in L$ then $\gamma(x+\lambda)^{e}+\gamma^{p^{m}}\left(x+\lambda^{p^{m}}\right)^{e}$ is an M-linear combination of $a(x, 1)$ and $b(x, 1)$. Note that $\gamma(x+\lambda)^{e}+\gamma^{p^{m}}\left(x+\lambda^{p^{m}}\right)^{e}$ is a scalar multiple of $\delta(x+\lambda)^{e}+\delta^{p^{m}}\left(x+\lambda^{p^{m}}\right)^{e}$ if and only if $\gamma^{p^{m}-1}=\delta^{p^{m}-1}$. Let ω be a primitive element in L. Then $-1=\omega^{\left(p^{m}-1\right)\left(p^{m}+1\right) / 2}$. We let $\zeta=\omega^{\left(p^{m}+1\right) / 2}$ so that $\zeta^{p^{m}-1}=-1$. So

$$
-\gamma^{p^{m}-1}=(\zeta \gamma)^{p^{m}-1}=\omega^{\left(p^{m}-1\right) c}
$$

for some c with $1 \leq c \leq p^{m}+1$. Note that this implies that there are $p^{m}+1$ different values of $\gamma^{p^{m}-1}$. We show that $\gamma(x+\lambda)^{e}+\gamma^{p^{m}}\left(x+\lambda^{p^{m}}\right)^{e}$ is irreducible over M if and only if c is coprime to e. Since $e \mid p^{m}+1$ this implies that there are $\frac{\varphi(e)}{e}\left(p^{m}+1\right)$ different values of $\gamma^{p^{m}-1}$ yielding polynomials $\gamma(x+\lambda)^{e}+\gamma^{p^{m}}\left(x+\lambda^{p^{m}}\right)^{e}$ which are irreducible over M. This in turn implies that there are $\frac{\varphi(e)}{e}\left(p^{m}+1\right)$ values of $\beta \in M$ such that $a(x, 1)-\beta b(x, 1)$ is irreducible over M, as claimed.

So suppose that c is not coprime to e. Then there is some prime q dividing e which also divides c. Write $c=q d$, and let $\delta=\omega^{d}$. Then $-\gamma^{p^{m}-1}=\delta^{\left(p^{m}-1\right) q}$. So $(x+\lambda)^{e}+\gamma^{p^{m}-1}\left(x+\lambda^{p^{m}}\right)^{e}$ is divisible by

$$
(x+\lambda)^{e / q}-\delta^{p^{m}-1}\left(x+\lambda^{p^{m}}\right)^{e / q}=(x+\lambda)^{e / q}+(\zeta \delta)^{p^{m}-1}\left(x+\lambda^{p^{m}}\right)^{e / q}
$$

and this implies that $\gamma(x+\lambda)^{e}+\gamma^{p^{m}}\left(x+\lambda^{p^{m}}\right)^{e}$ is divisible by

$$
\zeta \delta(x+\lambda)^{e / q}+(\zeta \delta)^{p^{m}}\left(x+\lambda^{p^{m}}\right)^{e / q} .
$$

Conversely assume that $\gamma(x+\lambda)^{e}+\gamma^{p^{m}}\left(x+\lambda^{p^{m}}\right)^{e}$ is not irreducible over M. Then $(x+\lambda)^{e}+\gamma^{p^{m}-1}\left(x+\lambda^{p^{m}}\right)^{e}$ is not irreducible over L and so (since L contains the $e^{t h}$ roots of unity) $(x+\lambda)^{e}+\gamma^{p^{m}-1}\left(x+\lambda^{p^{m}}\right)^{e}$ has a factorization

$$
\left((x+\lambda)^{e / t}-\alpha_{1}\left(x+\lambda^{p^{m}}\right)^{e / t}\right) \ldots\left((x+\lambda)^{e / t}-\alpha_{t}\left(x+\lambda^{p^{m}}\right)^{e / t}\right)
$$

for some $t>1$, with $\alpha_{1}^{t}=\alpha_{2}^{t}=\ldots=\alpha_{t}^{t}=-\gamma^{p^{m}-1}$.
First consider the case when t is divisible by an odd prime q. Then $-\gamma^{p^{m}-1}=\omega^{\left(p^{m}-1\right) c}$ is a $q^{t h}$ power, and since q is coprime to $p^{m}-1$ but divides $p^{m}+1$ this implies that $q \mid c$.

Next consider the case when t is divisible by 4. Note that since $t \mid e$ and $e \mid p+1$ this implies that $\frac{p^{m}-1}{2}$ is odd, and also implies that 2 is a prime dividing e. Now $-\gamma^{p^{m}-1}=\omega^{\left(p^{m}-1\right) c}$ is a fourth power of an element of L, and since $\frac{p^{m}-1}{2}$ is odd, this implies $2 \mid c$.

Finally suppose that $(x+\lambda)^{e}+\gamma^{p^{m}-1}\left(x+\lambda^{p^{m}}\right)^{e}$ has no factorization with t divisible by an odd prime or t divisible by 4 . Since we are assuming that $(x+\lambda)^{e}+\gamma^{p^{m}-1}\left(x+\lambda^{p^{m}}\right)^{e}$ is not irreducible the only possibility left is that e is even and that $(x+\lambda)^{e}+\gamma^{p^{m}-1}\left(x+\lambda^{p^{m}}\right)^{e}$ equals

$$
\left((x+\lambda)^{e / 2}-\alpha\left(x+\lambda^{p^{m}}\right)^{e / 2}\right)\left((x+\lambda)^{e / 2}+\alpha\left(x+\lambda^{p^{m}}\right)^{e / 2}\right)
$$

for some α with $-\alpha^{2}=\gamma^{p^{m}-1}$. Since there is no factorization with $t>2$ the factors $(x+\lambda)^{e / 2} \pm \alpha\left(x+\lambda^{p^{m}}\right)^{e / 2}$ are irreducible. So $\gamma(x+\lambda)^{e}+\gamma^{p^{m}}\left(x+\lambda^{p^{m}}\right)^{e}$ can only factorize over M if $\alpha=\delta^{p^{m}-1}$ for some $\delta \in L$. But then

$$
\delta^{\left(p^{m}-1\right) 2}=\alpha^{2}=-\gamma^{p^{m}-1}=\omega^{\left(p^{m}-1\right) c}
$$

so that $2 \mid c$.
This completes the proof of Lemma 1.
So let $g=\left(\begin{array}{cc}0 & r \\ 1 & s\end{array}\right)$ where $x^{2}-s x-r$ is irreducible over $\operatorname{GF}(p)$, let g have eigenvalues λ, λ^{p}, and suppose that $g N$ has order $e \mid p+1$. As we have seen, $\operatorname{fix}(g)=0$ unless $e \mid n$. So assume that $e \mid n$ and write $\frac{n}{e}=k r$ where k is the largest divisor of n which is coprime to e. Let $F=\operatorname{GF}(p)$, $K=\operatorname{GF}\left(p^{k r}\right)$, and let $L=\operatorname{GF}\left(p^{n}\right)$. As we have seen, to calculate fix (g) we need to count the number of elements $\beta \in K$ such that $K=F(\beta)$, and such
that $a(x, 1)-\beta b(x, 1)$ is irreducible over K. Let S be the set of elements $\beta \in K$ such that $a(x, 1)-\beta b(x, 1)$ is irreducible over K. By Lemma 1,

$$
|S|=\frac{\varphi(e)}{e}\left(p^{k r}-1+2(k r \bmod 2)\right)
$$

but we need to subtract away the number of elements of S which lie in proper subfields of K.

So let M be a proper subfield of K and suppose that $|K: M|=t>1$.
First we show that if t is not coprime to e then $|S \cap M|=0$. So suppose that t is not coprime to e but that $\beta \in S \cap M$. Then $a(x, 1)-\beta b(x, 1)$ is irreducible over M, and so the splitting field P of $a(x, 1)-\beta b(x, 1)$ over M has degree e over M. Let $s=\operatorname{gcd}(e, t)$. Then there is a subfield Q with $M<Q \leq K$ such that $|Q: M|=s$ and $M<Q \leq P$ with $|P: Q|=\frac{e}{s}$. But this implies that the splitting field of $a(x, 1)-\beta b(x, 1)$ over K has degree $\frac{e}{s}$ over K, so that $a(x, 1)-\beta b(x, 1)$ is not irreducible over K.

Next consider the case when t is coprime to e. We show that if $\beta \in M$ and if $a(x, 1)-\beta b(x, 1)$ is irreducible over M then $\beta \in S$, so that

$$
|M \cap S|=\frac{\varphi(e)}{e}\left(p^{k r / t}-1+2\left(\frac{k r}{t} \bmod 2\right)\right)
$$

So suppose that $\beta \in M$ and that $a(x, 1)-\beta b(x, 1)$ is irreducible over M. Let $P \leq L$ be a splitting field for $a(x, 1)-\beta b(x, 1)$ over M, and let α be a root of $a(x, 1)-\beta b(x, 1)$ in P. So $P=M(\alpha)$. Since $|K: M|$ and $|P: M|$ are coprime with $|K: M| \cdot|P: M|=|L: M|, L=K(\alpha)$, and so $\beta \in S$.

So we see that the number of elements of S which do not lie in any proper subfield of K is

$$
\frac{\varphi(e)}{e} \sum_{d \mid k} \mu\left(\frac{k}{d}\right)\left(p^{r d}-1+2(r d \bmod 2)\right)
$$

and hence that

$$
\operatorname{fix}(g)=C(p, n, e)
$$

References

[1] A.L. Vishnevetskii, On the number of classes of projectively equivalent binary forms over a finite field, Dokl. Akad. Nauk. Ukr. SSR, Ser. A, 4 (1982), 9-12.
[2] A.L. Vishnevetskii, A system of invariants for some groups of class 2 with commutator subgroup of rank two, Ukrain. Mat. Zh. 37 (1985), 294-300.

