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1 Introduction

This paper introduces a new way to think about economic agents’ individual and
aggregate demands for indivisible goods,1 and provides a new set of geometric tools
to use for this. Our model applies to agents who buy and/or sell, as well as to some
matching models.

Economists mostly think about agents’ demands by focusing on the direct utility
functions. We instead begin by focusing on the geometric structure of the regions of
price space in which an agent demands different bundles. Our crucial observation is
that dividing price space in this way creates precisely the geometric structure which is
studied in the recently-developed, non-Euclidean, branch of algebraic geometry called
“tropical geometry”.2 We can therefore use the tools of convex and tropical geometry,
such as the duality between the geometric structure of an agent’s demand in price space
and the same agent’s demand in quantity space, to obtain new insights about demand.
Moving backwards and forwards between the dual representations of demand in price
space and quantity space improves our understanding of both.

For example, it is much easier to aggregate individual demands in price space, but
translating aggregate demand back into quantity space allows a strong theorem that
encompasses and extends many existing results about when a competitive equilibrium
exists.

On the other hand, if we start from the (direct) valuation function in quantity
space, our methods for translating to the dual in price space quickly reveal the key
properties of demand. Many existing results in demand theory can be understood more
readily, and developed more efficiently, using our tropical-geometric perspective than
using traditional methods.

Individual demand
Examining these geometric structures also suggests a natural way of classifying de-

mand: we say two valuations have the same “type” if certain sets of vectors associated
with the geometric structures are the same.

Importantly, “types” are not merely a mathematically convenient way to categorise
demands. The list of vectors in the demand type is a list of possible ways an agent’s
demand can change when prices change. So it specifies the possible comparative statics of
demand, and thus much of what economists think important about valuations. Familiar
concepts such as substitutes and complements are examples of “types”.

For example, a purchaser of new spectacles who is interested in having spare pairs
might always buy lenses and frames in the ratio 2:1, whatever the individual prices of
the goods. So when running an auction in which goods’ characteristics suggest natural

1Baldwin and Klemperer (in preparation) show the relevance of our techniques to analysing divisible
goods also, in contexts such as the Product-Mix Auction.

2This assumes, as is standard in the indivisible-goods literature, that preferences are quasilinear.
Tropical geometry was developed by, among others, Mikhalkin (2004, 2005). We believe it has not
previously been applied to economics. Goeree and Kushnir (2012) have recently used techniques of
convex analysis (see, e.g., Rockafellar, 1970), on which tropical geometry builds, in a very different
context. However, Danilov and Koshevoy, with their coauthors (see, in particular, Danilov et al., 2001,
Danilov et al., 2003 and Danilov and Koshevoy, 2004) have developed methods of discrete convex
analysis with closer connections to ours which we discuss later in the Introduction, and in detail in
Sections 4 and 6.3.
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rates of substitution, bidders can be asked to express preferences that come from the
corresponding demand type.3

Our classification into “demand types” makes it elementary to check, using simple
rules about the signs and magnitudes of the entries in these sets of vectors, whether
a demand type is, for example, substitutes, or complements, or “strong substitutes”
(Milgrom and Strulovici, 2009), or “gross substitutes and complements” (Sun and Yang,
2006), etc., etc. So this approach provides an easy test of the nature of preferences.

Moreover, understanding the nature of “types” allows us to develop general results
about such preferences. The comparative statics encoded in a type refer to changes in
demand between generic prices, at which demand is unique–this is the set of demand
changes that the literature often restricts to, and is used, for example, in Ausubel and
Milgrom’s (2002) definition of substitutes. However, we develop a sufficient condition
under which the set of changes that arise generically is the complete set of changes that
can arise anywhere (the set of demand changes used in the definition of substitutes of
Kelso and Crawford, 1982). We call demand types for which these sets are the same
“complete”; our sufficient criterion for completeness can quickly and easily be checked
using the determinants of sets of the vectors describing the demand. Furthermore,
we show completeness is equivalent to a generalisation of Gul and Stacchetti’s (1999)
“single-improvement property”.4

Examining the vectors of “demand types” also clarifies the relationships among cat-
egories of demands. For example, it makes clear why the conditions for all of three
or more indivisible goods to be (ordinary) substitutes are far more restrictive than the
conditions for all of them to be complements–although these conditions are of course
symmetric in the two-good case.

Aggregate demand and the existence of equilibrium
Understanding the aggregate demand of multiple agents allows us to develop a simple

necessary and sufficient condition on preferences that guarantees the existence of a
competitive equilibrium for indivisible goods. The condition is the same condition
as that providing “completeness” above. So we can quickly see whether any demand
structure guarantees equilibrium existence, simply by checking the determinants of sets
of the vectors describing the demand. For example, we exhibit a demand type involving
only complementary relationships between goods, for which equilibrium always exists.5

Furthermore, it is straightforward in our framework that properties such as the
existence of equilibrium are preserved under (unimodular) basis changes of these same
vectors.6 Using this observation reveals when important properties of demands are the
same.

The same observation demonstrates that the existence of equilibrium is – contrary
to popular belief – not associated with substitutes relationships. Not only are there
demand types which involve only complements and for which equilibrium always exists,

3Indeed the version of the Product-Mix Auction now being used by the Bank of England has one-
for-one substitution built into its design (see below and Klemperer, 2008, 2010).

4This has previously been extended to the “gross substitutes and complements” case by Sun and
Yang (2009).

5The demand type is fundamentally different from (i.e., not simply a basis change of) strong sub-
stitutes, unlike, e.g., “gross substitutes and complements”—see below.

6A unimodular matrix is an integer square matrix with integer inverse (i.e., with determinant ±1).
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but every demand type for which equilibrium is guaranteed can be obtained as a basis
change of a demand type involving only complementary relationships – and this is not
true of substitutes.

Understanding when equilibrium exists with complementary relationships also al-
lows us to obtain new results about matching models with many-player matches since,
we show, stable matchings in such models correspond to the competitive equilibria of
“markets” in which people are complements to those they can be matched with.

Auctions
Finally, our understanding of the convex- and tropical-geometric structure of agents’

preferences facilitates the analysis of “Product-Mix Auctions” (Klemperer, 2008, 2010;
Baldwin and Klemperer, in preparation).7 In these auctions–introduced by the Bank of
England in response to the 2007 Northern Rock bank run and the subsequent financial
crisis–bidders offer prices for alternative bundles of goods, so their bids can be repre-
sented geometrically as sets of points in multi-dimensional price space.8 Our geometric
techniques tell us what kinds of bids are needed to represent different kinds of prefer-
ences, what “coherent” bids look like, how to efficiently solve for equilibrium (and when
it exists9), etc.10

Organisation of this paper
We begin, therefore, by explaining the basic concepts of tropical geometry. Section 2

describes the properties of a “tropical hypersurface”, a geometric object which contains
precisely those points at which the agent is indifferent between two or more bundles.
Moreover, we observe that any geometric structure of this kind corresponds to a valua-
tion function, so we can develop our understanding of demand by working directly with
these geometric objects; we believe this is the first paper to do this.

A tropical hypersurface is composed of linear pieces known as “facets” which separate
the regions of price space in which an agent’s demand is for some specific unique bundle.

7 Product-mix auctions are “one-shot” auctions for allocating heterogeneous goods. Their equilib-
rium allocations and prices are similar to those of Simultaneous Multiple-Round Auctions in private-
value contexts, but they permit the bid-taker to express richer preferences, are more robust against
collusive and/or predatory behaviour, and are, of course, much faster.

8Bids are made as lists of coordinates in implementations like the Bank of England’s; the Bank itself
(the bid-taker) depicts these bids, and also its own preferences, geometrically.

Shortly after introducing the auction, an Executive Director of the Bank of England noted that it
was “a world first in central banking”, and hailed it as “potentially a major step forward in practical
policies to support financial stability”. And after regularly using the new design, and having auctioned
over £100 billion in funds, the Governor of the Bank (Mervyn King) told The Economist that the
Product-Mix Auction “is a marvellous application of theoretical economics to a practical problem of
vital importance to financial markets”. (See Bank of England, 2010, 2011, Milnes, 2010, Fisher, 2011,
Fisher et al., 2011, and The Economist, 2012.) In principle, of course, funds are almost continuously
divisible, but we can apply our same indivisible-good duality techniques.

9Klemperer (2008, 2010) explains that equilibrium always exists in the Bank of England’s auction
and simple extensions of it. It follows from Theorem 6.8 below that equilibrium exists for broader
classes of preferences (see Baldwin and Klemperer, in preparation).

10Expressing even richer preferences, and over more goods, than the Bank of England’s current
implementation permits may in some circumstances be important to this or other Central Banks who
have shown interest in using the auction, or for other applications such as the sale of related products
by a manufacturer, the purchase of electricity generated in different locations, the trading of permits
for emission reductions relating to different kinds of deforestation, etc. Our geometric methods also
permit easy alternative ways of representing preferences as bids.
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Section 3 explores duality in our context. The same set of vectors that are orthogonal
to the facets of the tropical hypersurface also generates the surface of the agent’s valu-
ation function in quantity space (strictly, it generates the convex hull of that surface).
So there is a precise correspondence between classes of tropical hypersurfaces (in price
space) and subdivisions of “Newton polytopes” (in quantity space).

Section 4 focuses further on the structure of individual demand, by defining a “type”
of demand by the same set of vectors as above. Since these vectors describe the ways
in which the bundles demanded by the agent change with prices, they identify the key
characteristics of demand. Our representation permits the easy proof and interpretation
of existing results in the theory of demand. We also introduce generalisations of Gul and
Stacchetti (1999)’s “single improvement property” as an alternative way to understand
“types” and their properties.

Section 5 focuses on the important class of “complete” demand types, for which the
set of changes in demand from all possible prices is the same as the set of changes in
demand from the (generic) prices at which demand is unique. We show that a demand
type on n goods is always complete if it is “unimodular”: every subset of n of the vectors
that define the type has determinant 0, +1, or −1 (plus an additional condition if the
demand type’s set of vectors do not span Rn). We also connect “completeness” to the
“single improvement property”.

Section 6 turns to the analysis of aggregate demand. Working in price space makes
aggregating agents’ valuations easy. The tropical hypersurface of aggregate demand is
simply the union of the tropical hypersurfaces of the individual demands – so it is also
obvious that an aggregate valuation has demand of a certain “type” if and only if all
individual agents do too.

Whether or not equilibrium exists depends on what might happen when more than
one agent is indifferent between bundles. So we work with intersections of tropical
hypersurfaces: the theory of tropical intersection multiplicities inspires our proofs that a
competitive equilibrium always exists if all agents have concave demands of a given type,
if and only if the same condition as discussed in the previous section–unimodularity–is
satisfied by this type.

Although Bikhchandani and Mamer (1997) and Ma (1998) have previously given
conditions for existence of equilibrium for a set of agents, their conditions are imposed
upon the aggregate behaviour of all the agents in the economy, so must be checked against
every possible combination of agents which, in many cases, seems neither practical nor
to provide great insight into why agents’ demands do or do not permit equilibrium. By
contrast, here we give a necessary and sufficient criterion on the conditions that, when
imposed upon each agent individually, guarantee competitive equilibrium.

The theorem we present tells us first, that if each valuation individually has a cer-
tain property, and that property satisfies our sufficiency criterion, then competitive
equilibrium always exists. That is, we provide a class of results, each result stating that
competitive equilibrium always exists when every valuation has a certain property. An
example of such a result is that competitive equilibrium always exists if all valuations
satisfy the “strong substitutes” property of Milgrom and Strulovici (2009).11 We show

11This example is not a new result, but it follows immediately from our theorem, as do several other
existing results including Sun and Yang’s (2006) result about the existence of equilibrium in their
“two-group gross substitutes and complements” economy (which, like Milgrom and Strulovici’s result,
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that other, new, examples are easy to generate. For example, we exhibit a family of val-
uations on four goods involving only complementarities, and which is not a unimodular
basis change of strong substitutes, and for which equilibrium always exists.

Our theorem also gives necessity. So we can quickly check, for any demand type,
whether equilibrium will always exist if agents’ valuations are of that demand type, or
whether equilibrium must sometimes fail. For example, it follows easily that with three
or fewer goods, a competitive equilibrium always exists if and only if goods are “strong
substitutes”, or are a (unimodular) basis change of strong substitutes.12 Although this is
not true in higher dimensions (see previous paragraph), competitive equilibrium cannot
be guaranteed for most demand types. A benefit of our geometric approach is that our
necessity result immediately provides an example of failure of equilibrium from every
instance of failure of our criterion.

This theorem is closely related to the work in a remarkable series of papers by
Danilov and Koshevoy and their co-authors. In particular, Danilov et al. (2001) provide
a sufficient condition for equilibrium, which is mathematically dual to our sufficient
condition. However, by adding an understanding of ‘demand types’, we make clear how
these ideas may be applied.13 Our development of that theory illuminates the economic
nature of individual level conditions which guarantee equilibrium, and also makes clear
the sense in which unimodularity is also necessary for equilibrium, which is not proved
in Danilov et al. (2001).14

Thus our results in Sections 6.1-6.4 show how our geometric methods improve on
existing results in determining whether any set of bidders whose preferences are drawn
from a class of value functions (i.e., a “demand type”) are guaranteed to always have
equilibrium, whatever the bidders’ precise value functions, and whatever the market sup-
ply. However, we show in Section 6.5 that tropical intersection theory also improves on
existing techniques for understanding whether combinations of specific value functions
also always yield equilibria.

We also show how our analysis can obtain new results about stable matchings in
models with many-player matches.

Finally, we observe that since it is straightforward to “add” tropical hypersurfaces
in price space, a natural and easy way to compute aggregate demand from agents’
direct utility functions is by first computing each agent’s tropical hypersurface. This is

is a generalisation of Kelso and Crawford’s (1982) results); Hatfield et al. (2013)’s result about when a
stable outcome is not guaranteed in a trading network; and Teytelboym (2014)’s proof of equilibrium
existence in his model of contracts and trading on networks; as well as extensions of many of these
results.

12Thus our necessity theorem identifies the classes of valuation functions for which competitive
equilibrium is guaranteed. This contrasts with “necessity” results of the kind given in several of the
works of Footnote 11, which show only that equilibrium always exists if all agents’ valuation functions
have a certain property, but may fail if exactly one valuation function does not have this property.

13Thus, although the papers mentioned in Footnote 11 are subsequent to this work, these papers do
not present their results as applications of it, since its relevance was not clear.

14We discuss the relationships to, and other distinctions from, Danilov and Koshevoy and their co-
authors’ work in Sections 4 and 6.3. We develop economic implications further than they do, aided
by our concept of “demand types”, whose importance is especially clear in price space (Danilov et al.,
2001, 2003, 2008, work almost exclusively in to quantity space). Moreover, though our techniques are
novel, they are more straightforward than theirs. However, their work deserves far more attention than
it has thus far received–it seems to have been largely overlooked by the existing literature (such as that
in Footnote 11).
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essentially a generalisation of the point that it is easy to compute total demand from
individuals’ bids in a Product-Mix Auction. However, we defer substantive discussion of
the application of tropical geometry to Product-Mix Auctions to Baldwin and Klemperer
(in preparation). So we conclude in Section 7.

2 Representing Demand in Tropical Geometry

2.1 Assumptions and Motivation

There are n goods, which come in indivisible units. Each agent has a valuation
function u : A → R over a finite set A ( Zn of possible bundles, which we call the
domain of the valuation. We permit negative bundles to allow consideration of sellers
as well as buyers. Agents have quasilinear preferences (and so, for example, no budget
constraints). The price vector is p ∈ Rn, so different units of the same good always have
the same price.15 So the agent’s demand set is

Du(p) := arg max
x∈A

{u(x)− p.x}.

We are interested in how Du(p) varies with p. It is of course constant while it is
single-valued. All the action takes place at those p at which more than one bundle is
demanded. So this set of prices is our principal object of study. We write this set of
prices as16

Tu := {p ∈ Rn | #Du(p) > 1} . (1)

The object Tu (with some additional structure–see Definition 2.3) is a convex-geometric
object, known as a ‘tropical hypersurface’ (TH) in the new sub-discipline of algebraic
geometry known as tropical geometry.17 We believe this paper represents the first use
of this structure in economics. The next two Sections (Sections 2 and 3) translates the
relevant mathematics literature into our economic context.

A simple example is shown in Figure 1. The agent’s valuations are u(0, 0) = 0,
u(1, 0) = 5 and u(0, 1) = 4. So its demand is for precisely one of these bundles in each
of the three regions labelled, but switches from one bundle to another along the lines
drawn.

The following subsections describe properties of THs, and also how the structure of
the agents’ demands can be recovered from them. The ‘tropical’ concepts may at first
sound alien, but many aspects of working in price space should in fact be very natural
to economists.

15We can, of course, model different units of a homogeneous good which are priced independently,
by simply treating them as different goods.

16We follow the mathematical literature in this slight abuse of notation.
17See Mikhalkin (2004) and others. In fact, Mikhalkin (2004) takes the tropical hypersurface asso-

ciated to u to be the non-smooth locus of p 7→ maxx∈A{x.p− u(x)}. Thus our tropical hypersurfaces
are ‘upside down’ compared with his. Mikhalkin’s convention is not universal; Maclagan and Sturmfels
(2009) take the non-smooth locus of p 7→ minx∈A{u(x)+x.p}, which defines tropical hypersurfaces the
‘same way up’ as ours, albeit shifted. Our convention seems the natural one from an economic point of
view: we maximise surplus, that is, the value of a bundle minus its cost.
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Figure 1: A simple tropical hypersurface (TH). The bundle demanded on each side of
the TH is labelled.

2.2 The Tropical Hypersurface: associating geometric objects
with demand

We start by considering the local structure of a TH. Given a price p and its demand
set Du(p), we ask for what other prices p′ the demand set is the same, or closely related.

Definition 2.1.

1. The cell interior of the TH Tu at a price p consists of points p′ such that Du(p) =
Du(p

′).18 A subset of Tu is a cell interior if it is the cell interior at some point in
Tu.

2. A subset of Tu is a cell if it the closure of a cell interior of Tu.

3. The affine span of a cell of Tu is the smallest affine space containing the cell.19

4. The boundary of a cell of Tu consists of those points in the cell that are not in its
cell interior.

Note that the cell interior is the largest set that is both contained in the cell and open
in the affine span of the cell.20

We call a cell of dimension k a k-cell,21 and call an (n− 1)-cell a facet.
Figure 1 illustrates these concepts. The three line-segments LA, LB and LC in the

figure do not include the point R. Each of these line-segments is a cell interior: Du(p) =

18Note that cells are subsets of the TH Tu, and not, as one might intuitively guess from looking at
Figure 1, the open areas around the sides of the TH; these are the ‘unique demand regions’.

19Recall that an affine space in Rn is a parallel shift of a linear subspace, that is, a set {v+c | v ∈ U}
for some linear subspace U ≤ Rn and some fixed vector c.

20See the equations for the three objects, given below. One might strictly refer to the ‘cell interior’
as the relative interior of the cell.

21To be precise, the dimension of a cell is the dimension of its affine span.
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Figure 2: Cell interiors do not intersect; the line segments on either side of R are distinct
cells.

{(0, 0), (1, 0)} in LA, Du(p) = {(0, 0), (0, 1)} in LB, and Du(p) = {(1, 0), (0, 1)} in LC .
The point R is also a cell interior: Du(R) = {(0, 0), (1, 0), (0, 1)}. The corresponding
cells are the unions of these cell interiors with their limit points: LA ∪ R is thus a cell,
and indeed a facet; so are LB ∪R and LC ∪R. Finally, R itself is a 0-cell.

The price R is also the boundary of each of the 1-cells LA∪{R}, LB∪{R}, LC∪{R}.
(The 0-cell R has no boundary.) Note that the price R is contained in four cells, but
each price in the TH is contained in precisely one cell interior. Finally, the affine span of
any cell is the set of all prices at which the agent is indifferent between all the bundles in
the cell, so the affine spans of LA∪R, LB∪R, and LC∪R, are the entire lines containing
those line-segments, while the affine span of R is the point R itself.

It is immediate that:

I There are finitely many distinct cells, and the TH is the union of these.

II The cell interiors do not intersect.

Figure 2 illustrates the latter point: although the TH is ‘two line segments crossing
at a point’, it has four 1-cells with distinct interiors (and also a single 0-cell at R).

Furthermore Definition 2.1 implies that for a price p′ to be in the cell interior corre-
sponding to a set of bundles Du(p), the agent must be indifferent between those bundles,
that is, p′.(x − x′) = u(x) − u(x′) for all x,x′ ∈ Du(p), and the agent must strictly
prefer these bundles to all others, that is, p′.(x− x′′) < u(x)− u(x′′) for all x ∈ Du(p)
and x′′ ∈ A\Du(p). The cell corresponding to this cell interior contains its limit points,
so a price p′ is in the cell if the bundles in Du(p) are weakly preferred to all others at
this price; that is, we weaken the strict inequality above to a weak inequality (while
maintaining the indifference between bundles in Du(p)).22 So a cell is the intersection
of a finite number of half-spaces (sets {p′ ∈ Rn | p′.v ≤ α} for some v ∈ Rn and some
α ∈ R). Thus:

22It follows that we could alternatively define a cell as those points p′ such that Du(p) ⊆ Du(p′) for
some demand set Du(p).
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III Each cell is a closed convex polyhedral set in Rn.

The affine span of the cell corresponding to Du(p) is simply those p′ such that
p′.(x− x′) = u(x)− u(x′) for all x,x′ ∈ Du(p). So the affine span of the cell is parallel
to a linear subspace of Rn, and, since x,x′ ∈ Zn, we have:

IV The slope of the affine span of each cell is rational.

Finally, the boundary of the cell corresponding to Du(p) is those p′ such that at least
one of the weak inequalities p′.(x − x′′) ≤ u(x) − u(x′′) for x ∈ Du(p), x′′ ∈ A\Du(p)
holds with equality. Such points therefore also lie in a lower dimensional cell, so by
restricting a suitable choice of inequalities to be equalities, we have:

V The boundary of a k-cell is a union of a finite number of (k − 1)-cells.

On the other hand, any (k − 1)-cell lies in the boundary of some k-cell (since, from
the equations defining any (k− 1)-cell, we can obtain the equations defining some k-cell
by weakening one or more of the equalities). It follows that a TH is contained in the
union of its facets.

We can therefore conclude that every TH for demand over n distinct goods can be
understood as an (n− 1)-dimensional rational polyhedral complex :

Definition 2.2 (Mikhalkin, 2004, Definitions 1 and 2). A subset Π ( Rn is a rational
polyhedral complex if it is a finite union of closed sets in Rn called cells which satisfy
properties I-V above. Π is k-dimensional if it is contained in the union of its k-cells.

By definition, demand in the complement of a TH is unique. We call a connected
component of the complement of a TH a unique demand region (UDR). Demand is
constant in each UDR, since the bundle demanded cannot change without the price
crossing the TH. But to understand how demand changes as we move between UDRs,
we need one additional type of information: ‘weightings’ on the facets.

Let F be a facet and let bundles x and x′ be demanded in the UDRs on either side.
So at prices p ∈ F , the agent is indifferent between x and x′, that is, u(x) − p.x =
u(x′) − p.x′. The crucial point is that because p.(x′ − x) is therefore a constant for
these prices, the vector x′ − x is normal to F . Call the greatest common divisor of the
entries of x′ − x the weight of the facet, w(F ). So vF := 1

w(F )
(x′ − x) is a primitive

integer vector (that is, the greatest common divisor of its entries is 1), and it points
from the UDR where x′ is demanded to the UDR where x is. But since F is (n − 1)
dimensional, its normal direction is unique, so there is a unique primitive integer normal
vector pointing from the UDR of x′ to that of x. Thus knowing only F , w(F ) and x
allows us to derive vF , and hence x′. It therefore follows that if we know demand in any
one UDR, we can find demand everywhere from knowing the set of facets (and hence
their primitive integer normal vectors) and their weights.

A rational polyhedral complex is described as weighted if a positive integer weight
is attached to each facet. We provide examples in 2.4.

Understanding these weightings allows us to now give the full, formal definition of a
tropical hypersurface – recall that we have so far worked only with the underlying set.
For completeness we repeat the definition of that set here, and so:23

23These definitions are mathematically identical to those of Mikhalkin (2004 and subsequent work),
but the mathematical literature has not, of course, interpreted them in an economic context (that is,
understood the Du(p) as demand sets).
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Definition 2.3 (Mikhalkin, 2004, Example 2). Let A ( Zn be a finite set and let
u : A→ R be any function. Then the tropical hypersurface Tu associated with u is the
weighted rational polyhedral complex such that:

1. its underlying set is {p ∈ R | #Du(p) > 1};

2. the weight w(F ) of the facet F is the integer defined by w(F )vF = x′−x, in which
x′ is demanded in the UDR on one side of F , and x is demanded in the UDR on
the other side, while vF is the primitive integer normal vector pointing from the
former to the latter.

We will see that the TH captures all the information we might ever need to know
about an agent’s demand and valuation function, if the latter is concave in the standard
sense:

Definition 2.4. A function u : A→ R is concave if (ConvA) ∩ Zn = A and if u can be
extended to a weakly concave function on Rn.

It is a standard result that concave functions are precisely those for which there are no
bundles in A that are never demanded (see, e.g., Milgrom and Strulovici, 2009, Theorem
1). That is:

Lemma 2.5. Let A ⊂ Zn. A function u : A → R is concave iff, for all x ∈ A, there
exists p ∈ Rn such that x ∈ Du(p).

Note, however, that we do not assume that all valuations are concave.
It will be very important in our considerations of equilibrium (see Section 6) to know

that, if bundles are demanded, they are demanded at the ‘natural’ price:

Lemma 2.6 (Pseudo-equilibrium Prices Lemma, Milgrom and Strulovici, 2009, Propo-
sition 2). Let u be any valuation function. Suppose p is any price vector, and x is an
integer bundle in ConvDu(p). If there exists any price vector p′ such that x ∈ Du(p

′),
then x ∈ Du(p).

Proof. For all xβ ∈ Du(p), we know u(x) − p.x ≤ u(xβ) − p.xβ, with equality only
if x ∈ Du(p). So if x ∈ ConvDu(p), i.e., x =

∑
β λβx

β for some λβ ∈ [0, 1] with∑
β λβ = 1, then it follows that u(x) − p.x =

∑
β λβ (u(x)− p.x) ≤

∑
β λβu(xβ) −∑

β λβp.x
β =

∑
β λβu(xβ) − p.x and so, simplifying, that u(x) ≤

∑
β λβu(xβ), with

equality only if x ∈ Du(p).
Now suppose x ∈ Du(p

′). Then u(x)−p′.x ≥ u(xβ)−p′.xβ for all xβ so we similarly
show that u(x) ≥

∑
β λβu(xβ). Hence, if x ∈ Du(p

′) for any p′, then x ∈ Du(p). �

2.3 Associating demand with geometric objects

When does a weighted rational polyhedral complex depict a valid demand of some
agent?

If we construct a TH by starting from some valuation function u, then the weights
we attach will necessarily be coherent, in the sense that if we cross facets by passing
through a sequence of UDRs that ends where it started, we must demand at the end
precisely what we demanded at the beginning. In particular, the TH will satisfy the
balancing condition:
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Definition 2.7 (Mikhalkin, 2004, Definition 3). An (n − 1)-dimensional weighted ra-
tional polyhedral complex Π ( Rn is balanced if for every for every (n− 2)-cell G ( Π,
the weights w(Fj) on the facets F1, . . . , Fl that are adjacent to G, and primitive integer
normal vectors vFj

for these facets that are defined by a rotational direction about G,

satisfy
∑l

j=1w(Fj)vFj
= 0.24

Note that there do not necessarily exist weights to balance a general rational poly-
hedral complex.25 However, the balancing condition is in fact the only condition that
a weighted rational polyhedral complex has to satisfy to be the TH of some valuation
function:

Theorem 2.8 (Mikhalkin, 2004, Proposition 2.4; also Mikhalkin, 2005, Theorem 3.15).
Suppose that Π ( Rn is an (n − 1)-dimensional balanced weighted rational polyhedral
complex.26 Then there exists a finite set A ( Zn and a function u : A→ R such that Π
is the TH, Tu.

The correspondence between a TH and its associated set A and function u is not
unique, but the ambiguities are trivial if u is concave. Clearly, adding a constant to u(x)
leaves the TH unchanged, as does increasing every available bundle by a fixed bundle
and making a corresponding shift in the valuation (though the bundle demanded in each
UDR will then also be increased by the fixed bundle). That is, if A′ = {x + c | x ∈ A}
and u′(x + c) = u(x) + α for all x ∈ A, some c ∈ Zn, and some α ∈ R, then Tu′ = Tu.
(See Example 2.12 for an example of such a shift).

Furthermore, any non-concave u has the same TH as the minimal weakly-concave
function that weakly exceeds it everywhere on A. To see this, observe that if a bundle
is never demanded then its precise value to the agent is immaterial, so we can increase
its value up to the threshold at which it is just marginally demanded for some price(s)
without altering the shape or properties of the TH. Doing this for all never-demanded
bundles removes any non-concavities in the valuation function. It is also now clear that
if two agents have valuations u and u′, respectively on different sets of bundles A and
A′, but their convex hulls in Rn, which we write ConvA and ConvA′, coincide; and if
û is the minimal concave function on ConvA such that û ≥ u on A, and is also the
minimal concave function on ConvA such that û ≥ u′ on A′; then Tû = Tu = Tu′ .27

Summing up:

Theorem 2.9 (Mikhalkin, 2004, Remark 2.3). There is a 1-1 correspondence between
THs with an identified ‘demand 0’ UDR, and pairs (u,A), where A ( Zn is finite and

24To choose a rotational direction around G, pick a 2-dimensional affine subspace H of Rn orthogonal
to G, such that the intersection of each Fj with H is 1-dimensional. The intersection of H with the
TH is then a collection of 1-cells meeting at the 0-cell which is G∩H. An ordinary choice of rotational
direction in this two-dimensional picture gives a rotational direction around G in Rn.

25For example, in two dimensions, consider three 0-cells, each with three adjacent facets. If each
pair of 0-cells has an adjacent facet in common, the six weights must satisfy six balancing conditions
(that is, three equations in each of the two dimensions). But since the balancing conditions are trivially
satisfied by setting all weights equal to zero, the conditions can only be satisfied by positive integer
weights if the conditions are not linearly independent–which is non-generic.

26Strictly speaking, of course, Π is a subset of the space Rn and has weights. As before, we follow
Mikhalkin and the

mathematical literature in our presentation.
27We defined û on ConvA ( Rn, but it still defines a TH if it is restricted to (ConvA) ∩ Zn.
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convex in Zn, u is a weakly-concave, function u on A, for which u(0) = 0 and 0 is
demanded where specified.

Thus we have full equivalence between THs and weakly-concave valuation functions
(such that u(0) = 0 and 0 is demanded in a specified UDR). Note, in particular, that
a given set in Rn is the TH of some quasilinear demand if and only if it is a rational
polyhedral complex and there exist weights for the facets such that it is balanced.
Although we do not restrict attention to concave valuation functions–indeed Section 6.3
will ask when an aggregate valuation is concave–understanding of the concave case is
important.

Similarly, we do not restrict attention to what is demanded in UDRs, but doing so is
an important first step. Generically all prices are in a UDR so, as noted above Definition
2.3, given any TH and a specified ‘zero demand’ UDR we can easily work out what is
demanded for a generic price. And it is particularly straightforward to relate properties
of demand such as substitutes or complements to the geometry of the TH; see Section
4.

2.4 Demand examples

Example 2.10. Let A = {x ∈ Z2
≥0 | x1 + x2 ≤ 2} and let u : A → R be as follows

(we arrange the terms in this “back-to-front” way to correspond to the fact that smaller
quantities will appear higher in, and further right in, the TH; this convention will be
particularly helpful later):

x1 = 2 x1 = 1 x1 = 0 u
7 6 0 x2 = 0

9 4 x2 = 1
8 x2 = 2

.

The TH associated with the agent’s valuation, u, is shown in Figure 3, in which we
have additionally marked in red the bundle demanded by this agent in each UDR. The
facet between the UDRs in which (0, 0) and (0, 2) are demanded has weight 2. For p
in this facet (that is, for p2 = 4 and p1 > 6) we have Du(p) = {(0, 0), (0, 1), (0, 2)}; in
particular the bundle (0, 1) is demanded for some price and the function is concave. An
otherwise-identical valuation u′ in which u′(0, 1) < 4 would give rise to the same TH,
but would not be concave; (0, 1) would not be demanded for any price.

It is easy to work out, from the TH, which bundle is demanded in each UDR, if one
already knows what is demanded in any one UDR. If x1 = x2 = 0 in the top right UDR
we can simply “walk around” the diagram, adding to x1 (x2) the weight of any facet
crossed times the first (second) coordinate of the primitive integer facet normal. Thus
starting from the top right UDR, crossing the vertical facet with normal (1, 0), that is,
{p ∈ R2 | p1 = 6, p2 > 4}, changes demand from (0, 0) to (1, 0); from there, crossing the
facet with normal (−1, 2) changes demand to (0, 2), as may also be seen by crossing the
weight-2 horizontal from (0, 0) downwards; and so on.

Example 2.11. It will be useful later to discuss very simple examples of substitutes
and complements demands: if A = {0, 1}2, then u1 : A→ R and u2 : A→ R defined as

13
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0
0

(0,0)

(0,2)

(1,0)(2,0)

(1,1)

Figure 3: The TH of Example 2.10, with the bundle demanded in each UDR marked in
red.

follows are demands for substitutes and complements, respectively, and their THs are
shown in Figures 4a and 4b.28

x1 = 1 x1 = 0 u1

1 0 x2 = 0
1 1 x2 = 1

and
x1 = 1 x1 = 0 u2

0 0 x2 = 0
1 0 x2 = 1

.

p
1

p
2

1

1

(a) Tu1 .

p
1

p
2

1

1

(b) Tu2 .

Figure 4: The THs of Example 2.11.

Clearly each TH has four UDRs in which these agents demand the bundles (0, 0),
(0, 1), (1, 1), and (1, 0), respectively, as one moves clockwise around the UDRs starting
at the top right–as is also easily confirmed by adding the appropriate primitive integer
facet normal on every crossing between UDRs.

Example 2.12. To illustrate the case in which an agent both buys and sells goods, let
A = {(0, 0), (−1, 1)} and let u(0, 0) = 0, and u(−1, 1) = −3. This corresponds to an

28The TH of Figure 4a appears to be a translation of Figure 1, but there is an important distinction.
In Figure 1 the domain is {(0, 0), (0, 1), (1, 0)}, so the TH has only one 0-cell; here, u1 has domain
{0, 1}2, and its TH has two 0-cells. (If we restricted u1 to the domain {(0, 0), (0, 1), (1, 0)} its TH would
coincide with Tu1 on R2

≥0 but have only one 0-cell.)
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Figure 5: The TH of Example 2.12.

(1,1,1)

p
1

p
2

p
3

Figure 6: The TH of Example 2.13.

agent who can convert one unit of good 2 into one unit of good 1 at a cost of 3; the
agent will therefore buy one unit of good 2 and sell one unit of good 1 if p1 − p2 > 3,
and do nothing if p1 − p2 < 3. See Figure 5.

Observe that it would be economically identical if the agent were initially endowed
with one unit of good 1 which it would be prepared to trade for a unit of good 2 if the
price difference were at least 3–the agent’s choices of what to buy and sell would depend
on the prices in exactly the same way. This corresponds to simply shifting the valuation
to the right so A = {(1, 0), (0, 1)} with u(1, 0) = 0 and u(0, 1) = −3. Note that in this
case (0, 0) /∈ A. We need not (and do not) prescribe that the zero bundle has to be an
available option.

Example 2.13. For a simple 3-dimensional example, let A = {x ∈ Z3
≥0 | x1 +x2 +x3 ≤

1} and let u(0, 0, 0) = 0 and u(1, 0, 0) = u(0, 1, 0) = u(0, 0, 1) = 1. The TH is given in
Figure 6. Now, the facets are 2-dimensional (pieces of planes), there are additionally
1-cells (lines along which these facets meet), and a 0-cell (point at which these lines
meet). Three of these facets, having normals (1, 0, 0) (dark-green facet), (0, 1, 0) (red
facet), and (0, 0, 1) (turquoise facet), border the UDR in which (0, 0, 0) is demanded;
this UDR is of course {p ∈ R3 | p1, p2, p3 > 1}. Crossing any one of these facets takes
us to the UDR in which the corresponding bundle is demanded. We swap between
the latter UDRs by crossing the remaining three facets, which have normals (1,−1, 0)
(orange facet), (0, 1,−1) (bluish-purple facet) and (1, 0,−1) (yellow facet).
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2.5 Classic models interpreted in our framework

Many classic models in which agents have quasi-linear demands for indivisible goods
are special cases of our framework:

First, it is trivial that Bikhchandani and Mamer (1997) is the restriction of our model
to A = {0, 1}n.

Example 2.14 (Workers and Firms–Kelso and Crawford, 1982, and Hatfield and Mil-
grom, 2005). Kelso and Crawford (1982) model matching between workers, desiring at
most one job, and firms, interested in hiring many workers, who they regard as substi-
tutes. Thus each ‘good’ is a contract between a worker and a firm, and its ‘price’ is the
salary.

To represent this in our framework, let i ∈ {1, . . . ,m1} be the workers, and j ∈
{1, . . . ,m2} be the firms, so there are n = m1m2 contracts which we can index as
(i, j). Then worker i has valuation ui : Ai → R with domain Ai := {0,−e(i,j) | j =
1, . . . ,m2} ( {−1, 0}n. That is, we regard it as a seller of its labour, and it has no pref-
erences over the sale of other workers’ labour. On the other hand, firm j has valuation
uj : Aj → R with domain Aj := {x ∈ {0, 1}n | x(i,j′) = 0 for j′ 6= j} ( {0, 1}n. That is,
it is only able to buy workers, and only has preferences over the workers it ‘buys’ itself.
Note that the total set of meaningful bundles {−1, 0, 1}n is the (Minkowski) sum of all
the sets Ai and Aj; in Section 6 we will refer to this set as the domain of the aggregate
valuation. We discuss Kelso and Crawford’s ‘gross substitutes’ condition in Section 5.3.

Hatfield and Milgrom (2005) consider matchings between firms and workers with
more general ‘contracts’ than just salaries, but their model can be embedded in Kelso
and Crawford (1982),29 so can also be presented in our framework.

Example 2.15 (General ‘Trading Networks’–Hatfield et al., 2013, Ostrovsky, 2008).
Models such as Hatfield et al. (2013) consider agents each of whom can both buy and
sell. Each ‘good’ in these models is the trade of a single unit of a product between
a specified buyer and a specified seller; additional units of the identical product are
treated as separate trades and may have differing prices.30

To embed this in our framework, let n be the total number of feasible trades, and
for j = 1, . . . , n let b(j) be the buyer and s(j) be the seller in the (potential) trade.
Then agent i has valuation ui : Ai → R with domain Ai ⊆ {x ∈ {−1, 0, 1}n | xj < 0⇒
s(j) = i; xj > 0 ⇒ b(j) = i}. That is, agent i considers bundles in which the goods it
sells are in non-positive quantities, and the goods it buys are in non-negative quantities.
However, agent i need not consider the whole of this set; there may be bundles that are
infeasible (for example, if it cannot sell good 1 unless it also buys one of goods 2, 3 or 4,
then bundle −e1 is not in the domain Ai). Example 2.12 is a special case of this model.

We discuss Hatfield et al. (2013)’s ‘full substitutability’ condition in Section 5.3.

Example 2.16 (Coalition Formation with Transferable Utility). 31 A classic literature

29Echenique (2012) shows this. Hatfield and Kojima (2010) does not fit into our framework, since it
is inconsistent with quasi-linear preferences (see the discussion in Echenique, 2012).

30Hatfield et al. (2013) impose no restrictions on the shape of the ‘trading network’ formed by the
feasible trades, so thus generalise the ‘two-sided matching literature’ started by Gale and Shapley (1962)
in the case in which all preferences are quasilinear. (Ostrovsky, 2008 is also related, but does not require
quasi-linearity and has discrete prices.)

31Cf. Koopmans and Beckmann (1957), Shapley and Shubik (1971), Kaneko and Wooders (1982),
Eriksson and Karlander (2001), Talman and Yang (2011) and Chiappori et al. (2012).
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models coalition formation – typically in a bipartite context. Each person (we do not
refer to people as ‘agents’, since they will not take the roles of ‘agents’ in our framework)
gets intrinsic value from being a member of a coalition. However, the surplus of any
coalition can be transferred among people within that coalition, in the form of side-
payments. Each person has quasi-linear utility in the intrinsic value of the coalition
and this side-payment. We typically seek a ‘stable’ outcome, in which every person is
assigned to precisely one coalition (perhaps entailing them being alone) and no subset
of people can all (strictly) gain by deviating from their prescribed coalition and forming
a new one.32

We model this in our framework as follows: the ‘agents’ are potential coalitions, who
buy ‘goods’, which are people. The ‘price’ paid by an ‘agent’ for a good is the surplus
(including any side payments) the person receives in that coalition.

So the goods available are ‘person-goods’ indexed i = 1, . . . , n. The bundles x ∈
{0, 1}n denote sets of ‘person-goods’, where xi = 1 iff i is included in the set. We let B
be the set of feasible coalitions; in general, not every set of people is a feasible coalition,
but we include a distinct ‘coalition-agent’ for every coalition that is feasible, including
any feasible coalition that yields zero utility (for example, a given person being alone
may be a feasible coalition that yields zero utility).

We consider the people as each being assigned to a coalition and immediately handing
their value in that coalition to the coalition-agent itself. Some of this money is then
transferred back to the people in the coalition: pi is the price the coalition-agent pays
for person-good i. If a person-good is priced at pi then the net side-payment to this
person from coalition-agent x is thus pi− ui(x), where ui : {x ∈ B | xi = 1} → R is the
individual’s intrinsic valuation function on coalitions. Hence, the net utility to person i
at this stage is simply ui(x)+pi−ui(x) = pi. (There will in general be additional surplus
to distribute among the coalition members at a later stage; we think of the ‘price’ as
the minimum that needs to be offered to buy the person-good.)

Thus we think of each person as stating a price for himself33 and seeing which
coalition will buy; although his intrinsic values for the different coalitions may differ, his
net utilities when he receives this price are all the same.

The ‘coalition-agent’ corresponding to coalition x obtains the sum of the individual
values of the people in that coalition minus the ‘prices’ it pays for those people, if they
are all assigned to it. So the domain of the coalition-agent’s valuation is Ax := {0,x}
and we define ux(0) = 0 and ux(x) =

∑
i : xi=1 u

i(x). If the vector of prices for person-
goods is p, the coalition-agent’s net utility from bundle y is ux(y)− p.y. So if the sum
of the ‘prices’ of all the people is at most the total surplus from the coalition, that is, the
coalition-agent can make side-payments that give each person the utility he demands,
then the coalition-agent’s maximising bundle is x; otherwise it is 0. Thus the formation
of coalitions is just the maximising behaviour of coalition-agents.

We discuss the formation of stable coalitions in equilibrium in Section 6.2.

32We will see (in Section 6.2) that in this setting the stable outcomes will coincide with the core
allocations (and also coincide with the core allocations of a game with fully transferable utility, i.e.,
across as well as within coalitions).

33We prefer the use of the female pronoun for people, except where–as here–they are treated as goods
to be priced and traded.
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3 Duality in Tropical Geometry

The previous section demonstrated the equivalence between THs and specific val-
uation functions. However, we now describe a coarser correspondence between a set
of THs that are “essentially” the same as one another, and sets of valuation functions
which–we will see–have the same fundamental properties.34

Looking, e.g., at Figure 1, the important structure is that there are particular UDRs
and particular sets of prices at which the agent is indifferent between the bundles of
those UDRs. So we say that two THs have the same combinatorial type if there is a 1-1
correspondence between the cells of the THs which have the same dimension and slope,
and these cells connect to one another in the same way. Demands corresponding to THs
of the same combinatorial type are “essentially” the same in that they represent agents
who make the same trade-offs between additional units of goods, even if not always at
the same prices. We will show that all THs of the same combinatorial type are, in a
precise way, dual to a particular subdivision of ConvA.

3.1 Duality between convex polytopes and cells

Although we assume that goods are indivisible, we now develop a structure of convex
polytopes and their faces in quantity space, so extend our focus from A to ConvA ( Rn.
We first show that this extension has no effect on the way we separate prices into different
cell interiors by showing that ConvDu(p) = ConvDu(p

′)⇐⇒ Du(p) = Du(p
′), for any

prices p and p′. This is an immediate corollary of Lemma 2.6.

Corollary 3.1. For any valuation function, u, if p and p′ are any two price vectors,
then ConvDu(p) = ConvDu(p

′)⇐⇒ Du(p) = Du(p
′).

Proof. It is immediate from Lemma 2.6 that if x ∈ Du(p
′) ⊆ ConvDu(p

′) = ConvDu(p)
then x ∈ Du(p), so the result follows. �

For any price, p, we write ∆(p) := ConvDu(p) for this polytope in (divisible)
quantity space Rn. From Definition 2.1, and Corollary 3.1 we can write the associated
cell interior as {p′′ ∈ Rn | ∆(p) = ∆(p′′)}, and since it is therefore defined by the
polytope ∆(p), we write C∆(p) for the corresponding cell (its closure). Recall from the
discussion in Section 2.2 that a price p′′ is in the cell C∆(p) iff the bundles in Du(p) are
weakly preferred to all others at price p′′, i.e., iff Du(p) ⊆ Du(p

′′).35 Applying Corollary
3.1 again, we conclude that C∆(p) = {p′′ ∈ Rn | ∆(p) ⊆ ∆(p′′)}. It follows immediately

∆(p) ( ∆(p′)⇐⇒ C∆(p′) ( C∆(p). (2)

We now describe the dualities between the polytope ∆(p) in quantity space, and the
associated cell C∆(p) in price space; we show how they extend to the global structure
in the next subsection.

First, note the dimensions of ∆(p) and C∆(p) are dual. C∆(p) has the dimension of
its affine span, that is, of that set of prices p′ such that p′.(x−x′) = u(x)−u(x′) for all

34For much more on this Legendre-Young duality, see Murota (2003, especially Chapter 8).
35See also Footnote 22.
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x,x′ ∈ Du(p). If ∆(p) is k-dimensional, these equations impose k linearly independent
constraints on such p′, so dimC∆(p) = n− k.

Next observe the affine spans of these sets are orthogonal: since p′.(x−x′) is constant
for all p′ ∈ C∆(p) and all x,x′ ∈ Du(p), we have (p′ − p′′).(x − x′) = 0 for any
p′,p′′ ∈ C∆(p) and x,x′ ∈ ∆(p). So all prices in C∆(p) lie in a subspace of Rn orthogonal
to any x − x′ where x,x′ ∈ ∆(p), and all bundles in ∆(p) lie in a subspace of Rn

orthogonal to p′ − p′′ for any p′,p′′ ∈ C∆(p).
Therefore, any (n−1 dimensional) facet F = C∆(p) (in price space) corresponds to a

1-dimensional polytope, i.e., a line-segment, ∆(p), orthogonal to it (in quantity space).
And if x and x′ are the endpoints of the line-segment ∆(p), then x−x′ = wvF for some
w ∈ Z, where vF is a primitive integer vector in the direction of ∆(p), i.e. in the normal
direction to F ; let us chose vF so that w > 0. And since the bundles demanded in the
UDRs on either side of F are precisely the vertices at the endpoints of ∆(p), it also
follows that this w is the weight of F , as defined in Section 2.2. In words, the “length”
of the line-segment ∆(p) in quantity space is the weight of its corresponding facet in
price space.

3.2 The subdivided Newton Polytope

Convex geometry now provides a clever trick to find the set of all the polytopes,
∆(p), very quickly, and see how they fit together in quantity space. From this it is easy
to see how the cells of the TH fit together in price space.

The condition that a bundle x′ ∈ Du(p) maximises the agent’s surplus at price p
can be re-written using vectors in Rn+1 as (−p, 1).(x, u(x)) ≤ (−p, 1).(x′, u(x′)) for
all x ∈ A. So the points (x, u(x)), for all x ∈ A, must lie in a particular half-space
of Rn+1. Furthermore all the other bundles x′′ which are optimal at the same price p
satisfy (−p, 1).(x′′, u(x′′)) = (−p, 1).(x′, u(x′)) and so all lie on the hyperplane in Rn+1

bounding this half-space. Hence every set ∆(p) ( i.e. any ConvDu(p)) is the projection
to the first n coordinates of a face of the set

Â := Conv{(x, u(x)) ∈ Rn+1 | x ∈ A}. (3)

Conversely, consider any face ∆̂ of Â on the ‘upper side’ with respect to the final
coordinate (i.e., any face such that points with a slightly lower final coordinate than

those in the face are in Â, and those with a slightly higher final coordinate are not). ∆̂

is the intersection of Â with some hyperplane {y ∈ Rn+1 | v.y = α} for some α ∈ R,
and some normal vector v ∈ Rn+1. We know Â is contained in the half-space below the
hyperplane with respect to the final coordinate. Renormalising so the final coordinate
of v is 1, so v = (−p, 1) for some vector p ∈ Rn, the face ∆̂ is the convex hull of all
points (x′, u(x′)), where x′ is in A, satisfying (−p, 1).(x, u(x)) ≤ (−p, 1).(x′, u(x′)) for

all x ∈ A; that is, u(x′)− p.x′ is maximal over bundles in A. Thus the projection of ∆̂
to its first n coordinates is exactly ∆(p) for this p.

Summarising, each upper face of Â is the set (x, u(x)) that are maximal when viewed
in the direction of some vector (−p, 1); the face then projects to ∆(p). And conversely,

any set ∆(p) is the projection of an upper face of Â. So the information about the
demand sets is contained in the projections of these faces, that is, in the collection of
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sets
{
x | (x, u(x)) ∈ ∆̂

}
, where ∆̂ is an upper face of Â.

Definition 3.2.

1. The subdivision of ConvA given by the projections of the upper faces of Â onto
ConvA is a subdivided Newton polytope (SNP).36

2. The image ∆ of a k-dimensional face ∆̂ of Â is a k-face of the SNP.

We give an example of how to construct an SNP in practice in Section 3.3.
Since, for k < n, any k-face of Â is the face of an n-face of Â, it is sufficient to

consider only the maximal faces of Â to identify the full SNP structure.
In particular, an SNP n-face, ∆, is the projection of an upper n-face ∆̂ of Â. But

since ∆̂ is n-dimensional, there is a unique hyperplane of Rn+1 passing through it, and
so a unique normal vector of the form (−p, 1). So the projection ∆ of ∆̂ to ConvA is
exactly ∆(p) = ConvDU(p), and is not ∆(p′) for any p′ 6= p. So p is the only price
at which all these bundles are demanded, and {p} is therefore a 0-cell in the TH, i.e.
{p} = C∆(p).

At the other extreme, for any 0-face {x} of the SNP, there exist prices p at which

(x, u(x)) is the unique point of Â intersecting a supporting hyperplane normal to (−p, 1).
For any such p we know {x} = Du(p). Furthermore, if any such p is changed infinites-
imally in any coordinate direction, the point {(x, u(x))} is still the unique point of

Â intersecting the corresponding supporting hyperplane. So the UDR in which x is
demanded, that is, the set of p such that {x} = Du(p), is (of course) n-dimensional.

Between these extremes, any upper k-face of Â, where 2 ≤ k ≤ n − 1, is the
intersection of Â with any one of a range of hyperplanes in Rn+1. The vector (−p, 1)
normal to any such hyperplane defines a price p lying in the corresponding (n − k)-
dimensional cell interior of the TH.

Note also that, since ConvA need not in general be n-dimensional (see Example 2.12
for an example in which it is not) the SNP need not have any n-faces; this corresponds
to a TH with no 0-cells (such as that in Figure 5).

The fact that the SNP’s faces, ∆(p), are the projections of faces of a convex set tells
us how they fit together, and hence how the sets Du(p) fit together. If ∆(p) ( ∆(p′)
for two faces of the SNP, then ∆(p) must be a face of the polytope ∆(p′). But recall
(displayed equation 2) that ∆(p) ( ∆(p′) iff C∆(p′) ( C∆(p). As discussed above (at and
beneath point V of Section 2.2, ) the latter holds iff C∆(p′) is in the boundary of C∆(p).
Moreover, ∆(p) and C∆(p) are orthogonal, as discussed in Section 3.1. So knowing how
the ∆(p) fit together in quantity space makes it immediately obvious how the C∆(p) fit
together in price space, and vice versa.

So the SNP tells us which cells must exist in the corresponding THs, their slopes,
and how they are connected. In other words

Theorem 3.3 (Mikhalkin, 2004, Proposition 2.1.). For a given ConvA there is a 1-1
correspondence between SNPs of THs and combinatorial types of THs.

36It is a subdivision of the set ConvA which is itself called a Newton polytope in (tropical) algebraic
geometry.
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As noted above, this correspondence is coarser than the correspondence we described
in the previous subsection (Theorem 2.9): different valuations correspond to the same
SNP, and hence to a TH of same combinatorial type, even though the coordinates of the
parts of the TH differ. However, this correspondence isolates the underlying properties
of demands, specifically the sets of bundles one might ever be indifferent between, and
the trade-offs one might make.

Also, starting from any SNP, it is easy to find the combinatorial type of the TH,
and so see which coordinates uniquely define the TH. The TH can then be completely
identified using the valuation u. We illustrate this in Section 3.3.

Another important point follows: if A is small, it is easy to list all the possible SNPs,
and hence also list all possible combinatorial types of THs for the set A. That is, we
can easily list every possible distinct structure of trade-offs that an agent might make
between a given finite collection of goods.

Of course, we do not need to start with the SNP. Given the TH and an identified
‘demand 0’ UDR, we can easily infer both A and the full SNP using the duality described
in this section.

Note, however, that if we do not know ex ante whether a TH is concave, then neither
the TH nor the SNP can necessarily tell us which bundles are demanded in each cell of
the TH. The information we do have is as follows:

Corollary 3.4. Let A be convex in Zn, let u : A→ R be a valuation, and consider the
corresponding SNP.

1. A bundle x ∈ A is a vertex of the SNP iff it is demanded in some UDR of the
corresponding TH.

2. If every bundle x ∈ A is a vertex of the SNP, then û is concave for every valuation
û : A→ R such that Tû = Tu.

3. If a bundle x ∈ A is not a vertex of the SNP, there exist valuations û : A → R
such that Tû = Tu but x /∈ Dû(p) for any p ∈ R.

Proof. 1 is clear from the previous discussion. 2 follows from Lemma 2.5. For 3, define û
to be equal to u on the vertices of the SNP, and to be arbitrarily large negative numbers
on those bundles in A that are not vertices of the SNP. �

However, in quantity space we do not have an analogue of Theorem 2.8. Nor does
there seem to be any simple analogue of Theorem 2.8’s easy balancing condition that
would check whether a given subdivision is the SNP of a valuation function:

Fact 3.5. It is not the case that every subdivision of every Newton polytope is the SNP
of some valuation function.

Proof. A counterexample is provided by Gathmann (2006, Figure 7). �
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3.3 Examples

Example 3.6. Starting from a valuation function, a TH can easily be drawn by first
deriving the SNP, then using the SNP to draw the shape of the TH’s combinatorial
type, and finally using the valuations to fix the TH’s exact location in price space.

Figure 7 presents a valuation function u, both in the usual tabular representation,
and by showing the permissible set of bundles A, as a subset of the lattice Zn, labelled
with their valuations. As before, the quantity of good 1 increases as we move to the
left, and the quantity of good 2 increases as we move down, in order to show the duality
between the SNP and the TH most clearly.

x1 = 2 x1 = 1 x1 = 0 u
10 5 0 x2 = 0
12 8 7 x2 = 1
13 13 9 x2 = 2

(a) Tabular representation of the valua-
tion.
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(b) Each circled number gives the value
of the bundle in that position.

Figure 7: Alternative representations of a valuation function.

Figure 8 adds a third dimension to Figure 7b. Figure 8a shows the points (x, u(x))
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(a) The values (x, u(x)) for all x ∈ A.
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(b) The upper surface of Â.

Figure 8: Finding Â in three dimensions.
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x1

x2

Figure 9: The SNP.

for all x ∈ A, with the valuations u(x) drawn as lines connecting them to their associated
bundles, x, to make the relationships clearer. Figure 8b then pictures the upper surface
of Â, with those lines that correspond to bundles that are demanded for some price(s) in
bold. Note that the valuation is non-concave and the bundle (1, 1) is never demanded.

The SNP is pictured in Figure 9. It is drawn without axes, since replacing A with
A+ c for some c ∈ Zn and re-defining u to correspond gives us the same SNP and TH.
A depiction of the SNP and an example of a TH of the corresponding combinatorial
type is given in Figure 10, colour-coded so that objects that are the geometric duals of

(a) The SNP, colour-coded.

2

p2

p1
(b) A TH, colour-coded to correspond.

Figure 10: The SNP and a TH of the corresponding combinatorial type, colour-coded
so that dual geometric objects have the same colours.

each other have the same colours as each other. That is, each point in the TH has the
same colour as its corresponding area in the SNP; each line-segment (facet) in the TH
has the same colour as the line-segment (edge) in the SNP that it corresponds, and is
orthogonal to; and the white areas (UDRs) in the TH correspond to the white points
(bundles that are vertices) in the SNP.

Note that the black point in the SNP that represents the bundle (1, 1) has no object
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2p2

p1
(0,1)

(1,2)
(3,3)

(4,2)

(5,7)

Figure 11: The TH of the valuation function presented in Figure 7.

corresponding to it in the TH–it is “hidden” inside the scarlet-coloured point in the
TH. If that bundle’s valuation were greater so that, rather than the line corresponding
to it in Figure 8b lying strictly below a plane coincident with Â, the line instead just
touched that plane,37 then the bundle would be demanded at the price corresponding
to the scarlet-coloured point in the TH. And if the bundle had a still higher valuation,
that point in the TH would “open up” to form an area corresponding to the range of
prices at which the bundle would then be demanded.

The final SNP lattice point is coloured grey. It is not an SNP vertex, but lies within
(horizontal) SNP edge of the same colour, which has “length” 2 (more precisely, the
greatest common divisor of the differences (2, and 0) between the co-ordinates of the
bundles at the ends of this edge is 2). And this corresponds to the vertical grey facet in
the TH which is labelled “2”, reflecting its weight.

Finally, remember that Figure 10b shows only one of many THs of the combinatorial
type corresponding to the SNP in that figure; the SNP is silent on the lengths of the
lines in its corresponding THs. However, the exact location of the TH for our specific
set of valuations can easily be worked out from the valuations of different bundles: See
Figure 11.

For example, it is clear from the valuations of bundles (1,0) and (0,1) that the top
right (pinky-purple) point of the TH is at p = (5, 7), since 5 and 7 are the prices below
which the agent will first buy any of goods 1 and 2, respectively,when the other good’s
price is very high. And the coordinates of the purple point at the bottom right of the
TH must be (4,2) since 9 − 7 = 2 is the incremental value of a second unit of good 2,
when the agent has no unit of good 1, and 13 − 9 = 4 would be the further increment
in value from then also having a unit of good 1, etc.

We discussed above (Section 2.2; see especially Example 2.10) how the demand in
each UDR can easily be worked out from the TH.

37It is easy to compute that the valuation of this bundle would have to be 10 for this to happen.
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Example 2.10 revisited. It is not hard to check that the SNP for Example 2.10 is
as shown in Figure 12a. Two examples of THs of the corresponding combinatorial type
are given in Figures 12b and 12c.

(a)

2

(b)

2

(c)

Figure 12: (a) the SNP of Example 2.10; (b) and (c) two examples of THs of the
combinatorial type of Example 2.10.

Example 3.7. For a fixed A, it is easy to draw every possible SNP and so obtain every
possible combinatorial type of TH, thus enumerating all possible “essentially-different”
structures of demand. We do this for A = {0, 1}2 in Figure 13.

It is not hard to see that Figure 13a applies when u(0, 0)+u(1, 1) < u(1, 0)+u(0, 1),
so represents substitutes; Figure 13b applies when u(0, 0) + u(1, 1) = u(1, 0) + u(0, 1),
so is additively separable demand; and Figure 13c applies when u(0, 0) + u(1, 1) >
u(1, 0)+u(0, 1), so is complements. (Recall Figure 4.) Importantly, it is clear that these
are the only possibilities.

Observe that Figure 13b can be seen as a limit of Figure 13a (or, equivalently, Figure
13c). In the TH, the two 0-cells become arbitrarily close and then coincide in the limit;

in the SNP, the faces of Â tilt until they are coplanar when the SNP edge distinguishing
them disappears in this limit.

Likewise, any SNP in which the subdivision is not maximal (that is, additional valid
(n− 1)-faces could be added) can be recovered by deleting (n− 1)-faces from some SNP
whose subdivision is maximal; the corresponding TH is a limit (or ‘degeneration’). Even
for larger domains than A = {0, 1}2, we can efficiently enumerate all those combinatorial
types of demand for which the SNP subdivision is maximal, knowing we can recover the
remainder as their limits. We do this for A = {0, 1, 2} × {0, 1} in Figure 14.

(a) (b) (c)

Figure 13: All the possible SNPs, and examples of their corresponding combinatorial
types of TH when A = {0, 1}2.
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(a) (b) (c) (d) (e) (f)

Figure 14: All the possible SNPs with maximal subdivision, and examples of their
corresponding combinatorial types of TH, when A = {0, 1} × {0, 1, 2}.

With a bit of practice, starting from either the TH or SNP it is easy to draw the
other figure quite fast, at least in two dimensions: if we start with the TH, we know each
area around the TH corresponds to a vertex in the SNP, and areas that are separated
by a line-segment in the TH correspond to vertices that are connected by a line-segment
in the SNP. So we can immediately draw all the vertices and lines. The remaining task
is to “straighten out the SNP” without changing it topologically, noting that each line-
segment in the SNP is orthogonal to its corresponding line-segment in the TH, and that
where a line-segment of weight N is crossed in the TH, there are (N−1) points between
the vertices of the corresponding line-segment in the SNP. (The existence of additional
points in the SNP that are not on any line segment becomes apparent once the relative
positions of all lines are fixed.) Going from the SNP to the TH essentially reverses the
process, as we illustrated in Example 3.6, above.

4 Classifying demands: demand “types”

The previous sections suggest classifying demands according to the normal vectors
that determine the shapes of agents’ THs. We now show that defining demand ‘types’
in this way does indeed provide a simple characterisation of the standard concepts of
substitutes and complements, as well as (in Section 5) more recently developed concepts
such as strong substitutes, and gross substitutes and complements, and that demand
‘types’ also allow us to make other useful distinctions.

We provide a theorem showing how easily a demand type translates to these concepts
and, moreover, show how generalisations of the idea of the “single improvement prop-
erty” (Gul and Stacchetti, 1999), which we will call the “D- and the “ZD-Improvement
Properties”, help analyse these distinctions.

Our approach additionally gives a natural answer to the question of when demand
“types” are similar: they share many properties when they are unimodular basis changes
of each other. Furthermore, we will show in Section 6 that this framework also allows
us to develop new results about aggregate demand, for example, about the existence of
competitive equilibrium.38

38In other work, we use this framework to derive implications about the scope of possible demand
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Finally, these results also provide a quick way to check in practical applications
(such as in further developments of the Product-Mix Auction) whether demands are,
e.g., strong substitutes, or are such that equilibrium exists, since there are easy software
solutions to calculate the normal vectors of the TH for any valuation function, u, and
hence to immediately reveal the demand’s ‘type’.

Although we define an agent’s demand type by the vectors normal to the facets of
its TH (in price space), it would of course be equivalent to define the demand type of
an agent by referring to the edges of its SNP (in quantity space). Danilov, Koshevoy
and their co-authors focus on quantity space in the course of their impressive body of
work that, we will see in Sections 6.3-6.4, has close connections to ours. However, they
do not use these vectors to create a taxonomy of demand – we, by contrast, develop
a general framework to understand these vectors in economic terms. In particular, as
they work almost exclusively in quantity space, they do not see these vectors as giving
the changes in demand as we move between generic points in price space (see Theorems
4.4 and 4.5, and Corollary 5.5).39

We, however, emphasise price space for several reasons. First, working in price space
seems more intuitive and natural. An SNP in quantity space shows (only) the collections
of bundles among which the agent is indifferent for some price vectors. By contrast, a
corresponding TH in price space shows clearly which bundles are demanded in which
regions of prices.40 So the geometric objects in price space are easier to interpret, and
working with them facilitates the development of intuition and understanding.

Second, recall from Theorem 2.8 that any geometric object satisfying the simple
‘balancing condition’ of Definition 2.7 is the TH of some valuation u, but (Fact 3.5) not
every subdivision of every Newton polytope is induced by some valuation. So we can
easily recover the full set of valuations satisfying an additional condition (for example,
on their facet normals) from the set of THs in price space, and we can also specify all
valuations with a particular property by referring to all THs with the corresponding
property in price space–but there are no obvious corresponding procedures to do these
things in quantity space.

A further advantage of our approach will become apparent in Section 6.1: it is
straightforward to aggregate agents’ demands in price space, and it is then also immedi-
ately obvious that if two agents have demand of the same demand ‘type’, then aggregate
demand will also be of the same demand ‘type’. By contrast, it is not straightforward

functions which are substitutes; for example, various marginal valuations must be equal. See also
Fujishige and Yang (2003).

39See Danilov et al. (2001) and Danilov et al. (2003, 2008, 2013). There are also some ways in which
our discussion is more general than theirs. Their principal interest corresponds to is what we call
‘unimodular demand types’ (see Definition 5.9); we explore more general classifications. They focus on
examples containing all the coordinate vectors; we see economic interest in valuations that do not satisfy
this restriction (see, e.g. Example 2.12). And they assume all bundles in question are non-negative (i.e.
A ⊂ Zn+), modelling buyers and sellers separately; by allowing A ⊂ Zn we both simplify the treatment
and generalise it, since this allows agents who might both buy and sell.

40With n goods, a TH is naturally an (n− 1)-dimensional object in n-dimensional space, whereas a
SNP is best understood as the n-dimensional projection of a collection of related (n + 1)-dimensional
objects. Of course, a specific TH depends on specific details of the valuation, whereas a SNP describes
a class of valuations. However, examining any one TH gives the flavour of–and is enough for many
purposes to develop intuition and understanding about–the entire class of THs that correspond to any
single SNP.
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to understand aggregation of agents’ demands in quantity space. The reason is that,
in price space, the TH of aggregate demand may be understood as simply the union of
the THs of individual demands. However, an SNP corresponds only to a combinatorial
type of THs–and there is not a unique combinatorial type of THs that corresponds to
the aggregate demands formed from individual demands of a set of combinatorial types
of THs. So there is no unique way of aggregating SNPs.41

4.1 Introducing Demand Types

Let D = {v1, . . . ,vr} be a set of primitive integer vectors in Zn, such that if v ∈ D
then −v ∈ D. (We will often abuse notation by writing the set to include just one
representative of each such pair).

Definition 4.1. A valuation is of demand type D if all the primitive integer normals to
the facets of the associated TH lie in the set D.

A valuation is of concave demand type D it is of demand type D and is concave.

The geometric meaning of these sets is that they give the possible slopes of the facets
of the THs. But they also have an important economic meaning: recall that each facet
normal gives the direction of change in demand as we cross the facet. We will see that
this combination of being both mathematically tractable and economically intuitive
makes them powerful. As noted above, it would be equivalent to define the demand
type of an agent by referring to the edges of its SNP (in quantity space). However, price
space is in general more intuitive to work with.

We will represent D by any n×r matrix D whose columns contain one representative
of each ± pair in D. Of course, D is not unique, since it can include either representative
of each ± pair, and its columns can be in any order, whereas the set D is unique.42 For
example, any of a number of matrices including, for example,(

1 0 1
0 1 −1

)
,

(
0 1 1
1 0 −1

)
, and

(
0 −1 −1
−1 0 1

)
,

represent the demand type D = {±(1, 0),±(0, 1),±(1,−1)} of the THs in Figures 1,

41To aggregate demands in quantity space, we either have to first translate back into price space
to perform the aggregation there and then translate back again into quantity space, or–essentially
equivalently–we have to find the convolution of the Âs, which involves considering all possible ways of
partitioning any given bundle among the agents. (This is analogous to the standard point that with
divisible, uniquely defined demand that it is straightforward to find aggregate demand q = F(p) from
individual demand functions qi = fi(p) of agents i = 1, . . . , n (since F(p) =

∑
i fi(p)), but it is not

so easy to find the inverse aggregate demand p = G(q) from the individual inverse-demand functions
p = gi(qi), i = 1, . . . , n.)

42Note our definition does not consider the weights on facets. We could take these into account, by
relaxing the condition that all vectors in D be primitive. Then, for every facet F (with weight ωF and
primitive integer normal vF ), we could require either that ωFvF ∈ D, or that ωFvF = kv, for some
k ∈ Z and some v ∈ D. The former approach would allow us to specify the precise weights that facets
may possess; this may seem unnatural, since a higher weight facet can be considered as the limit of two
lower weight facets as they come arbitrarily close together, and thus very similar agent demands would
be classified differently. The latter approach would allow us to insist on certain weak- or non-concavities
of demand, and is a more straightforward generalisation of our definition.
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4a, 13a, 13b, and 14a.43 Note that a TH has any demand type which contains its facet
normals; we do not restrict to the minimal such set. (So, for example, any of the THs
listed earlier in this paragraph are also of type D∪{±(N1, N2)}, for any primitive integer
(N1, N2).)

The set of vectors in a demand type determines the complete set of ways in which
demand can change as we move between adjacent UDRs, and thus the possible changes
in demands that can generically result from a small change in prices (since the UDRs
are dense in price space). So we can immediately identify properties such as substitutes
or complements.

For example, in Figure 4a–the simplest case of substitutes–an increase in any good’s
price that moves between UDR’s can result in the agent swapping that good for another
good, but can never result in the agent decreasing its demand for another good. That
is, if the demand for one good changes when its own price does, then the change in
demand for another good cannot be in the same direction–and this is precisely reflected
in the fact that the vectors that are normal to the facets may have two non-zero entries
of opposite signs, but never have two non-zero entries of the same sign. Likewise, in
Figure 4b–the simplest case of complements–if either good’s price increases to move
across the downward-sloping diagonal facet, then the agent reduces its quantity of both
goods, precisely because both components of the vector normal to this facet are of the
same sign. Moreover, in this case there is no facet whose normal vector has two non-zero
entries of different signs.

So we can distinguish between substitutes and complements valuations by examining
the coordinate entries of the vectors in demand types. But to make the distinctions
precise and, in particular, to deal with some subtleties involving changes in prices at
which demand is non-unique, it is helpful to first develop the additional analytical tool
of “ZD steps”.

4.2 D- and ZD-Steps, and the D- and ZD-Improvement Prop-
erties

We now show that the change in demand along the (straight) line joining any pair of
prices at which demands are unique can be broken down into changes that are ‘improving
ZD-steps ’, and the change in demand from the first price to the last price satisfies the
‘ordinary ZD-improvement property’.

These concepts are introduced to show that ‘demand types’ generalise the way in
which we normally think about, for example, a substitutes valuation. If prices change
from p to p′ ≥ p, then we would think of an agent as viewing these goods as substitutes
if their demand weakly increases for all goods whose price has not changed. When
goods are indivisible, their demand will change from that at p to that at p′ in discrete
steps. By understanding the nature of these steps, we may understand all ways in which
demand may change for a valuation with the property we are studying.

There are two ways to construct such steps. We may either consider a gradual change
in price on the straight line from p to p′, and look at the step changes in demand that
will be triggered en route. Or we may think of the price change as having taken place

43We will see later (Section 5.3) that this demand type is “strong substitutes” in the two-good case,
which we will label D2

ss.
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all in one go, but that the agent is incrementally swapping bundles for ones that are
preferred at the new and final prices. In either case, if the agent sees goods as (for
example) ‘substitutes’, we expect this property to be evident at every one of the steps
(just as, with divisible demand, the corresponding property is true at all prices).

By treating such steps as our primitives, we can build up a more general understand-
ing of the economic nature of valuations for goods, be they substitutes, complements,
or some combination.

By ‘ZD-steps ’, then, we mean a sequence of bundles demanded on the straight line
between p and p′ such that the differences between consecutive bundles in this sequence
are vectors inD or integer multiples thereof (we denote these vectors as ZD := {wv | w ∈
Z,v ∈ D}); by ‘improving’, we mean that the bundle at the end of each step is preferred
to the bundle at the beginning of each step, at the final price vector.

It follows immediately that any valuation of any demand type D must satisfy a
property we will call the ‘ordinary ZD-improvement property ’: given any starting bun-
dle, x, which is the unique demand at some price, p, and any price p′ at which x is not
demanded, there exists a bundle x′′ which is strictly preferred to x at p′, and such that
x′′ − x ∈ ZD.44

This property is closely connected to Gul and Stacchetti’s (1999) result that a specific
set of valuations satisfies their “single improvement property”.45 This holds if, given
any starting bundle, x, and any price p′ at which x is not demanded, there exists a
bundle x′′ which is strictly preferred to x at p′, and such that x′′ − x is a vector whose
entries include include at most one +1, at most one −1, and all others zero. Since the
ordinary ZD-improvement property applies only to “starting bundles”, x, corresponding
to UDR prices, it is not a strict generalisation of the “single improvement property”
which applies to all starting bundles for those valuations for which it holds. However,
we will introduce a refinement of our property which strictly generalises the “single
improvement property”, and so allows strict generalisations of Gul and Stacchetti’s
(1999) results, in Section 5.

The importance of our definitions and results is that we can use them to show how
our “demand types” correspond precisely to interesting properties of demand such as
whether agents view goods as substitutes or complements; see Subsections 4.3.1 and
4.3.2.

We proceed by first giving a formal definition of improving ZD-steps that is easily
shown to be equivalent to the informal definition given above (see the discussion of
Theorem 4.4), and will be easier to work with. Specifically we will require that an
improving ZD-step is a ZD-step which “satisfies the strict law of demand” with respect
to the overall price change:46

44It obviously suffices to let x′′ be the bundle at the end of the first of any set of improving ZD-steps
into which the demand change is broken down. Note, however, that the way we define our ‘ordinary
ZD-improvement property’ does not require that x′′ be demanded at some price on the straight line
between p and p′. We do this for consistency with Gul and Stacchetti’s (1999) related definition (see
below). But the stronger concept of a ZD-step will be easier to use to characterise properties that
valuations may have.

45Gul and Stacchetti (1999) restrict their attention to A = {0, 1}n. We will see later (Section 5.3)
that this set of valuations corresponds to our concave demand type Dnss.

46That is, for an overall price change from p to p′, and a demand step from x̃ to ˜̃x, we require

(p′ − p).(˜̃x− x̃) < 0, with the exception that the change in demand is, of course, zero if p and p′ are
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Definition 4.2. For prices p and p′ such that Du(p) 6= Du(p
′), we say we can break

down the demand change from p to p′ into ZD-steps if for all x ∈ Du(p) there exists
x′ ∈ Du(p

′), and a series of bundles x = x0, . . . ,xl = x′, demanded respectively at prices
(1−λj)p+λjp

′, j = 0, . . . , l, for some 0 = λ0 ≤ · · · ≤ λl = 1, such that xj−xj−1 ∈ ZD.
We call these ZD-steps improving if each demand change additionally “satisfies the

strict law of demand” with respect to the whole price change, that is, (p′ − p).(xj −
xj−1) < 0.

We say we can break down the demand change into improving D-steps if there always
exists x0, . . . ,xl = x′ ∈ Du(p

′) satisfying these conditions and xj − xj−1 ∈ D for all j.

Definition 4.3. We say a valuation u satisfies the ordinary ZD-improvement property
if, for any bundle x which is the unique demand at some price, p, i.e., satisfying Du(p) =
{x}, and any price p′ such that x /∈ Du(p

′), there exists x′′ which is strictly preferred
to x at price p′, and such that x′′ − x ∈ ZD.

We say the valuation u satisfies the ordinary D-improvement property if there always
exists x′′ which is strictly preferred to x at p′ and x′′ − x ∈ D.

Theorem 4.4. If D is any demand type, the following are equivalent for a valuation
u:

1. u is of demand type D;

2. for any p such that #Du(p) = 1 and any p′ we can break down the demand change
from p to p′ in improving ZD-steps;

3. for any p such that #Du(p) = 1, and any i ∈ {1, . . . , n} and any ε > 0, we can
break down the demand change from p to p + εei in ZD-steps;

4. u satisfies the ordinary ZD-improvement property.

Proof. See Appendix A.1. �

Condition 2 implies 4 straightforwardly, because the fact that each separate step
satisfies the “strict law of demand” with respect to the overall price change, means that
each successive bundle in the sequence must be strictly preferred to its predecessor at
the final price. So, in particular, the second bundle in the sequence is a bundle that
is strictly preferred to the starting bundle at the final price. Condition 4 implies 1
because the only bundles preferred to a bundle demanded in a UDR, at any price that
is just on the other side of any facet bounding the UDR, are demanded on the facet
itself, so the ordinary ZD-improvement property implies that the primitive integer facet
normal must lie in D. Condition 2 clearly implies 3, and 3 implies 1 because any facet
whose normal was not in D would not satisfy property 3 for some good i. Finally,
the relationship between 1 and 2 is straightforward for any pair of prices at which the
demands are unique, and for which the straight line joining them crosses only facet
interiors, although it needs more careful argument when the price path crosses lower
dimensional cells of the TH.

within the same UDR. (The strict law of demand generalises the observation that demand must go
down for goods whose prices go up–see e.g. Mas-Colell et al., 1995, Proposition 2.F.1.)
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The inclusion of 3 shows that studying demand changes arising from a change in
a single price suffices to understand the shapes of the trade-offs an agent might make
and, moreover, that we need not assume the ‘improving’ property, since this will hold
automatically.

It is, however, very useful to know that we can always choose ‘improving’ ZD-steps,
since this greatly restricts the range of possible steps for any price change. We will see
this when we prove the relationships between certain demand types and the concepts of
substitutes and complements (see Propositions 4.8 and 4.11).

The reason we need ZD-steps, rather than onlyD-steps, is because of possible failures
of concavity–consider, for example, the function of one variable v(0) = v(1) = 0, v(2) = 2
for which demand jumps from zero to 2 as price rises above 1. If we additionally assume
that u is concave throughout, we can strengthen Theorem 4.4 to deal with improving
D-steps and the ordinary D-improvement property:

Theorem 4.5. If D is any concave demand type, the following are equivalent for a
concave valuation u:

1. u is of (concave) demand type D;

2. for any p such that #Du(p) = 1 and any p′ we can break down the demand change
from p to p′ in improving D-steps;

3. for any p such that #Du(p) = 1, and any i ∈ {1, . . . , n} and any ε > 0, we can
break down the demand change from p to p + εei in improving D-steps;

4. u satisfies the ordinary D-improvement property.

Proof. See Appendix A.1. �

On the other hand, we might ask whether concavity need be explicitly assumed in
2, 3 and 4. However, Example A.1 in the appendix shows the fact that we can always
break down the demand change between any UDR prices in improving D-steps does not
imply u is concave, so we must assume concavity for 2 and 3. Similarly, Example A.2
shows that the ordinary D-improvement property on its own does not imply concavity.
Thus Theorem 4.5 is indeed stated in its most general form.

We now illustrate the application of improving ZD-steps, and Theorem 4.4, in the
cases of ‘ordinary’ substitutes and complements:

4.3 Examples

4.3.1 Ordinary Substitutes

We use the standard definitions of “(ordinary) substitutes” as in Ausubel and Mil-
grom (2002).47 An appealing aspect of this definition is that, as they show (their The-
orem 10), it is equivalent to the submodularity of the dual profit function.

47That is, we call “ordinary substitutes”, precisely what Ausubel and Milgrom (2002) simply call
“substitutes”. We hope this increases clarity (since others loosely refer to substitutes in other ways).
Note, in particular, that Ausubel and Milgrom’s (2002) definition (our Definition 4.6) is not identical to
that of Kelso and Crawford (1982) when there are multiple units of three or more goods. (See Danilov
et al. 2003 Example 6 and Theorem 1); the definitions are equivalent in the simpler cases n = 2 (see
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Definition 4.6 (Ausubel and Milgrom, 2002). Let A ( Zn be finite, and u : A → R
be a valuation. Goods are ordinary substitutes if for any prices p′ ≥ p such that
#Du(p) = #Du(p

′) = 1, if {x} = Du(p) and {x′} = Du(p
′) then x′k ≥ xk for all k such

that pk = p′k.

We define correspondingly the demand type, Dnos.

Definition 4.7. Dnos consists of those primitive integer vectors in Zn with at most one
positive and at most one negative coordinate entry, and all others zero.48

Theorem 4.4 enables us to easily relate Dnos to ordinary substitutes; we retain the
proof in the body text as it provides a powerful illustration of how useful it is to ‘break
down demand changes in improving ZD-steps’.49

Proposition 4.8. A valuation is of demand type Dnos iff it is an ordinary substitutes
valuation.

Proof. We apply Theorem 4.4, as follows. If valuation is of demand type Dnos then we
can break down the demand change from any UDR price p to any UDR price p′ ≥ p
in improving ZD-steps. Since each step is in Dnos, demand strictly decreases for at most
one good at each step, and by the strict law of demand, that good must be one whose
price has increased. Thus at each step, demand weakly increases for all goods whose
prices have remained constant. Hence this holds overall.

Conversely, if the valuation is not of demand type Dnos then there exists a facet F
with normal v where vi, vj < 0 for some i 6= j. Then ei.v 6= 0 so we may choose
UDR prices p,p + εei on either side of this facet. We know the demand change is a
positive integer multiple of v, and so demand for good j decreases: goods i and j are
not substitutes. �

So we can straightforwardly identify whether goods are ordinary substitutes from their
‘demand type’.

It is immediate, for example, that the examples of Figures 1, 4a, 5, 13a, 13b, 14a
and 14b, are all of type D2

os, as is Example 2.10 (Figure 3), while our 3-dimensional
example, Figure 6, has demand type D3

os, and we now show Example 2.14 and Example
2.15 have demand type Dnos.

Baldwin, Klemperer and Milgrom, in preparation) and A = {0, 1}n (Danilov et al. 2003, Corollary 5; see
also Hatfield et al. 2011 Theorem A.1). Milgrom and Strulovici (2009) call Kelso and Crawford’s original
definition “weak substitutes”, but this is in fact a stronger definition of substitutes than Ausubel and
Milgrom’s. The latter definition (that we follow) seems most natural in the general case, and is also
equivalent to several properties that seem to naturally characterise “standard” substitutes, and to the
indirect utility function (maxx∈A{u(x)− p.x}) being submodular. We discuss these issues in detail in
Baldwin, Klemperer and Milgrom (in preparation).

48Danilov et al. (2003) say ‘each cell of a valuation’s parquet is a polymatroid’ where we say that a
valuation has demand type Dnos.

49This result also follows if we combine Ausubel and Milgrom (2002, Theorem 10) and Danilov
et al. (2003, Theorem 1); we provide this alternative proof to illustrate the use of Theorem 4.4 in
understanding demand types.
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Example 2.14 revisited. Because the valuations of the ‘workers’ in Kelso and Craw-
ford’s (1982) matching model have domain {0,−e(i,j) | j = 1, . . . ,m2}, their only possible
SNP edges are in Dnos, so they are of demand type Dnos. Since the ‘firms’ in this model
have valuations with domain {0, 1}m1 which are assumed to satisfy the conditions for
ordinary substitutes, they are also of demand type Dnos.

Example 2.15 revisited. Hatfield et al. (2013) describe the goods to be sold in their
model as complements of goods to be bought, because they measure both buying and
selling as non-negative quantities. But if we instead think of selling as just “negative
buying” then the “complementarities” in their model disappear, and it is then clear that
their condition of ‘full substitutability’ is precisely the ordinary substitutes condition
of, e.g., Ausubel and Milgrom (2002). That is, an agent whose valuation domain is as
described in Example 2.15 has ‘fully substitutable’ preferences iff the valuation is of type
Dnos.50

Example 2.12 illustrates a special case of this model: the agent regards the actions of
buying good 2 and selling good 1 as complements, but regards the buying of both goods
(possibly in negative quantities) as substitutes. The point is easily seen geometrically–
Figure 5 clearly represents substitutes preferences, and not the complements preferences
of Figure 4b, which we formally introduce in Section 4.3.2.

4.3.2 Ordinary Complements

“Complements” can be defined analogously to the Definition 4.6 of “ordinary sub-
stitutes”:

Definition 4.9. Let A ( Zn be finite, and let u : A → R be a valuation. Goods are
ordinary complements if, for any prices p′ ≥ p such that #Du(p) = #Du(p

′) = 1, if
{x} = Du(p) and {x′} = Du(p

′) then x′k ≤ xk for all k such that pk = p′k.

Similarly to Definition 4.7 we define a corresponding demand type:

Definition 4.10. Dnoc consists of those primitive integer vectors in Zn whose non-zero
coordinate entries are all of the same sign.

As in Proposition 4.8, it is an elementary consequence of Theorem 4.4 that

Proposition 4.11. A valuation is of demand type Dnoc iff it is an ordinary complements
valuation.

Proof. As with Proposition 4.8, this follows immediately from Theorem 4.4: we break
down the change in demand from some UDR price p to p′ ≥ p into improving ZD-steps.
As before, at each step demand must strictly decrease for at least one good whose price
has increased; this time, the nature of Dnoc implies that demand weakly decreases for

50The precise ‘choice language’ definition of Hatfield et al. (2013) is superficially different from our
Definition 4.6, but an earlier version of their paper presents an alternative ‘demand-language’ definition
(Hatfield et al., 2011, Definition 4) which corresponds precisely to the Ausubel and Milgrom (2002)
definition, and moreover they confirm (Hatfield et al., 2011, Theorem A.1) that this definition is equiv-
alent to the ‘choice-language’ definition of Hatfield et al. (2013). They define “full substitutability”
using Sun and Yang’s (2006) ‘gross substitutes and complements’ ideas; see Section 5.5.
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Figure 15: A facet with normal (1,−1, 1): increasing either p1 (as shown with an arrow)
or p3 demonstrates complementarities between goods 1 and 3.

all goods. Conversely, if there exists a facet with normal v such that vi > 0, vj < 0
then we may pick prices p,p + εej on either side of this facet and demonstrate failure
of complements. �

The examples of Figures 4b, 13b, 13c, 14c and 14d are all of type D2
oc.

Note that although complements are often thought of as directly analogous to (ordi-
nary) substitutes–as they are in two dimensions–this is not true if there are more than
two goods. The case of complements permits facet normals with any number of non-zero
entries, whereas substitutes permits at most two non-zero entries.

The reason is that with substitutes, if any one good could trade-off against two
others at the same price, it would necessarily follow that the two other goods were
complementary. Even when all goods are mutual substitutes, there can never be trade-
offs between more than two of them across a single facet: if more than two facet normal
coordinate entries are non-zero, then at least two must have the same sign, so there are
complementarities between the corresponding goods.

Consider, for example, Figure 15, in which there is a facet with normal (1,-1,1),
defined by {p ∈ R3 | p1 + p3 = p2; p1,p2, p3 ≥ 0}: an increase in the price of either good
1 or good 3 that moves from the UDR with p1 + p3 < p2 to the UDR with p1 + p3 > p2

reduces demand for both goods. So, despite the symmetry between Definitions 4.6 and
4.9, complements allows far more degrees of freedom than does substitutes.51 One
benefit of our way of classifying demand “types” is that it makes this lack of symmetry
between substitutes and complements very clear.

51To illustrate why the conditions for indivisible goods to be substitutes are so restrictive, consider
a consumer who regularly makes three kinds of trips: journey A can be made only by bus or train;
journey B can be made only by car or train; journey C can be made only by car or bus. Thought of as
divisible goods, the three modes of transport are clearly always mutual substitutes. But if bus tickets,
train tickets, and cars are all indivisible, there are typically price vectors at which two of the goods
are locally complements. Start at any prices at which the consumer just prefers to use only public
transport, i.e., has no car. Then if the price of either of the forms of public transport is slightly raised,
the consumer buys a car and in general reduces her use of both forms of public transport. Qualitatively
the situation is locally exactly that pictured in Figure 15, in which the car takes the role of good 2,
and the two forms of public transport take the roles of goods 1 and 3.
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Example 2.16 revisited. Recall that we can embed a model of ‘coalition formation
with transferable utilities’ in our framework by considering each feasible coalition as a
separate agent. The agent corresponding to any feasible coalition x has valuation with
domain {0,x}, so the only facet of the corresponding TH has normal x: the agent views
the people who would form this coalition as perfect complements, and considers only
the trade-off between all of them and none of them.

Consistent with our terminology, we say a coalition-formation problem with transfer-
able utility is of ‘type D’, for any D containing all the feasible coalitions in the problem.
(We would normally consider ‘complements’ demand types, D.)

4.3.3 Additively Separable Demand

Additively separable demand corresponds to an extremely simple demand type:

Definition 4.12. Dna consists of the coordinate vectors {ei | i = 1, . . . , n} in Zn.

In the additively separable case, a change in the price of one good will never affect
demand for any other good. So it is not hard to show:

Proposition 4.13. A valuation is of concave demand type Dna iff it is concave and
additively separable.

Proof. Recall that demand is additively separable iff a change in the price for any one
good has no effect on the demand for other goods; if demand is additionally concave,
then it is also true that demand is additively separable iff a change in price between
UDR prices for any one good has no effect on the demand for other goods. Referring
to Theorem 4.4, we see that this holds iff the change in demand at each step must only
affect one good – that is, D = Dna . �

Note that being additively separable is a more stringent condition than being both
substitutes and complements: we can only guarantee such a valuation is additively
separable if it is also concave. A simple example of a valuation of type D2

a which is not
concave, and not additively separable is: A = {0, 1, 2}2, and

u(x1,x2) =

{
x1 + x2 (x1,x2) 6= (1, 1)
0 (x1,x2) = (1, 1).

4.4 Changes of basis

It is straightforward that two demands share many properties if one can be trans-
formed into the other by a unimodular basis change.52,53 Such a basis change is equivalent
to re-packaging the goods so that any integer bundle can still be obtained by buying and
selling an (integer) selection of the new packages; and any integer selection of the new
packages was available as an integer combination of the original goods. So such a basis

52A unimodular matrix G is an integer matrix with integer inverse; an action of G on bundles of
goods corresponds to an action of GT on prices.

53Specific cases of this observation have been made before (see e.g. Sun and Yang 2006, and a more
general treatment for substitutes in Sun and Yang 2008, and Hatfield et al., 2013); we lay out the
general behaviour here.
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change leaves many important properties of demand–including, we will see in Section 6,
the existence of competitive equilibrium–unaffected.

Likewise, such a basis change simply distorts the TH by a linear transformation
which leaves its important structure unaffected:

Proposition 4.14 (cf. Gorman, 1976, p. 219-20). For A ( Zn and u : A → R and
a unimodular n × n matrix G, define the (“pullback”) basis change of u by G to be
G∗u : G−1A→ R via G∗u(y) := u(Gy). Then

1. A bundle is demanded under the original demand at a certain price iff an asso-
ciated bundle is demanded under the transformed demand at an associated price;
specifically: x ∈ Du(p) ⇐⇒ G−1x ∈ DG∗u(G

Tp).

2. The TH of the transformed demand is given by a linear transformation of the
original demand: TG∗u = {GTp | p ∈ Tu};

3. The inverse transformation to G applies to demand types: u(·) is of (concave)
demand type D iff G∗u(·) is of (concave) demand type G−1D = {G−1v | v ∈ D}.

Proof. See Appendix A.1. �

As a simple example, if n = 2 then ordinary substitutes Dnos are a unimodular basis

change of ordinary complements Dnoc, via the matrix

(
1 0
0 −1

)
.54 As discussed in

Section 4.3.2, this does not hold for n ≥ 3.

5 Complete Demand Types and Unimodular De-

mand Types

The previous section showed that the change in demand between any two UDR
prices could be broken down into improving ZD-steps and, for concave valuations, into
improving D-steps. Since UDR prices are dense in the set of all prices, this tells us a
great deal about the structure of demand.

However, one may wish for results relating to every possible price and starting bundle.
For example, the standard definition of ‘ordinary substitutes’ for indivisible goods (see,
e.g., Ausubel and Milgrom, 2002) that we use only considers demand changes between
UDR prices, but others have used a definition of substitutes that compares demands at
any pair of prices (see, for example, Kelso and Crawford 1982).55 As is shown by Danilov
et al. (2003, Example 6), for n ≥ 3 there exist valuations which satisfy the ‘ordinary

54So, for example, we will see that with two goods (in indivisible units), competitive equilibrium fails
“as often” for sets of agents with ordinary substitutes demands, as for sets of agents with ordinary
complements demands, even though the economic properties of substitutes and complements are, of
course, very different.

55These two definitions are equivalent when A = {0, 1}n (see Corollary 5.17) and almost all pre-
ceding work has been restricted to this case, so the distinction between these definitions is sometimes
blurred. We discuss the relationships between alternative definitions of substitutes at length in Baldwin,
Klemperer and Milgrom (in preparation).
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substitutes’ property but do not satisfy the stronger requirement. Similar remarks apply
to ‘ordinary complements’.

In this section we clarify this distinction, and introduce a property which a valu-
ation might have: D-completeness, which means we that can break down the change
in demand between any two prices into improving D-steps. So if a valuation is Dnos-
or Dnoc-complete then it does indeed satisfy the corresponding stronger substitute or
complement conditions.

We correspondingly identify a new class of ‘complete’ demand types: those types D
for which every valuation of type D is D-complete.

We begin with an illustration of a demand type D and a concave valuation of type
D which is not D-complete: we cannot break down the change in demand between any
two prices into improving D-steps, or even ZD-steps, even for concave valuations:56

Example 5.1. Consider the following (concave) valuation given, with its SNP, in Figure
16. This is of demand type D = {±(1, 0),±(0, 1),±(2, 1)}. Note that (1, 1) ∈ Du(2, 3)

x1 = 2 x1 = 1 x1 = 0 u
2 1 0 x2 = 0
7 5 3 x2 = 1

10 7 4 x2 = 2

(a) The concave valuation u.

(0,0)

(b) The SNP of u.

p
1

p
2

1 2 3

1

2

3

4

5

2

2

(0,0)

(2,0)

(0,1)

(0,2)

(2,1)

(2,2)

(c) The TH of u.

Figure 16: The valuation, SNP, and TH of Example 5.1.

but that Du(2, 3 − ε) = {(2, 2)} for any ε > 0. So any series of improving ZD-steps
from the bundle (1, 1) demanded at p = (2, 3), to the unique bundle, (2, 2), demanded
at p′ = (2, 2.9), would have to increase the demand for the first good, as well as the
second – but a step in direction (1, 0) does not satisfy the strict law of demand for the
price change we consider, and a step in direction (2, 1) increases demand for the first
good by too much. Thus we cannot break down the change in demand between these
prices in improving ZD-steps.

We now turn to developing exactly what we mean by ‘completeness’:

56When n = 2 the ordinary substitutes demand type Dnos is in fact ‘complete’, in our terminology
(see Baldwin, Klemperer and Milgrom, in preparation). The 3-dimensional example of Danilov et al.
(2006) is more complicated than is needed here, and so we use a very restrictive demand type.
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5.1 Completeness of a Demand Type

Recall that Definition 4.3 was not exactly a generalisation of Gul and Stacchetti’s
(1999) “single-improvement property”: a true generalisation may be given as follows:57

Definition 5.2. We say a valuation u satisfies the complete D-improvement property
if, for any bundle x and for any price p′ such that x /∈ Du(p

′), there exists x′′ which is
strictly preferred to x at price p′ and such that x′′ − x ∈ D.

Note how this differs from Definition 4.3: for the ‘complete’ property we do not insist
that the bundle x be demanded at any price at all, whereas the ‘ordinary’ property
requires that x be demanded uniquely at some price.

We show that, given concavity, the complete D-improvement property is equivalent
to our being able to break down any change in demand into improving D-steps:

Proposition 5.3. The following are equivalent for a concave valuation u of type D:

1. we can break down the demand change from any p to any p′ in improving D-steps;

2. u satisfies the complete D-improvement property.

Proof. See Appendix A.2. �

The assumption of concavity is needed to ensure that every bundle x is demanded at
some price – and hence that we can use improving D-steps to obtain D-improvements.58

Since concavity is also needed for the existence of improving D-steps and the ordinary
D-improvement property (as distinct from ZD-steps and the ordinary ZD-improvement
property) we simply work under this assumption for this section.

Definition 5.4.

1. We say a concave valuation u is D-complete if the equivalent conditions of Propo-
sition 5.3 hold.

2. We say a concave demand type D is a complete demand type if every concave
valuation of type D is D-complete.

It is straightforward now to provide the following analogue to Theorems 4.4 and 4.5:

Corollary 5.5. If D is any complete demand type, then the following are equivalent for
a concave valuation u:

1. u is of concave demand type D (and the equivalent conditions of Theorem 4.4
hold);

2. we can break down the demand change from any p to any p′ in improving D-steps;

57This also generalises Sun and Yang (2009), which generalised Gul and Stacchetti (1999) to the case
of “gross substitutes and complements”.

58In fact, 5.3.2⇒5.3.1 when u is not concave; one may see that the proof makes no use of concavity.
However, a non-concave valuation satisfying 5.3.1 need not satisfy 5.3.2; consider Example 5.1 with the
modification u(1, 1) = 4.
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3. for any p and any i ∈ {1, . . . , n} and any ε > 0, we can break down the demand
change from p to p + εei in improving D-steps;

4. u satisfies the complete D-improvement property.

Proof. Given that D is complete, 1⇔2 and 1⇔4 by Proposition 5.3 and Definition 5.2.
That 2⇒3 is clear; that 3⇒1 follows by the corresponding argument of Theorem 4.5. �

Thus, once completeness of a demand type is known, the weaker checks of Theorem
4.4 are sufficient to provide their ‘complete’ counterparts given here. Moreover, as is
intuitive, completeness is preserved under unimodular basis changes:

Proposition 5.6. Suppose G is a unimodular n× n matrix.

1. If u : A → R is concave and D-complete, then G∗u is concave and is G−1D-
complete.

2. If D is complete then G−1D is complete.

Proof. See Appendix A.2. �

The question remains of which demand types are complete. In Section 5.2 we develop
a sufficient condition: unimodularity. However, this condition is not necessary. Here we
give two examples, one unimodular and one not.

Example 5.7. The set Dnall of all primitive integer n-vectors is complete. This is
trivial: given any concave valuation and any prices p,p′ we can simply note the bundles
demanded in improving steps on the straight line from p to p′, interpolating additional
primitive integer steps if necessary. It is of interest to emphasise this point, because
many sub-types D ( Dnall are not complete. This fact stands in contrast to the property
of unimodularity, which we shall come to in Section 5.2.

Example 5.8. The set Dna of the coordinate vectors is a complete demand type. As
shown in Proposition 4.13, any concave valuation u of type Dna is additively separable.
Thus, for any good i, the quantity demanded of any single good depends only on the
price for that good. So if x /∈ Du(p) for any bundle x and price vector p, then we may
adjust the quantities of all goods independently, towards the desired levels. That is, we
may make a series of Dna -improvements given any starting bundle and price.

5.2 Unimodularity: a sufficient condition for completeness

We now introduce a condition on demand types which is sufficient for their com-
pleteness; strikingly, the same condition is also necessary and sufficient for existence of
competitive equilibrium (see Section 6.3).

Throughout, we write “the determinant of vectors w1, . . . ,wn” to mean the deter-
minant of the n × n matrix which has these vectors as its columns.59 We say that a
linearly independent set {w1, . . . ,ws} of vectors is “an integer basis for the subset they
span” if, whenever y ∈ Zn can be written as

∑s
i=1 aiw

i, in which ai ∈ R, then in fact
ai ∈ Z for i = 1, . . . , s.

59Changing the order of the vectors may change the sign of the determinant, so strictly speaking the
determinant is a property of an ordered n-tuple of vectors. This detail does not concern us as we are
only ever interested in the absolute values of determinants.
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(0,0)

Figure 17: The SNP of Example 5.1, with the relevant vectors highlighted.

Definition 5.9. We say a demand type D is unimodular if any linearly independent set
of vectors in D is an integer basis for the subspace they span.

It is clear that the set Dnall of Example 5.7 does not have this property, whereas the
set Dna of Example 5.8 does have it. We now clarify the implications of unimodularity
by considering an example in which both unimodularity and completeness fail:

Example 5.1 revisited. Recall we considered a particular valuation u of demand
type D = {±(1, 0),±(0, 1),±(2, 1)}. This demand type is not unimodular. The vector
(1, 1) is in the span of (0, 1) and (2, 1) but it is not possible to express it as an integer
combination of these vectors. This impossibility is illustrated in Figure 17, in which the
vectors (0, 1) and (2, 1), starting from the origin, are highlighted in red.

It is similarly impossible to move on from the bundle (1, 1) to the bundle (2, 2) using
this pair of directions, as highlighted in blue. Since these two vectors are the only
two in D that change the quantity of Good 2 demanded, the failure of D-completeness
follows.60

To understand the relevance of unimodularity in general, consider a set of s linearly
independent vectors from a demand type D. These are the edges of an s-dimensional
parallelepiped. This shape will contain no integer point (either in its boundary or in its
interior) aside from its vertices, iff, our set of vectors is an integer basis for the subspace
they span. Thus the scenario of Figure 17, in which the bundle (1, 1) gives difficulties,
simply cannot arise if the demand type is unimodular.

This condition may appear difficult to check. However, returning to the paral-
lelepiped, it is not too difficult to see that unimodularity holds iff the s-dimensional
volume of the parallelepiped is 1. When s = n, this volume is simply the (absolute
value of the) determinant of the vectors along its edges. When s < n, unimodularity is
equivalent to the ability to add additional integer vectors that build the s-dimensional
volume out into an n-dimensional volume of 1, i.e., so that the determinant is again ±1.
(In the case of Figure 17, the determinant in question is 2).

We gather these conditions with an alternative check for unimodularity when s < n,
via appropriate determinants of submatrices, as follows:

60If (1, 1) were in the demand type, then it would be possible to make a suitable step, confirming (as
is already clear from Example 5.7) that unimodularity is not necessary.
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Remark 5.10. The following are equivalent, for a set of s linearly independent vectors
in Zn:

1. they are an integer basis for the subspace they span;

2. A s-dimensional parallelepiped in Rn with vertices in Zn and these vectors as edges
contains no point in Zn except its vertices;

3. they can be extended to a basis for Rn, of integer vectors, with determinant ±1;

4. among the determinants of all the s× s matrices consisting of s rows of the n× s
matrix whose columns are these s vectors, the greatest common factor is 1.

Proofs of these facts may be found in Cassels (1959).61 Note that when s = n then both
2 and 3 remind us that the determinant of the vectors is ±1. We refer to a set of vectors
as unimodular if every linearly independent subset has these properties.

Our result is now:

Theorem 5.11. If a concave demand type is unimodular, then it is complete.

Proof. See Appendix A.2.62 �

Using Remark 5.10.3 we can state a slightly weaker result that is more intuitive and
very easy to check:

Corollary 5.12. With n goods, a concave demand type D = {v1, . . . ,vr}, in which
v1, . . . ,vr span Rn, is complete if every subset of n vectors from D has determinant 0
or ±1.

The intuition for Theorem 5.11 is as described above regarding Figure 17. More
detail is required because not every SNP-face is a parallelepiped, and general SNP faces
may contain non-vertex points, even for a unimodular demand type. However, we show
that, when unimodularity holds, we may step from a non-vertex point to another point in
the SNP face, in the direction of a vector in D. The additional assumption of concavity
is required to ensure that this new point in the SNP face is indeed demanded at relevant
prices; see Example A.3 for an example of what happens when it fails.

We will see below that a very nice example of a concave unimodular demand type
is ‘strong substitutes’. The relationship between this and the corresponding ‘single’
improvement property is well known (Gul and Stacchetti, 1999; Milgrom and Strulovici,

611 ⇔ 3 follows from Cassels (1959) Lemma I.1 and Corollary I.3. 1 ⇔ 4 is Cassels (1959) Lemma
I.2. For 1 ⇔ 2 consider a parallelepiped P whose vertices are y +

∑s
i=1 aiw

i for ai ∈ {0, 1}. If z is a
non-vertex integer point in P , then z−y exhibits the failure of 1. Conversely, if failure of 1 is exhibited
by an integer

∑s
i=1 biw

i where bi are not all integers, then y +
∑s
i=1 aiw

i exhibits failure of 2, where
ai is the non-integer part of bi in each case.

62As shown there, in fact we prove a stronger result: we need only assume that, for any vectors V ⊆ D,
there exist linearly independent vectors w1, . . . ,ws ∈ D, whose span over R coincides with the span over
R of V and such that, for any v1, . . . ,vs−1 ∈ V and any i = 1, . . . , s, the vectors v1, . . . ,vs−1,wi are
either linearly dependent or are a unimodular set. This property is clearly implied by unimodularity
of D, as we may take the set w1 . . . ,ws to be any linearly independent and spanning subset of V.
However, it is not sufficient for unimodularity; the set D = ±{0, 1}3 is not unimodular but does have
this property.
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2009). Corollary 5.5 and Theorem 5.11 together strictly generalise this result by showing
that the complete D-improvement property is satisfied by all valuations of type D for any
unimodular concave demand type D.63 It follows from Seymour (1980) that there are
many such demand types that are not a unimodular basis change of strong substitutes.

5.3 Unimodular Demand Types for Substitute Goods

Following from Theorem 5.11 and the arguments of Section 4.3.1 it is clear that a
valuation will satisfy the following definition of substitutes if it is Dnos-complete:

Proposition 5.13. If a concave valuation u is Dnos-complete then, for any prices p′ ≥ p
and any x ∈ Du(p), there exists x′ ∈ Du(p

′) such that x′k ≥ xk for all k such that
p′k = pk.

Proof. One may make use of Dnos-steps exactly as in Proposition 4.8, but now starting
at any price p. �

Note that the latter condition is provided as the definition of indivisible substitutes by
Kelso and Crawford (1982).64

Following Theorem 5.11, then, we see:

Proposition 5.14. If D ( Dnos is unimodular then every concave valuation of type D
is a Dnos-complete valuation (and so satisfies the Kelso-Crawford definition).

On the other hand, for ordinary substitutes the Dnos-complete property may fail: see
Danilov et al. (2003, Example 6).65 Note also that, in order to apply the proposition, the
demand type with respect to which u is complete must itself be a subset of Dnos; since
(as just noted) there are ordinary substitutes which are not Dnos-complete, and since
every valuation is of the complete demand type Dnall (see Example 5.7), there clearly
exist ordinary substitute valuations that are D-complete for some D 6⊆ Dnos, but are not
Dnos-complete.

We refer to unimodular demand types D ( Dnos as ‘unimodular substitute’ demand
types.

One example of a ‘unimodular substitute’ demand type is {±(−1, 1),±(−1, 2),±(0, 1)}.
Note that this demand type does not contain both distinct coordinate vectors – an agent
cannot be indifferent about whether to buy or sell an additional unit of good 1, while
maintaining constant demand for good 2. But this is still a natural model if, for exam-
ple, agents are manufacturers, selling good 1, which they can manufacture from different

63It is also observed by Danilov et al. (2008, 2013) that ‘interval concave functions’ can equivalently
be characterised by ‘interval package improvements’ – see our Example 5.24. However, as demonstrated
in Example 5.24, the interval package demand type is a unimodular basis change of the strong substitute
demand type, and so their result follows immediately from the Gul and Stacchetti result.

64There are various nomenclatures in use for this concept; Danilov et al. (2003) call them ‘gross
substitutes’ following Kelso and Crawford (who strictly speaking deal only with the {0, 1}n case);
Milgrom and Strulovici (2009) call them ‘weak substitutes’.

65Thus, Ausubel and Milgrom’s (2002) definition (our Definition 4.6) is not identical to that of
Kelso and Crawford (1982) when there are multiple units of three or more goods. The definitions
are equivalent in the simpler cases n = 2 (see Baldwin, Klemperer and Milgrom, in preparation) and
A = {0, 1}n (Danilov et al. 2003, Corollary 5; see also Hatfield et al. 2011 Theorem A.1). See Baldwin,
Klemperer and Milgrom (in preparation) for further discussion.
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quantities of good 2, depending perhaps on the technology in use–indeed this is the nat-
ural generalisation of Hatfield et al. (2013) to multiple units of goods, see Examples 2.12
and 2.15.

The best-known example of a unimodular set of vectors also gives rise to a substitute
demand type:

Definition 5.15. Dnss consists of those vectors in Zn with at most one +1 and at most
one −1 coordinate entry, and all others zero.66

Checking that this is a unimodular demand type is an application of a well-known
result:

Theorem 5.16. Dnss is a unimodular demand type, and is maximal: if Dnss ( D then
D is not unimodular.

Proof. That the set of vectors that Dnss comprises is unimodular was first shown by
Poincaré (1900); an attractive inductive proof was provided by Veblen and Franklin
(1921), which we reproduce in Appendix A.2. Its maximality is easy to show. If a
vector w were introduced with |wj| > 1 for some j then the determinant of w with all ei

such that i 6= j is wj, contradicting unimodularity by assumption. If a vector w has two
+1 coordinate entries, say in i and j, then the determinant of it with ei − ej and all ek

such that k 6= i, j, has absolute value 2. Thus no additional vectors may be introduced
without contradicting unimodularity. �

From the unimodularity of Dnss immediately follows:

Corollary 5.17. 67 A concave ordinary substitute valuation with domain A = {0, 1}n
is a Dnos-complete valuation.

Proof. By Proposition 4.8 such a valuation is of demand type Dnos. If A = {0, 1}n then
the only possible SNP edges in Dnos, and hence the only possible facet normals, are those
in Dnss. �

The vectors in Dnss were first related to substitutes by Tomizawa (1983), but without
proof; proofs were offered by Danilov et al. (2003), and Fujishige and Yang (2003). An
equivalent formulation was given by Milgrom and Strulovici (2009), who also show that
there are several additional equivalent characterisations. Here we gather several relevant
definitions:

Definition 5.18.

1. A valuation u is a step-wise gross substitute valuation if for any p ∈ Rn, any
x ∈ Du(p) and any i ∈ {0, . . . , n}, either x ∈ Du(p + εei) for all ε ≥ 0 or there
exists ε ≥ 0 and x′ ∈ Du(p + εei) such that x′i = xi − 1 and x′−i ≥ x−i.

68

66Danilov et al. (2003) say a valuation is a ‘PM-function’ (where PM stands for polymatroid) in this
case.

67An analogous result is Danilov et al. (2003) Corollary 5.
68See Danilov et al. (2003).
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2. A valuation u is a strong substitute valuation if, when we consider every unit of
every good as a separate good, then they are ordinary substitutes.69

3. A valuation u satisfies the ordinary (complete) law of aggregate demand if for
k ∈ {1, . . . , n}, any ε > 0 any p ∈ Rn and any x ∈ Zn such that {x} = Du(p)
(resp. x ∈ Du(p)) there exists x′ ∈ Du(p + εek) such that

∑
i x
′
i ≤

∑
i xi.

70

4. A valuation u satisfies the consecutive integer property if, for every p ∈ Rn and
every i ∈ {1, . . . , n}, the set {xi | x ∈ Du(p)} consists of consecutive integers.71

Demand types provide nice ways to characterise the “law of aggregate demand” and
the consecutive integer property, and these characterisations in turn make it much easier
to demonstrate alternative characterisations of strong substitutes than is possible using
traditional techniques. It is both intuitively clear and straightforward that (details are
in Appendix A.2):

Lemma 5.19.

1. A valuation u satisfies the ordinary (complete) law of aggregate demand iff it is of
some (unimodular concave) demand type D such that, for all v ∈ D, either v ≥ 0,
−v ≥ 0, or

∑n
i=1 vi = 0.

2. A concave valuation u satisfies the consecutive integer property iff it is of some
concave demand type D ⊆ {−1, 0, 1}n.

It is then easy to use this Lemma to show the following, which slightly generalises
Milgrom and Strulovici (2009, Theorem 13):72

Corollary 5.20. For a valuation u, the following are equivalent:

1. u is of concave demand type Dnss;

2. u is a strong substitute valuation;

3. u is a concave step-wise gross substitute valuation;

4. u is concave and satisfies the complete Dnss-improvement property;

5. u is a concave ordinary substitute valuation and satisfies the ordinary law of ag-
gregate demand;

6. u is a concave ordinary substitute valuation and satisfies the consecutive integer
property;

69See Milgrom and Strulovici (2009). Note that, by Corollary 5.17, it is equivalent whether we define
strong substitutes as all units of all goods being Dnos-complete substitutes, or just as all units of all
goods being ordinary substitutes.

70See Hatfield and Milgrom (2005) for the ‘complete’ version.
71See Milgrom and Strulovici (2009).
72Milgrom and Strulovici (2009, Theorem 13) does not mention step-wise gross substitutes and as-

sumes the Dnos-complete property in 5 and 6.
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Proof. 1⇔4 is an application of Theorem 5.11. The complete Dnss-improvement property
is precisely the single-improvement property of Gul and Stacchetti (1999), so 4⇔2 follows
from Milgrom and Strulovici (2009, Theorem 13).73 That 1⇔3 is clear from Corollary
5.5.1⇔3 (and also given by Danilov et al. 2003, Proposition 7). That 1⇔5 follows since
by Proposition 4.8 we know ordinary substitutes to be equivalent to demand type Dnos
and since by Lemma 5.19.1, for the ordinary law of aggregate demand to additionally
hold, the only vectors in Dnos we can allow are those in Dnss. That 1⇔6 similarly follows
from Lemma 5.19.2 since the vectors in Dnos satisfying the consecutive integer property
are precisely the vectors of Dnss. �

We will in general refer to the valuations satisfying these equivalent conditions as
‘strong substitutes’ as this terminology appears to have become more widely used (and
is briefer than ‘concave step-wise gross substitutes’). We can now quickly and easily
identify such valuations. It is immediate, for example, that the examples of Figures 1,
4a, 5, 13a, 13b, and 14a are all of type D2

ss, while our 3-dimensional example, Figure
6, has demand type D3

ss. However, Example 2.10 (Figure 3) has a facet with normal
(−1, 2) (the line segment between the prices (4,3) and (6,4)), in addition to facets with
normals (1, 0), (0, 1), and (1,−1), and so is not of type D2

ss, but is of type D2
os, as is the

example of Figure 14b.74

Examples 2.14 and 2.15 revisited again. Recall we saw in Section 4.3.1 that the
models of Kelso and Crawford (1982) and Hatfield et al. (2013) could be understood as
ordinary substitute demand types. Now note that they are both also of demand type
Dnss. In the case of Kelso and Crawford (1982), all workers and all firms have valuations
with domain contained in {0, 1}m1+m2 . In the case of Hatfield et al. (2013), since each
agent is restricted to either selling or buying any individual good, a re-ordering of goods
shows their valuation has domain a subset of {0, 1}n1 ×{−1, 0}n2 for some non-negative
n1 + n2 = n.75 Thus, following the same arguments as Corollary 5.17, every SNP edge,
and so every facet normal, must be in Dnss: the structure of preferences is again strong
substitutes.

5.4 Unimodular Demand Types for Complementary Goods

Preferences for complementary goods are less thoroughly treated in the literature
than preferences for substitutes, but we can use our techniques, and the analogy between
the two cases, to develop some results for complements:

73Strictly speaking, the proof of Milgrom and Strulovici (2009, Theorem 13) is incomplete, as the
connection between the single-improvement property and the strong substitute property relies on their
Theorem 2, whose proof is incomplete. However, Danilov et al. (2003, Corollary 5) provide the missing
piece.

In the case that n = 1, the result that 1⇔2 follows from Kelso and Crawford (1982, Theorem 6).
74It can be shown that any strong substitutes preferences can be represented by a simple extension

of the Bank of England’s implementation of the Product-Mix Auction to allow negative bids. See
Klemperer (2010, note 22) for the two-good case; Baldwin and Klemperer (in preparation) demonstrates
this for the general case.

75Strictly speaking, a buyer might buy a good from one agent and sell a physically identical good
to another agent in Hatfield et al. (2013) but because the transactions are independently priced we
consider these goods to be distinct.

46



Proposition 5.21. If a concave valuation is Dnoc-complete then, for any prices p′ ≥ p
and any x ∈ Du(p) there exists x′ ∈ Du(p

′) such that x′k ≤ xk for all k such that
pk = p′k.

Proof. One may make use of Dnoc-steps exactly as in Proposition 4.11, but now starting
at any price p. �

Following Theorem 5.11 it is now easy to provide a sufficient condition for Dnoc-
completeness:

Proposition 5.22. If D ( Dnoc is unimodular then every concave valuation of type D
is a Dnoc-complete valuation.

One example of such a demand type is D = {±(1, 1),±(1, 2)}. But, as with sub-
stitutes, our main interest is in unimodular demand types which are also subsets of
{−1, 0, 1}n. Indeed such demand types are of particular interest for complements, since
they correspond to coalition-formation problems with transferable utility, though note
that in that context, every valuation is automatically complete, since the domain of
every individual is only two points.76 By definition of Dnoc the vectors in such demand
types are either in {0, 1}n or {−1, 0}n; we write D ⊆ ±{0, 1}n for brevity. By Lemma
5.19, the consecutive integer property is also satisfied by valuations of such demand
types; by Corollary 5.5.3 they are also “step-wise gross complements” valuations, where
we define, in analogy with Danilov et al. (2003):

Definition 5.23. A valuation is a step-wise gross complements valuation if for any
p ∈ Rn, any x ∈ Du(p) and any i ∈ {0, . . . , n}, either x ∈ Du(p + εei) for all ε ≥ 0 or
there exists ε ≥ 0 and x′ ∈ Du(p + εei) such that x′i = xi − 1 and x′−i ≤ x−i.

For n ≥ 3, however, there is no unique maximal unimodular demand type contained
in ±{0, 1}n.77 We explain this by developing an example.

Example 5.24 (‘Interval package’ valuations, see Danilov et al. 2008, 2013). Let G be
the upper triangular matrix of 1s:

G :=


1 1 · · · 1
0 1 · · · 1
...

. . .
...

0 0 · · · 1

 .

Then (following the notation of Section 4.4) the demand type GDnss is unimodular. The
vectors in GDnss are of the forms Gei =

∑i
k=1 ek and G(ei − ej) =

∑i
k=j+1 ek for i > j

(as well as the negations of these). These are all therefore in ±{0, 1}n, so GDnss is a
unimodular complements demand type.

Moreover, GDnss has attractive economic properties. If the goods have a natural
fixed order, then under GDnss, any contiguous collection of goods may be considered

76See Example 2.16.
77If n = 1 then any valuation is a Dnoc-complete valuation; if n = 2 then the unique maximal

unimodular complements demand type is ±{0, 1}2 itself. For n ≥ 3 the set ±{0, 1}n is not unimodular;
see Example 6.13.
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as complements by any agent. Such valuations may arise when agents consider, for
example, bands of radio spectrum, or ‘lots’ of sea bed which might be developed for
offshore wind (see Ausubel and Cramton, 2011).

Now, since the demand typeDnss is a maximal unimodular demand type (see Theorem
5.16) it follows that GDnss is also maximal as a unimodular demand type.

However, it is easy to see that if n ≥ 3 there exist vectors v ∈ {0, 1}n, v /∈ GDnss
which do lie in some unimodular complements demand type. If we simply change the
order of the goods, this corresponds to a unimodular basis change P , and PGDnss has
the same properties as GDnss. But if P is the permutation swapping coordinates 2 and
n and leaving the rest unaltered, then e1 + en ∈ PGDnss. However, e1 + en /∈ GDnss.

Moreover, there exist unimodular complements demand types that are not them-
selves unimodular basis changes of Dnss; as sets of vectors, these were characterised by
Seymour (1980). One such is as follows:

Example 5.25. Consider the demand type defined by the matrix

D :=


1 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 1 1

 .

Here, the first three goods are of value on their own, but the fourth is not; there are
pairwise complementarities between any one of the first three goods together with the
fourth, and there are additional complementarities between any pair of the first three
goods when the fourth is also present. We interpret this as a matching model (cf.
Example 2.16) in Section 6.3.1.

Claim 5.26. The demand type of Example 5.25 is unimodular, and is not a basis change
from 4-dimensional strong substitutes D4

ss.

Proof. One may easily show this demand type is unimodular.78

To show it is not a basis change from 4-D strong substitutes, D4
ss, assume (for

contradiction) there exists a unimodular matrix G such that G−1D consists entirely of
distinct column vectors from D4

ss.
79 Since D has 9 columns, G−1D must include all but

one of the 10 distinct vectors in D4
ss. Let w := (1, 1, 1, 1, 1, 1,−1,−1,−1) and note that

Dw′ = 0, so G−1Dw′ = 0 also. It follows that every row r of G−1D satisfies r.w = 0.
But there are precisely four vectors in D4

ss with non-zero entry in any coordinate i (ei,
and ei − ej for the three values of j 6= i), so there are four non-zero entries in every
row of the matrix whose columns are the 10 distinct vectors of D4

ss, and if we delete any
one column, then at least one row must have exactly three non-zero entries. Since these
three entries are ±1, there is no way to add or subtract the three together to obtain
zero; it is impossible that this row has zero dot product with w. Thus no nine vectors
of D4

ss can form the columns of G−1D, for any unimodular matrix G. �

Moreover, it follows from the mathematical results of Grishukhin et al. (2010) that
all unimodular demand types are a unimodular basis change from a demand type D ⊆

78For example, it can be confirmed using Matlab that the determinant of every set of four columns
of D is ±1 or 0.

79Vectors which are the negation of one another are not considered “distinct” in this context.
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±{0, 1}n; unimodularity is preserved under unimodular basis change, and so we obtain
the surprising result:

Theorem 5.27. Every unimodular demand type is a unimodular basis change of a
unimodular complements demand type contained in ±{0, 1}n.

In other work we plan to use their results to generate more examples of these demand
types, such as our Example 5.25.

5.5 Generalised Gross Substitutes and Complements (cf. Sun
and Yang, 2006)

We can extend Sun and Yang’s (2006, see also 2009) definition of “gross substitutes
and complements” to permit multiple units of goods.80 First recall:

Definition 5.28 (Sun and Yang, 2006, Definition 2.1). A valuation u : {0, 1}n1+n2 → R
is a gross substitutes and complements valuation (in the sense of Sun and Yang) if, for
any price p and any p′ = p + δei where δ > 0, and any x ∈ Du(p): if i ≤ n1 then there
exists x′ ∈ Du(p

′) such that x′k ≥ xk for all k ≤ n1 such that k 6= i, and x′k ≤ xk for all
k > n1; and if i > n1 then there exists x′′ ∈ Du(p

′′) such that x′′k ≤ xk for all k ≤ n1,
and x′′k ≥ xk for all k > n1 such that k 6= i.

We will write In1,n2 for the (n1 +n2)×(n1 +n2) matrix In1,n2 :=

(
−In1 0

0 In2

)
where

Ini
is the ni × ni identity matrix, i = 1, 2. Recall from Proposition 4.14 that, if A (

Zn1+n2 then, for any u : A → R, we define the valuation I ∗n1,n2
u : I −1

n1,n2
A → R via

I ∗n1,n2
u(y) = u(In1,n2y) for all y ∈ I −1

n1,n2
A. Now we define:

Definition 5.29 (Cf. Shioura and Yang, 2013, Definition 2). Let A ( Zn be finite, and
let u : A→ R be a valuation. Goods are generalised gross substitutes and complements
(GGSC) if the goods may be reordered such that, for some n1 + n2 = n, the valuation
I ∗n1,n2

u is a strong substitute valuation.

The corresponding demand type we define is as follows:

Definition 5.30. Dn1,n2

GGSC is the following set of vectors in Zn1+n2

{ei, ej, ei − ei
′
, ei + ej, ej − ej

′ | i, i′ ∈ {1, . . . , n1}, j, j′ ∈ {n1 + 1, . . . , n1 + n2}}.

It follows straightforwardly that:

Proposition 5.31. A valuation is a GGSC valuation iff the goods may be reordered such
that, for some n1 + n2 = n, it is of concave type Dn1,n2

GGSC. If the domain of the valuation
is {0, 1}n then this holds iff it is a gross substitutes and complements valuation in the
sense of Sun and Yang.

80Shioura and Yang (2013) have independently made the same generalisation; their Theorem 2 shows,
as we do below, that (in our language) “generalised gross substitutes and complements” (GGSC) satisfy
the complete Dn1,n2

GGSC-improvement property.
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Proof. It is not hard to see that Dn1,n2

GGSC = I −1
n1,n2
Dnss. So the first result follows by

Definition 5.29 and by Proposition 4.14. The second result is provided by Sun and Yang
(2006, Section 3), who show that Definitions 5.28 and 5.29 coincide when A = {0, 1}n.

�

As we know Dnss to be unimodular, it follows that Dn1,n2

GGSC is another unimodular
demand type, and therefore (Theorem 5.11) it is also another complete demand type.

6 Aggregate Demand and Equilibrium

We now consider aggregate demand across many agents. In particular, we precisely
identify the demand types for which competitive equilibrium always exists.

6.1 The structure of aggregate demand

First, we show that aggregate demand among agents may be understood in the way
developed by Koopmans (1951): the aggregate value represents the most efficient use of
the bundles available, in terms of generated welfare.

We have a finite set J of agents. Each agent j has a valuation uj of integer bundles
in a finite set Aj, so the bundles of interest on aggregate are A := {

∑
j∈J xj | xj ∈ Aj},

which we shall refer to as the domain of the aggregate valuation.81 The aggregate
demand at any price p is simply

D{uj}(p) :=

{∑
j∈J

xj | xj ∈ Duj(p)

}
. (4)

One way to find aggregate demand is to start with the valuation functions uj(·),
combine them to give an ‘aggregate valuation function’, and then proceed in exactly the
same way as for individual demand. It is standard (see Appendix A.3) that if agents’
preferences are quasilinear then one attains an aggregate valuation function U : A→ R
as the greatest sum of valuations that can be attained by dividing any bundle y ∈ A
between the agents, that is, the most efficient division of this bundle:

U(y) := max

{∑
j∈J

uj(xj) | xj ∈ Aj,
∑
j∈J

xj = y

}
.

Now:

Proposition 6.1. D{uj}(p) = DU(p) for all p ∈ Rn.

So we henceforth refer to D{uj}(p) using the simpler notation DU(p).
However, the problem with this approach is that U(·) is very hard to work with–to

find any value of U(y), we need to consider all possible partitions of y among the agents,
which is both time-consuming and unintuitive.

81We could alternatively consider each agent as having a valuation over the full domain of the aggre-
gate valuation A by letting uj(x) := max{u(y) | y ∈ Aj , yi ≤ xi, i = 1, . . . , n} for any x ∈ A for which
this set is non-empty, and uj(x) = −∞ otherwise.
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It is straightforward, on the other hand, to start with the individual THs, Tuj ,
combine them to form an aggregate TH, T{uj}, and find information about aggregate
demand from that. Recall that the underlying set of Tuj is those prices at which demand
uj is non-unique. So, since aggregate demand DU(p) is unique iff all individual demands
Dui(p) are, the underlying set of T{uj} is just the union of all the Tuj . Figure 18
illustrates this for the aggregate of the two agents’ demands in our simple substitutes
and complements example, Example 2.11.

p
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1

(a) Tu1

p
1

p
2
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1

(b) Tu2

p
1

p
2

1

1

(c) T{uj}

Figure 18: (a) and (b) the THs of the individual demands of Example 2.11; (c) the TH
of the aggregate of the two demands of Example 2.11.

T{uj} inherits the structure of a proper rational polyhedral complex from the indi-
vidual THs, although the cells will not in general be exactly the same: if cell interiors
from two different agents intersect, the cells are split up into new, smaller cells in T{uj}
with a new, lower-dimensional, cell at their intersection. For example, in Figure 18c,
the point (1

2
, 1

2
) is a 0-cell, on the boundary of four distinct 1-cells.

It is easy to see that T{uj} also inherits a balanced weighting from the weightings of
the individual THs. For any facet F of T{uj}, let its weighting w{uj}(F ) be

∑
j∈J wj(F ),

in which wj(F ) is the weight of the facet Fj ⊇ F of Tuj , or wj(F ) = 0 if no facet
Fj ⊇ F of Tuj exists. Since each individual TH is balanced, adding weightings in this
way creates a balanced weighting.82 And the change in aggregate demand as we cross a
facet is just the sum of changes in individual demand.

So, since the underlying sets of T{uj} and TU are the same, and so are their weightings,
it follows (see Appendix A.3) that as THs,

Proposition 6.2. T{uj} = TU .

So we will henceforth also refer to the aggregate TH, T{uj}, using the simpler notation
TU .

82In more detail: let G be a (n− 2)-cell in T{uj}, let F1, . . . , Fl be the facets adjacent to G, and let
vFk

be primitive integer vectors for each, chosen according to a coherent orientation. Then for every

agent j, the equation
∑l
k=1 wj(Fk)vFk

= 0 holds: if G is contained in an (n− 2)-cell of Tuj then, this
follows from Tuj being balanced; if G is contained only in a single facet of Tuj then the only non-zero
terms in this sum are those which first add and then subtract the weight of this facet to j; if G∩Tuj = ∅
then the expression is identically zero. We conclude

∑l
k=1 w{uj}(Fk)vFk

=
∑
j∈J

∑l
k=1 wj(Fk)vFk

= 0.
Alternatively, one can see this by appealing to Appendix A.3, which confirms that the weightings are
the same as those on TU – being, of course, automatically balanced since it is the TH corresponding to
U(·).
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Thus simply “adding” the individual THs yields the aggregate TH.83 If we know what
is demanded in one UDR then, as before, we immediately know what is demanded in
all the UDRs, without needing to directly consider the function U . And it is immediate
that demand ‘type’ is preserved under aggregation:

Corollary 6.3. Valuations uj are of demand type D for all j ∈ J iff the aggregate
demand TU is of demand type D.

Proof. This is immediate from Proposition 6.2 and the definition of T{uj}. �

6.2 Competitive Equilibrium and Stable Matchings

It is not the case that concavity of each individual demand implies concavity of the
aggregate demand. (We will exhibit a simple example of this failure in Example 6.12.)
And we have seen (Lemma 2.5) that if the function U is not concave, then there exists
a bundle in A that is never demanded.

Of course, if there is a bundle which is not the aggregate demand of the agents for
any price, then a competitive equilibrium does not exist when this is the bundle of goods
available in the economy.

We cannot generally infer from only the aggregate TH whether there is a bundle that
is never the aggregate demand–recall that the geometric construction does not tell us the
precise demand set, DU(p), at all prices p ∈ T{uj}, so it is ambiguous from the geometry
whether any integer vectors in ConvDU(p) that are not vertices of ConvDU(p) are in
DU(p) (see Corollary 3.4). However, as we now show, we can start to answer these
questions if we know not only the aggregate TH but also each individual TH.

The next subsection therefore provides conditions which guarantee that a competitive
equilibrium always exists, by providing conditions which guarantee that the aggregate
valuation U(·) is concave (without needing to explicitly calculate U(·)). In particular,
we are interested in the existence of equilibrium for agents with specified demand types,
as defined in Section 4:

Definition 6.4. A (concave) demand type D always has a competitive equilibrium if,
for every set of agents with (concave) demands of type D, and for an economy endowed
with any bundle in the domain of the aggregate valuation, a competitive equilibrium
exists.

Note that since the demand of a single agent with non-concave valuation function
fails to always have a competitive equilibrium, we are only interested in concave demand
types here.84

A benefit of our method of categorising demand types is that it is straightforward
that:

83This is, of course, essentially the same point as the fact that in the Product-Mix Auction we can
simply “add” individual bidders’ sets of bids to form a single aggregate set of bids that represents
bidders’ aggregate demand. See Baldwin and Klemperer (in preparation) for further discussion.

84For any D, there always exist some collection of agents with demands of type D which have a
competitive equilibrium for any supply in their domain (e.g., consider a single agent with a concave
valuation of type D).
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Proposition 6.5. Always having a competitive equilibrium is a property that is preserved
under unimodular basis changes.

Proof. See Appendix A.3 �

Recall that in Example 2.16 we presented a model of matching with transferable
utility in our framework, using ‘coalition-agents’ and ‘person-goods’. The price paid
for each person-good was precisely the net utility that person received if a matching
took place. The typical question in such a matching model is whether a stable set of
coalitions exists, i.e., a set such that no subset of people would prefer to deviate and
form a new feasible coalition.

In this setting, the set of stable matchings corresponds to the set of core allocations,
because if any group of people could make themselves better off by defecting and forming
one or more new coalitions (with utility being transferable between people within, but
not across, new coalitions) then a subset could defect and make a single coalition better
off.85 (It is also straightforward that this set also corresponds precisely to the set of core
allocations of such a game when utility is also transferable across coalitions.86):

Definition 6.6 (cf. Gale and Shapley, 1962, and Shapley and Shubik, 1971). In a model
of matching with transferable utility within matches, a stable matching is an allocation
in the core of the game among the people, that is, an assignment of each person to
exactly one coalition and a set of transfers between the people within each coalition,
such that there exists no feasible coalition which is not formed but whose formation
would give strictly greater utility to all those people it would comprise.

So we have:

Theorem 6.7. 87 A stable matching exists in a model of coalition formation with trans-
ferable utility iff there exists a competitive equilibrium in the re-formulation of Example
2.16.

Proof. If a stable matching exists, the net utility received by each person is the price
of that person (good). Each coalition which has formed must correspond to a coalition-
agent with non-negative net utility: these do demand their corresponding people (goods)
at these prices. Each coalition which has not formed cannot offer additional surplus to
the people who would form it: the coalition-agent cannot afford the person-goods at the
prevailing prices. So this is a competitive equilibrium.

85Since, in our setting, people are only ever part of a single group, questions about whether defectors
remain parts of their previous groups do not arise. (Such questions are addressed in the literature on
“group stability” – see Roth et al., 1992, Konishi and Ünver, 2006, etc. – and “setwise stability” –
Sotomayor, 1999, Echenique and Oviedo, 2006, Klaus and Walzl, 2009, etc. – which impose additional
requirement about which contracts are maintained after any deviation. See also Teytelboym, 2013.)

86If any group of people could make themselves better off by defecting and forming one or more new
coalitions, perhaps after transfers between new coalitions, then at least one of the new coalitions is not
receiving a positive transfer from the others, and that new coalition could have made itself better off
by defecting on its own. So a stable matching must be in the core of the fully transferable utility game.
(The converse is obvious.)

87Related literature includes Shapley and Shubik, 1971, Kaneko and Wooders, 1982, Kelso and
Crawford, 1982, Chung, 2000, Eriksson and Karlander, 2001, Klaus and Nichifor, 2010, Talman and
Yang, 2011, Chiappori et al., 2012, Hatfield et al., 2013, Hatfield and Kominers, 2013, etc.
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Suppose a competitive equilibrium exists. A subset of people would only wish to
deviate from their prescribed coalitions and form a new one together, if they could
achieve a strictly higher net utility in the new coalition. The corresponding coalition-
agent would have to be willing to offer a higher price for each of them. But the existence
of such a coalition-agent would contradict competitive equilibrium. �

Recall that a person’s ‘price’ is the minimum a coalition needs to pay to ‘buy’ him,
in competitive equilibrium; any excess surplus can be split in any way among the people
in a coalition.

6.3 When does Competitive Equilibrium exist?

We now state and explain a theorem which provides a necessary and sufficient condi-
tion for any set of valuations in a demand type to always have a competitive equilibrium.

This Theorem requires much weaker assumptions about agents’ preferences than
used in the existing leading economics literature, so our condition for equilibrium is
correspondingly much more general. In particular (see Section 6.4.3) it is not necessary
for all agents to have strong substitute demands (or some basis change thereof) for
equilibrium to always exist.88 Instead, concavity and the unimodularity condition of
Section 5.2 are all that are required.

A remarkable series of papers by Danilov, Koshevoy and their coauthors, has devel-
oped results that are very closely related to ours. In particular, Theorems 3 and 489

of Danilov et al. (2001) together provide a sufficient condition for equilibrium (“D-
concavity” of valuations, where D is unimodular), which is analogous to our condition
on demand types. However, the interpretation or usefulness of their result is not made
clear; by contrast, the theorem we state both demonstrates the applicability of the
result, and clarifies the connections to existing economic results.90

Danilov et al. also prove no necessity result. Because they have not developed their
definition as a taxonomy of demand, in the way we do with demand types, they do not
show the necessity of unimodularity of D for the existence of competitive equilibrium.
Using demand types, however, a necessity result can easily be developed.91

88For example, results such as those of Kelso and Crawford (1982), Hatfield and Kojima (2008), and
Hatfield et al. (2013) are necessary ‘in the maximal domain sense’, in Hatfield et al. (2013)’s words.
That is, in our language, they show that equilibrium always exists for some demand type D, but that
if one agent has preferences outside of D then this may fail.

89The proof of Theorem 4 is given by Danilov and Koshevoy (2004, Theorem 2).
90We will see that Theorem 6.8 unifies the results on competitive equilibrium in, for example, Kelso

and Crawford (1982), Hatfield and Milgrom (2005), Sun and Yang (2006), Milgrom and Strulovici
(2009), and Hatfield et al. (2013); these are all special cases of the theorem, and many other cases
can be constructed. The absence in Danilov et al.’s work of the notion of demand types, and its
presentation in relatively unfamiliar terms (namely the relationships between sets of primitive integer
vectors which are parallel to edges of specific collections of integral pointed polyhedra and the “classes
of discrete convexity” that they define) seems to have resulted in leading economists, and the leading
related existing literature, being unaware of their work or its implications. (We were also unaware of
their work until after we had developed our own results.)

91The sufficiency part of our theorem follows from combining Theorems 3 and 4 of Danilov et al.
(2001). To understand the relationship between these theorems and our Theorem 6.8, observe that in
their Theorem 4 certain sets of “primitive [integer] vectors, which are parallel to edges of” a certain
“collection of integral pointed polyhedra” form a set D defining one of our demand types; furthermore,
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Danilov et al. additionally state their results under different assumptions from ours.
They assume the domain, A, of every agent’s valuation is Zn≥0, which precludes, for
example, the application to Hatfield et al.’s (2013) model which our more general as-
sumption permits.92

Finally, although the techniques we use to prove our results are novel, they seem
simpler and more accessible to economists than Danilov et al.’s very advanced mathe-
matical techniques. So we will prove our theorem using our alternative method, which
understands the result as an application of “intersection multiplicities” in tropical ge-
ometry.93

Theorem 6.8. A concave demand type D always has a competitive equilibrium iff it is
unimodular.

(Recall from Definition 6.4 that competitive equilibrium ‘always exists’ for a (concave)
demand type iff, for any set of agents with (concave) valuation of that type, and any
supply bundle in the convex hull of aggregate demand, there exists a price such that the
market clears.)

As in Section 5.2, the intuition is that the volume of a SNP face which is a paral-
lelepiped in Rn, with vertices in Zn and edges in D, cannot exceed 1 if the set of vectors
that form its edges is unimodular (see Remark 5.10), so if D is unimodular, such an SNP
face of aggregate demand contains no integer points other than its vertices. So there is
also no integer bundle “hidden” inside such an intersection of individual agents’ THs,
so no integer bundle that is never chosen at any price vector, and competitive equilib-
rium therefore always exists. On the other hand, if the set of edges exhibits failure of
unimodularity, then such a parallelepiped’s volume does exceed 1, there does exist a
bundle not at a vertex, and–we will see–such bundles may not be chosen at any price
vector, so competitive equilibrium may fail.

When s = n, the volume in question is simply the (absolute value of the) determinant
of the vectors along its edges. So, as with Corollary 5.12, if the set of aggregate demands
is in the same dimension as the number of goods, we can re-state the theorem in a form
that is easier to check:

Corollary 6.9. With n goods, a concave demand type D = {v1, . . . ,vr}, in which
v1, . . . ,vr span Rn, always has a competitive equilibrium iff every subset of n vectors
from D has determinant 0 or ±1.

In the more general case of Theorem 6.8 we allow demand types D that ignore
some directions of good availability. In such a D there are no collections of n linearly

the “classes of discrete convexity” they define are analogous to a set of demand sets Du(p) such that
(ConvDu(p)) ∩ Zn = Du(p) in every case and such that this property is preserved under aggregation.
It is not hard to also show, using our Proposition 2.6, the necessity of a demand type being a “class of
discrete convexity” for competitive equilibrium to always exist, and in this way we can also derive our
necessity result from their work.

92In fact Danilov et al.’s assumption seems unnecessary for them, so we could develop our full theorem
by extending their work. See our note 91, above. See also our discussion about the distinction between
their approach and ours in the introduction to our Section 4. Their work also covers some of the
examples in Section 6.4, as we note in that Section.

93It was this theory that inspired our (independent) development of our results. Full details of our
proof are in Appendix A.3.
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independent vectors, so every subset of n vectors has determinant 0, and the check of
Corollary 6.9 tells us nothing.

In this case, however, we can use one of the equivalent conditions in Remark 5.10.3
and 5.10.4.

A demand type, D, always has a competitive equilibrium iff all integer bundles (i.e.,
all lattice points) in any type-D SNP of aggregate demand are demanded for some price.
It is immediate that any integer bundle that is at a vertex of the SNP is demanded (recall
Corollary 3.4). On the other hand, any integer lattice point in the SNP of aggregate
demand that is not a vertex is “hidden” inside the corresponding intersection of the
individual agents’ THs. Such a bundle is in the convex hull of the aggregate demands
of the agents, at the price at which their THs intersect. Since Lemma 2.6 tells us that
this is the only possible price at which such a bundle can be demanded, the question is,
therefore, whether such a bundle is always demanded at the intersection price. So we
can prove Theorem 6.8 by considering the forms such intersections may take.

We begin, in the next subsection, by considering a simple special case, which both
proves the necessity of unimodularity for competitive equilibrium to always exist, and
is of independent interest in understanding stable matching. The subsequent subsection
extends this special case to prove the general case of the Theorem.

6.3.1 Competitive Equilibrium with “Simple” Intersections; and Stable
Matchings

The simple case we start with is that for which an intersection between individual
agents’ THs lies in the interior of a facet of each agent, so each agent is indifferent
between precisely two bundles, and the set of vectors normal to these facets is linearly
independent. We show that, for such simple intersections, competitive equilibrium exists
for every possible supply bundle if and only if this set of vectors is unimodular.94 Using
this result, examples of failure of equilibrium are always easy to construct.

Proposition 6.10. Consider s ≤ n agents each of whose demand set includes precisely
2 bundles at price p, i.e., #Dui(p) = 2, for i = 1, . . . , s. Write vi for the difference
between the two bundles demanded by agent i (so vi is normal to i’s facet of demand at
p). Suppose the s vectors v1, . . . ,vs are linearly independent. Write U for the aggregate
valuation. There exists an integer bundle in ConvDU(p) which is not demanded at any
price iff vectors v1, . . . ,vs do not form a unimodular set.

Proof. By Lemma 2.6, an integer bundle in ConvDU(p) is not demanded at any price iff
it is not in DU(p). Now, each individual agent i’s demand at p has the form Dui(p) =
{yi + δiv

i | δi ∈ {0, 1}} , where yi is the bundle demanded on the appropriate side of
the TH facet. So the set of bundles demanded on aggregate at p is

DU(p) =
{
y + δ1v

1 + · · ·+ δsv
s | δi ∈ {0, 1}; i = 1, . . . , s

}
,

where y =
∑

i y
i. These points are precisely the vertices of an s-dimensional par-

allelepiped in Zn (since its edges, the vi, are linearly independent). There exists an

94Unimodularity is equivalent to the tropical intersection multiplicity being equal to one in such a
case (see e.g. Osserman and Payne, 2013).
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integer bundle in ConvDU(p) which is not in DU(p) iff this parallelepiped contains an
integer bundle which is not a vertex, and, by Remark 5.10.1 and 2, this holds iff the set
{v1, . . . ,vs} is not unimodular. �

This result tells us more than just the necessity of unimodularity for existence of
competitive equilibrium. It shows us how to construct simple examples of failure of
equilibrium: for any non-unimodular set of vectors, we simply need to choose a price
vector, and then choose valuations so agents are all indifferent between exactly two
bundles at this price vector.

In particular, every intersection of individual THs is of the form of Proposition 6.10
if every agent’s domain of valuations contains only two bundles, as in the application
to coalition-formation, Example 2.16, so Proposition 6.10 is of particular value in de-
veloping results in this context. For example, it is immediate that a stable matching
always exists for every set of people (not necessarily just one person of each type) iff D
is unimodular:

Corollary 6.11. For every model of coalition formation with transferable utility of type
D, a stable matching exists for every set of people iff D is unimodular.

Proof. Follows immediately from Theorem 6.7 and Proposition 6.10. �

Example 5.25 revisited. Recall from Section 5.4 that the columns of the matrix

D :=


1 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 1 1


define a unimodular demand type. Since, also, all its entries are 0 or +1, it is an example
of a coalition-formation problem for which a stable match always exists. It might, for
example, model the demand for three workers (the first three goods) and a manager
(the fourth good). The first three columns of D show that each of the three workers
has value on his own; the manager on her own is worthless (because e4 /∈ D), but the
middle three columns of D show that the manager increases the value of any one of the
workers, and the last three columns of D show that there are also complementarities
between any two of the workers if (but only if) the manager is also present.

6.3.2 Proof of the Equilibrium Existence Theorem in the General Case

The necessity of unimodularity for competitive equilibrium is demonstrated imme-
diately by considering intersections of individual agents’ THs that take the simple form
of Proposition 6.10.

We now prove in two stages that unimodularity and concavity are sufficient for
competitive equilibrium to always exist.

First, we show in Proposition A.4 that all the integer bundles in the convex hull
of the demands at any “nice” intersection of agents’ THs are always demanded. Our
definition of a “nice” intersection (see Proposition A.4) covers any generic intersection
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at a single price. For example, in two dimensions, two lines crossing at a single point
is “nice”, but two coincident lines is not “nice”, and nor is three lines crossing at a
single point; in three dimensions, either three planes meeting in a single point, or a line
meeting a plane in a single point is “nice”.

The important property of “nice” intersections is that the changes in bundles con-
sidered by the different agents (as each agent crosses between different regions of its
TH) are always linearly independent. This means that any change in the aggregate
supply, which remains in the convex hull of aggregate demand at at this price point,
can be straightforwardly and uniquely apportioned between the individual agents, by
simply assigning to each individual agent that part of the aggregate change that follows
its direction of change. Unimodularity of D implies that, if the aggregate change is
by an integer bundle, then so are each of these individual changes. The concavity of
each individual agent’s valuation then means that each agent demands its new assigned
bundle. So each separate component of the total bundle is demanded by an individual
agent, and the aggregate bundle is therefore also demanded.

The second half of the proof of the sufficiency part of the theorem proceeds by
showing that generically all TH intersections are “nice”. That is, there always exist
arbitrarily small perturbations of all agents’ valuations that lead to a situation in which
all intersections are nice, and so all bundles are demanded on aggregate at some price.
But if, prior to these perturbations, there exists an integer bundle which is not de-
manded, then the aggregate value from this bundle must be a finite amount lower than
the valuation that would be required for it to be demanded. So we can therefore make
arbitrarily small perturbations in valuations that are on the one hand small enough that
the integer bundle in question can still not be demanded at any price, but on the other
hand mean that all bundles are demanded on aggregate at some price–a contradiction.
We give the details in Appendix A.3.

6.4 Examples

6.4.1 Examples of non-existence of equilibrium

We first illustrate our result with two simple examples of non-existence of equi-
librium; as in Section 5.2 we can see the importance of unimodularity by examining
examples in which it fails. Proposition 6.10 shows us how to construct a failure of com-
petitive equilibrium in such a case. We could mirror the demand type of Example 5.1
again, but instead we use the even simpler Example 2.11: substitutes and complements.

Example 6.12. 95 Suppose D can be represented by

D =

(
1 1 0 1
−1 0 1 1

)
in which the first three column vectors together yield the substitutes demand, and the
last three column vectors together yield complements demand. Trivially, the matrix
formed by the first and last column has determinant 2, so equilibrium need not exist.

95See Danilov et al. (2001, Example 1) and Hatfield et al. (2013, Example 2).
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Our Example 2.11 is of this type: we repeat its valuation functions for the “substi-
tutes agent” and “complements agent” respectively, below:

x1 = 1 x1 = 0 u1

1 0 x2 = 0
1 1 x2 = 1

and
x1 = 1 x1 = 0 u2

0 0 x2 = 0
1 0 x2 = 1

,

Note that both these valuation functions are concave. However, the aggregate valuation
function, which we give in Figure 19a is not concave, as can be easily seen by observing
that (U(1, 0) +U(0, 1) +U(2, 1) +U(1, 2))/4 > U(1, 1). This inequality is also apparent

in Figure 19b which shows a 3-dimensional illustration of U together with the face of Â
(see equation (3) and Section 3.2) that corresponds to the price vector (1

2
, 1

2
). It follows

x1 = 2 x1 = 1 x1 = 0 U
1 1 0 x2 = 0
2 1 1 x2 = 1
2 2 1 x2 = 2

(a) Aggregate valuation.

0

1

1

1

1

2

1

2

2

x1

x
2

value

(b) 3 dimensional illustration of the aggre-

gate valuation, showing the face of Â that
corresponds to the price vector ( 1

2 ,
1
2 ).

Figure 19: The aggregate valuation of Example 6.12.

that all the bundles (1, 0), (0, 1), (2, 1), and (1, 2) are demanded at this price, while the
bundle (1, 1) is “hidden” at the intersection of the diagonals of the TH at the price,
(1

2
, 1

2
), and is never demanded at any price. So aggregate demand is never x1 = x2 = 1.

The SNP and the TH of the individual and aggregate demands are shown in Figure 20.
Observe in Figure 20c that in the aggregate SNP the bundle (1, 1) is not a vertex, and

the area of the diamond is det

(
1 1
−1 1

)
= 2.

Of course, our analysis only shows that equilibrium may not exist for this type of
demand. Equilibrium would exist if, for example, the “complements” consumer had
valuation 3 for the combination of 1 unit of each of x1 and x2. In that case the facets
corresponding to the vectors (1, 1) and (1,−1) would not intersect, so Proposition 6.10
does not apply. We will return to this issue in Section 6.5.

Example 6.13. 96 Consider a set of “complements” consumers each of whom is only
interested in a different pair of goods. One context in which such a situation may arise

96Sun and Yang (2011), and also Teytelboym (2014), have independently considered the demand
described in this example, using alternative methods that extend Sun and Yang (2006), showing as
we do that equilibrium always exists iff n is even. See also Footnote 98. If we use the ‘matching’
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Figure 20: The individual and aggregate SNPs and THs for Example 6.12.

is the “coalition formation” of Example 2.16–recall that in this case a stable matching
is given by a competitive equilibrium (Theorem 6.7).

Moreover, assume that there is a cycle in the pairs of goods that these consumers
wish for. That is, we can number both consumers and goods 1, . . . , n, such that every
consumer i < n demands goods i and i + 1, which it sees as perfect complements, and
consumer n demands goods n and 1. It is not hard to see that:97

if D =



1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
· 0 1 · · ·
· · · · · · ·
0 0 0 · 1 0
0 0 0 1 1


then detD =

{
0 if n is even
2 if n is odd.

So if n is odd, there exist agents with demands of this type such that equilibrium does
not exist.

Indeed, one can see directly that equilibrium fails in the simplest symmetric case: if
each consumer has valuation 1 for any allocation that includes the pair it desires, and
valuation 0 for any other allocation, aggregate demand is never exactly 1 unit of each
good. To see this, note that at least one good, w.l.o.g. good 1, would not be part of a
pair. So p1 = 0. Therefore p2 ≥ 1 (else consumer 1 would demand the pair of goods 1
and 2). So p2 = 1, and therefore p3 = 0, since otherwise good 2 would not be demanded,
and consumer 2 therefore buys goods 2 and 3. Therefore p4 ≥ 1 (else consumer 3 would
demand goods 3 and 4). So p4 = 1, and p5 = 0, etc. In particular, pj = 0 if j is odd.
But in that case, consumer n wishes to buy goods n and 1, which is a contradiction.

interpretation of Example 2.16 then this example is the transferable utility version of the ‘no odd rings’
condition of Chung (2000).

97To see this easily, expand by the first row: noting the “1”s in the first and the last column of that
row, we have det D = 1(1) + (−1)n−1(1).

60



On the other hand, if n is even, the columns of D are not linearly independent, but if
we exclude the ith column, for any i, the remaining n− 1 rows are linearly independent
and can trivially be extended to n linearly independent vectors with determinant 1 by
adding the column ei, so Theorem 6.8 then shows that equilibrium always exists. For
example, in the simple symmetric case, pj = 0 if j is odd and pj = 1 if j is even, for all
j, supports qi = 1 for all i as an aggregate demand.

6.4.2 Strong substitutes and Generalised gross substitutes and comple-
ments

Recall from Section 5.3 that a valuation is ‘strong substitutes’, in the terminology
introduced by Milgrom and Strulovici (2009), if every unit of every good is an ordinary
substitute for every other unit of every good (including being an ordinary substitute
for every other unit of the same good). We showed in Proposition 5.20.2 that strong
substitutes are precisely are concave demand type Dnss; the latter may be presented as
{ei, ei − ej | i, j = 1, . . . , n; i < j} (see Section 5.3).

We know Dnss is unimodular (see Theorem 5.16), so another of the pleasing properties
of ‘strong substitutes’ is that equilibrium always exists:

Proposition 6.14 (Milgrom and Strulovici, 2009, Theorem 19; cf. Danilov et al., 2003,
Proposition 7 and Danilov et al., 2001, Example 4). Equilibrium always exists when
agents’ demands are strong substitutes.

Recall that we showed that Dnss is not just unimodular, but is also maximal as a uni-
modular demand type (Theorem 5.16). This implies:

Proposition 6.15 (Gul and Stacchetti, 1999, Theorem 2, Milgrom and Strulovici, 2009,
Theorem 16; Hatfield et al., 2013, Theorem 7). Given any one agent who does not have
a strong substitute valuation, we can find strong substitute valuations for other agents
such that competitive equilibrium fails to exist.

Indeed, applying Proposition 6.10, we see that very simple valuations for the additional
agents will suffice: each additional agent need only consider either whether or not to
demand one unit of one good, or whether or not to swap one unit of one good for one
unit of another.

Moreover, it is now trivial to reproduce:

Corollary 6.16 (Milgrom and Strulovici, 2009, Theorem 20; Danilov et al., 2003,
Proposition 5). If uj is a strong substitute valuation for all j ∈ J , then the aggregate
valuation U is a strong substitute valuation.

Proof. If uj is of concave demand type Dnss for j ∈ J, then U is of type Dnss by Corollary
6.3. By Proposition 6.14 (and Lemma 2.5) U is also concave; applying Corollary 5.20
completes the proof. �

Because equilibrium existence is preserved under unimodular basis changes (the clar-
ity of this is one of the benefits of our representation of demand), an elementary appli-
cation of Proposition 6.14 is:
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Corollary 6.17 (cf. Sun and Yang, 2006, Theorem 3.1 and Shioura and Yang, 2013,
Theorem 5.). Equilibrium always exists for the ‘generalised gross substitutes and com-
plements’ type of demand.

Proof: Immediate from Propositions 6.14, 5.31 and 6.5. �

Note this corollary also provides another proof of Example 6.13’s “even cycle of
complements” result. If we separate the goods into two classes corresponding to the
odd- and even-numbered goods, and re-order so that all the odd ones come first, demand
is then of type Dn/2,n/2GGSC , so Corollary 6.17 applies.

Moreover, we can now generalise further to an even more general style of GGSC-
like demand, in which goods are separated into an arbitrary number of groups, with
goods within the same group being strong substitutes, but with 1-1 complementarities
between some pairs of groups (that is, for those pairs of groups, each good in one of the
groups may exhibit 1-1 complementarities with any good in the other group). If all the
“cycles” formed by the sequences of “paired” groups are of even length, then we can
again separate the groups of goods into two classes, so that the demand is again GGSC
demand, and so always has a competitive equilibrium. But if any odd cycle exists then,
just as in Example 6.13, competitive equilibrium may fail.98

6.4.3 When is Strong Substitutes a necessary condition for equilibrium?

Danilov and Grishukhin (1999) provided a characterisation of all of (what we call)
unimodular demand types, including a list giving, up to unimodular basis change, all
maximal such types up to dimension 6. From this list it is immediate that

Theorem 6.18. If n ≤ 3, equilibrium always exists for a concave demand type if and
only if it is a unimodular basis change from strong substitutes, or a subset thereof.

With n > 3, there exist concave demand types for which equilibrium always exists,
which are not a unimodular basis change from strong substitutes, or a subset thereof.

That is, while if there are at most three goods, all unimodular demand types are
unimodular basis changes from strong substitutes, this is far from true more generally.
Indeed, we already showed this in Example 5.25 which, moreover, has only complemen-
tary relationships. This example also provides (see Theorem 6.7) a concrete example
of preferences for which a stable coalition structure always exists – although coalitions
may consist of one, two or three agents.

Furthermore, recall (Theorem 5.27) that every unimodular demand type, that is,
every demand type for which competitive equilibrium is guaranteed, is a unimodular
basis change of a unimodular complements demand type–in stark contrast to conven-
tional wisdom about the “necessity” of substitutes for competitive equilibrium.99

98This result has independently been established by Sun and Yang (2011), and also Teytelboym
(2014); the latter paper gives fuller details.

99For example, Gul and Stacchetti (1999, p. 96) state “in a sense, the GS [gross substitutes] condition
is necessary to ensure existence of a Walrasian equilibrium”. The “necessity” makes sense in their
context in which any set of agents they consider may contain any agent who demands at most one unit
of any good. (Since such agents have demand type Dnss, their result is equivalent to the maximality of
Dnss as a unimodular set (see Corollary 6.15).) But the specificity of the context in which claims like
this makes sense often seems to be forgotten.

62



6.4.4 Equilibrium in extensions of the Product-Mix Auction

It is not hard to check that the bids in any Product-Mix Auction of the kind im-
plemented by the Bank of England all represent strong substitutes preferences, so (see
Section 6.4.2) equilibrium is guaranteed even if individual units of goods are indivisible.
This remains true if the auction is augmented by permitting bidders to use “negative”
bids (in which case, it can be shown that all strong substitutes preferences can be rep-
resented).100

In fact, the Bank’s implementation of the Product-Mix Auction allows the auction-
eer to ration whenever it wishes. However, there are many contexts in which rationing
may not be possible. For example, a piece of radio spectrum may only be useful if
it is above a certain minimum size. Similarly, bidders might make competing offers
to build gas-fired plants, nuclear-power stations, wind farms, etc., to a government
needing energy capacity—and nuclear-plants, at least, may be indivisible.101 So results
about equilibrium when goods are indivisible may be needed to apply the Product-Mix
Auction to problems currently facing regulators such as the U.S. Federal Communica-
tions Commission, the U.K.’s Ofcom, and the U.K. Department for Energy and Climate
Change. We can use Theorem 6.8 to guarantee that existence of competitive equilibrium
is retained in extensions of the Product-Mix Auction—see Baldwin and Klemperer (in
preparation).102

6.5 Existence of equilibrium for specific demands

Theorem 6.8 tells us which demand types always have a competitive equilibrium.
When the answer is negative, it does not tell us whether competitive equilibrium exists
for every supply bundle, for a specific set of demands. But if all intersections are “nice”
(in the sense of Section 6.3) then we can apply Proposition A.4 to each intersection
point to check for such a failure.

Take, for example, Agents 1 and 2 who have THs of the combinatorial types of
Figures 1 and 12, respectively, and concave valuations. (A valuation function of the
combinatorial type of Figure 1 must be concave. A valuation function of the type of
Figure 12 need not be concave, though the specific valuation function of this type that
is given in Example 2.10 is concave.)

The combinatorial type of aggregate demand will depend on how the agents’ THs
meet in price space; assume they only intersect “nicely”. Applying Propositions 6.10
and A.4, we see that there exists a supply bundle such that competitive equilibrium does

100See Klemperer (2010), and Baldwin and Klemperer (in preparation).
101Making matters even more complex, alternatives such as wind farms and back-up facilities for use

when no wind is blowing may be complements.
102Product-Mix auctions can also be used to improve clock auctions: one criticism of clock auctions

is that they fail to find the exact competitive equilibrium when it is unique, or the correct competitive
equilibrium when it is not unique, see, for example, Harbord et al., 2011, Appendix A. (In auctions
for substitutes the usual objective is to select the unique bidder-preferred competitive equilibrium in
the event that competitive equilibrium is non-unique.) We can solve this problem of clock auctions by
accepting Product-Mix bids either between the bid increments of a clock auction (this is a generalisation
of the “intraround bidding” popularised by Ausubel and Cramton (2004)) and/or after using simpler
techniques to identify the price range in which competitive equilibrium must lie. (Footnote 7 discusses
other disadvantages of clock auctions and simultaneous multiple round auctions relative to (pure)
Product-Mix auctions.)
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Figure 21: Examples of aggregate THs and SNPs of agents with THs of the combinatorial
types of Fig. 1 (dashed line) and Fig. 12 (solid line). The number of intersections of
the THs, weighted by facet weights, reveals the existence or failure of equilibrium.

not exist iff the facets with normals (1, 0) and (−1, 2) intersect (since det

(
1 −1
0 2

)
=

2 > 1). An example of aggregate demand of this combinatorial type is illustrated in
Figure 21a; the bundle (1, 1) is in the interior of the parallelogram in the SNP of Figure
21a, and is never demanded on aggregate (see Proposition 6.10).

Combinatorial types of aggregate demand in which competitive equilibrium does
exist for any supply bundle are illustrated in Figures 21b, 21c and 21d (there are others).

In Figures 21b and 21c, there are two intersections between the THs. In each case,
the areas of the SNP faces corresponding to the intersections are 1. We call this area
the ‘multiplicity’ of the intersection; note that it is, of course, the determinant of the
(primitive integer) edges of the SNP face (and so, as we have seen, intimately connected
with the existence of competitive equilibrium).

Conversely, in Figures 21a and 21d there is only one intersection. Now, however, the
corresponding SNP face has area 2; we say the ‘multiplicity’ of the intersection is 2.

Observe that in each case, the number of intersections, weighted by multiplicity, is
2. It can be checked that this holds for every other aggregate of the demands of two
agents whose individual THs are of the same combinatorial types as Figures 1 and 12,
respectively. This is a special case of the Tropical Bézout Theorem.103

However, the natures of the multiplicity 2 intersections in Figures 21a and 21d are
different. In Figure 21d, one of the corresponding facets is of weight 2; Agent 2 has a
concave valuation and so has three bundles in its demand set, so Proposition 6.10 does
not apply–the bundles ‘inside’ the weight-2 facet (in the centres of the long edges of the
rectangle in the SNP) are both demanded at this price. The best way to understand this
situation is that ‘two intersections have become arbitrarily close’. By contrast, in Figure
21a, neither of the corresponding facets has weight 2, Proposition 6.10 does apply, and
the bundle in the centre of the parallelogram is not demanded at any price.

Recall that the multiplicity of the intersection is the area of the SNP face, which

103See Richter-Gebert et al (2005).
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equals the (absolute value of the) determinant of its edges. The key point is that this
can be factorised into the product of the facet weights times the (absolute value of the)
determinant of the primitive integer edge directions (that is, the primitive integer facet
normals). And equilibrium fails iff the (absolute value of the) latter determinant exceeds
1. So the existence of a supply bundle for which competitive equilibrium fails is signalled
by a case in which the sum of intersections, weighted only by facet weights, is too small.

These ideas can be applied more generally, as will be developed in future work.

7 Conclusion

Studying the tropical geometry of demand yields a range of insights. The structure of
an agent’s preferences can be efficiently summarised by a set of vectors that is orthogonal
to the divisions between the regions of price space in which the agent demands different
bundles. So examining these vectors is an efficient way of determining the “type” of
demand, and the same set of vectors also generates the surface of the convex hull of the
agent’s valuation function in quantity space. The duality between these representations
has powerful implications, and the pictorial representations that tropical geometry gives
us generate new intuitions.104

We began this work while studying the properties of many-dimensional Product-Mix
Auctions. Convex and tropical geometry is the key to much of our analysis in Baldwin
and Klemperer (in preparation) in which we describe ways in which different preferences
can be represented in these auctions, and the implications of different restrictions on
bids.105 Geometric reasoning has also helped us develop extensions to the Bank of
England’s original implementation of the auction,106 and understand the connections to
related auction designs.107

In other work, we have found that similar geometric analysis is useful in understand-
ing results obtained by others, and that it can prove these results more quickly than
currently-used techniques. So we are optimistic that tropical-geometric analysis will
yield more economic insights in the future; we hope others will take up these methods.

104These intuitions are obscured by existing pictorial representations which shoehorn indivisible de-
mand into the standard divisible-demand framework.
105In the Bank of England’s implementation, the bid-taker expresses preferences through a “supply

function” while bidders can make sets of “or” bids that can, if desired, be represented as sets of points
on a graph. Permitting negative as well as positive bids broadens the set of preferences that can be
expressed, as does permitting bidders to specify additional constraints (Klemperer, 2008, 2010). The
issue is: what kinds of bids should we permit to achieve a sufficiently rich representation of preferences,
while retaining a unique solution (the extent to which we can permit some degree of complements
is a particular challenge), achieving an efficient outcome (in particular, not incentivising strategic
behaviour), and retaining simplicity and transparency?
106Extensions include broadening the range of contexts to which these (or related) auctions can be

applied, through a better understanding of when equilibrium is guaranteed to exist, as well as better
ways of representing bidders’ and bid-takers’ multi-dimensional preferences.
107Related designs include, in particular, the Assignment Auction suggested independently by Milgrom

(2009), and versions of Simultaneous Multiple Round Auction (see, e.g., Milgrom, 2000) and “Clock
Auctions” (see, e.g., Ausubel and Milgrom, 2002, Gul and Stacchetti, 2000, and Milgrom and Strulovici,
2009); see also the papers in Cramton, Shoham, and Steinberg (2006). As noted in the Introduction,
we are also concerned with efficient solution techniques for Product-Mix Auctions, both when we need
integer solutions, and when rationing is permitted, etc.
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A Proofs of Results in the text

A.1 Proofs of Results in Section 4

Proof of Theorem 4.4. First we show 1⇒2: Suppose u is of type D. Generically
the line [p,p′] crosses only facets, not any lower dimensional cells in Tu. Furthermore,
because the UDRs are open sets and because there are only finitely many cells of lower
dimension than n−1, we can always choose a change in price, q, such that Du(p−q) =
Du(p) and Du(p

′ − q) = Du(p
′) and the line [p − q,p′ − q] does indeed cross only

facets; we choose q sufficiently small that [p−q,p′−q] only crosses facets that are also
crossed by [p,p′], although the latter may meet these facets at their boundaries. Now
let x0, . . . ,xl be demanded in each UDR that [p − q,p′ − q] meets; by construction,
each of these bundles is also demanded at some price in sequence on the line [p,p′] and,
also by construction, the difference between each pair of consecutive bundles is in the
direction of a facet normal, that is, a vector in D. Since the bundle demanded changes
in each case, (xj − xj−1).(p′ − p) < 0 in each case.

Next show 2⇒4: Suppose that {x} = Du(p) and that x /∈ Du(p
′). By assumption

we can break down the demand change from p to p′ in improving ZD-steps. Let x′′ be
the first bundle x1 in this sequence; we know that 1

w
(x′′ − x) ∈ D for some w ∈ Z and

that (p′ − p).(x′′ − x) < 0. We re-write the latter as

(p′ − p).x′′ < (p′ − p).x (5)

Moreover, since x′′ ∈ Du((1− λ1)p + λ1p
′), we know

u(x′′)− [(1− λ1)p + λ1p
′].x′′ ≥ u(x)− [(1− λ1)p + λ1p

′].x

Subtracting (1− λ1) times equation (5) we obtain

u(x′′)− p′.x′′ > u(x)− p′.x

i.e. x′′ is strictly preferred to x at price p′, as required.
Next we show 4⇒1. Suppose u is not of demand type D. Then Tu has a facet F with

primitive integer normal n /∈ D. Let p0 be in the interior F ◦ of this facet. For ε > 0
sufficiently small, #Du(p

0 + εn) = 1; let {x} = Du(p
0 + εn). Then x /∈ Du(p0 − ηn)

for any η > 0; set p′ := p0 − ηn where η is sufficiently small that, at p′, any bundle
in Du(p

0) is preferred to to any outside this set. The only bundles strictly preferred to
x at price p′ are bundles in Du(p

0) − {x}. But, since p0 is in the interior of the facet
F , we know that Du(p

0) = {x + wn | w ∈ W} for some finite set W ( Z. So since we
assumed that n /∈ D, the ordinary ZD-improvement property cannot hold.

It is clear that 2⇒3, so we conclude by showing that 3⇒1. So suppose that u satisfies
3. Consider a facet normal v of Tu. Since v 6= 0 we can pick i such that vi 6= 0. Then it
is possible to pick some ε > 0 and prices p,p + εei in the UDRs either side of this facet,
so that [p,p + εei] crosses only this facet. By property 3 we can break down the change
in demand from p to p + εei in improving ZD-steps – but it is clear that the only way
to break down the change in demand from p to p + εei is in steps in the direction of v.
We conclude that v ∈ D. Hence, u is of demand type D. �
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Proof of Theorem 4.5. This proof closely follows the proof of Theorem 4.4, except
that in showing 1⇒2 we choose x0, . . . ,xl which are demanded on [p − q,p′ − q] but
are not necessarily demanded in any UDR; instead, we stipulate that each new bundle
differs from the former by a vector in D. Since u is concave, such bundles exist. In
showing 2⇒4 we note that, if we start with a series of improving D-steps, then x′′ will
differ from x by a vector in D. That 4⇒1 and 3⇒1 clearly follow from 4⇒1 and 3⇒1
of Theorem 4.4, respectively, under the additional assumption that u is concave. �

Example A.1. Consider the unimodular demand type D = {±(1, 0),±(0, 1),±(1, 1)}
and the non-concave valuation of this type:

x1 = 3 x1 = 2 x1 = 1 x1 = 0 u
5 4 2 0 x2 = 0
6 5 4 2 x2 = 1
6 6 4 4 x2 = 2
6 6 6 5 x2 = 3.

We show that we can break down the change in demand between any p,p′ into improving
D-steps. This valuation fails to be concave at the bundle (1, 2); it would have the same
TH but would be concave if v(1, 2) were equal to 5, in which case we would have
(1, 2) ∈ Du(1, 1). By Theorem 5.11 and Corollary 5.5, we know that we would be able
to break down the demand change from any p to any p′ in improving D-steps if it were
concave. Thus there is only a question as to whether this is possible for p,p′ such that
(1, 1) ∈ [p,p′]. And we need only consider p,p′ in UDRs and facets that contain (1, 1)
in their closure.

It is easiest to break down the cases to consider by considering possible choices of
x0. Suppose first that (0, 2) ∈ Du(p). Then (3, 1) ∈ Du(p

′) and p1 − p′1 > 0 and
p1 − p′1 ≥ p2 − p′2 ≥ 0. So we may take x1 = (1, 1), x2 = (2, 1), x3 = (3, 1) as the
demand change broken down in improving D-steps. And if x0 = (3, 1) then it is easy
to see that the same steps in reverse will break down the demand change in improving
D-steps. Moreover, by the symmetry of the figure, we may find an analogous way to
break down the demand change if x0 = (2, 0) or (1, 3).

Suppose next that (1, 1) ∈ Du(p). Then (2, 2) ∈ Du(p
′) and p1 − p′1 = p2 − p′2 > 0.

So if (1, 1) = x0 then we may take x1 = (2, 1) and x2 = (2, 2) as the demand change
broken down in improving D-steps. Again, if x1 = (2, 2) then the reverse sequence will
suffice.

Suppose that (0, 3) ∈ Du(p). Then (3, 0) ∈ Du(p
′) and p′1 − p1 ≤ 0, p2 − p′2 ≤ 0 and

both cannot hold with equality. Suppose the latter holds with equality then (0, 2) ∈
Du(p) also. As argued above it follows that (3, 1) ∈ Du(p

′). In this case we break down
the demand change in improving D steps via (1, 3), (2, 2), (3, 1). Similarly, if p′1− p1 = 0
we can break down the demand change in improving D-steps. Finally, if p′1 − p1 < 0
and p′2 − p2 < 0 then (3, 0) ∈ Du(p

′) and we can break down the demand change as
(0, 3), (1, 3), (2, 2), (3, 1), (3, 0), these being improving D-steps.

Example A.2 (Milgrom and Strulovici, 2009, p224.). The valuation
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x1 = 2 x1 = 1 x1 = 0 u
2 1 0 x2 = 0
3 1 1 x2 = 1
4 3 2 x2 = 2

is of demand type D = {±(1, 0),±(0, 1),±(1,−1)} and does satisfy the D-improvement
property, but is not concave.

Proof of Proposition 4.14 1. By definition, x ∈ Du(p) if pT (x− x′) ≤ u(x)− u(x′)
for all x′ ∈ A, with equality iff x′ ∈ Du(p) also. For any invertible matrix G, we may
re-write

pT (x− x′) = pTGG−1(x− x′) = (GTp)T (G−1x−G−1x′).

If G is additionally unimodular, then G−1x and G−1x′ ∈ Zn. We define a new valuation
G∗u on the finite set G−1A ( Zn via G∗u(y) := u(Gy). If we write y = G−1x and
y′ = G−1x′ then (GTp)T (y−y′) ≤ G∗u(y)−G∗u(y′) holds iff pT (x−x′) ≤ u(x)−u(x′).
So we have

x ∈ Du(p) ⇔ y = G−1x ∈ DG∗u(G
Tp),

as required.
2. Since the underlying set of Tu is those p for which #Du(p) > 1 it follows imme-

diately from 1. that TG∗u = {GTp | p ∈ Tu}, as required.
3. Suppose v is normal to a facet F of Tu. It follows from 2. that the facet cor-

responding to F in TG∗u has the form GTF = {GTp | p ∈ F}. We know pTv is
constant for p ∈ F , from which it follows that (GTp)TG−1v = pTGG−1v is constant
for GTp ∈ GTF : we see G−1v is normal to a facet of TG∗u. As G has an integer inverse,
the converse is also true. Trivially, for any unimodular matrix G, the valuation G∗u is
concave iff the valuation u is. �

A.2 Proofs of Results in Section 5

Proof of Proposition 5.3. To show 1⇒2, take any such u, let x ∈ A and let p′ be
such that x /∈ Du(p

′). Since u is concave there exists p such that x ∈ Du(p). We can
break down the demand change from p to p′ in improving D-steps; let x′′ be the first
bundle x1 in this sequence. That x′′ has the desired properties follows exactly as in the
proof that 2⇒4 in Theorem 4.4.

Now show that 2⇒1. Given any u of type D, given p ∈ Rn, given any x ∈ Du(p)
and given any p′ 6= p, either x ∈ Du(p

′), or there exists some maximal λ1 such that
x ∈ Du((1− λ1)p + λ1p

′). Suppose the latter is the case and choose λ′ > λ1 sufficiently
small that all bundles in Du((1−λ1)p+λ1p

′) are preferred to any bundle outside this set,
at price p′′ := (1−λ′)p+λ′p′. If the complete D-improvement property holds then there
exists x1 such that x1−x ∈ D and such that x1 is strictly preferred to x at p′′. But, by
our choice of p′′, we know x1 ∈ Du((1− λ1)p + λ1p

′), and by the fact that x1 is strictly
preferred to x at price p′′, we know the demand change from x to x1 satisfies the strict
law of demand. So x1 is the first improving D-step. If x1 /∈ Du(p

′′) we set λ2 = λ1 and
find x2 strictly preferred to x1 at p′′ as before; by finiteness of the set A we eventually
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find xj ∈ Du(p
′′). Now let λj+1 be maximal such that xj ∈ Du((1 − λj+1)p + λj+1p

′)
and continue as before; by finiteness of A we eventually retrieve xl ∈ Du(p

′). �

Proof of Proposition 5.6. 1. Given p′ and x ∈ G−1A, x /∈ DG∗u(p
′), we know (by

Proposition 4.14.1) that Gx ∈ Du(G
−Tp′). So there exists y′′ such that u(y′′−Tp′.y′′ >

u(Gx)−G−Tp′−1x. and such that y′′−Gx ∈ D. Let x′′−1y′′; then we have u(Gx′′−Tp′−1x′′ >
u(Gx) − G−Tp′−1x, which says precisely that G∗u(x′′) − p′.x′′∗u(x) − p′.x. Moreover,
x′′ − x = G−1(y′′ − Gx) ∈ G−1D. So G∗u satisfies the complete G−1D-improvement
property. It is also concave (see Proposition 4.14.3), and so G−1D-complete, as required.

2 follows from 1 by definition. �

Proof of Theorem 5.11. As noted in Footnote 62, we need only assume that for any
vectors V ⊆ D, there exist linearly independent vectors w1, . . . ,ws ∈ D, whose span
over R coincides with the span over R of V and such that, for any v1, . . . ,vs−1 ∈ V
and any i = 1, . . . , s, the vectors v1, . . . ,vs−1,wi are either linearly dependent or are a
unimodular set. This result is clearly implied by unimodularity of D, as we may take
w1, . . . ,wk to be any maximal linearly independent subset of vectors in D.

Suppose D is as above, and that u is concave and of demand type D. We will show
that u satisfies Condition 1 of Proposition 5.3. Let p 6= p′. Suppose x ∈ Du(p). Let
λ1 := max{λ ∈ [0, 1] | x ∈ Du((1 − λ)p + λp′}. If λ1 = 1 then l = 1 and we are done;
suppose not. Let p1 := (1− λ1)p + λ1p

′ and write c for p′ − p.
We first argue that it is sufficient to find v ∈ D such that x1 := x + v ∈ Du(p

1) and
such that (p′ − p).(x1 − x) = c.v < 0. Such x1 then satisfies the conditions to be the
second improving D-step. We may iterate the procedure; since A is finite, after a finite
number of such steps find xk such that c.xk is minimal for bundles in Du(p

1). Then
xk ∈ Du(p + εc) for small enough ε > 0. Setting now λk+1 := max{λ ∈ [0, 1] | xk ∈
Du((1− λ)p + λp′)} we continue as before; again by finiteness of A, this process must
terminate at price p′ after finitely many steps.

Let ∆ be a minimal SNP face for u such that x ∈ ∆ and ∆ ⊆ ConvDu(p
1) and

such that c.y < c.x for some y ∈ ∆ ∩ Z. Such a face exists since ConvDu(p
1) has the

required properties with the possible exception of minimality. Let w1, . . . ,ws ∈ D be
linearly independent vectors whose span over R coincides with the span over R of the
edges of ∆ and with the property as described at the beginning of this proof; since there
exists y ∈ ∆ such that c.y < c.x it follows that there exists i such that c.wi 6= 0; we
write w for whichever of wi or −wi provides c.w < 0 and show that x + w ∈ Du(p

1).
Let n̄ := dim ∆ and let An̄ be the affine span of ∆. The polytope ∆ is the intersection

of half-spaces H+
q,α and hyperplanes Hq,α where (q, α) ∈ Z. We show that we may choose

the normal vectors q so that q.w = 0 or ±1 in every case.
If q.w = 0 then we have no problem, so assume not. For every (q, α), there are

n̄ − 1 edges of ∆ embedded in Hq,α whose directions are n̄ − 1 linearly independent
vectors in D (since u is of demand type D). Let these directions be v1, . . . ,vn̄−1 ∈ D.
By assumption, w is not in the span of v1, . . . ,vn̄−1. So v1, . . . ,vn̄−1,w is a unimodular
set (by definition of w) and hence we may choose vectors vn̄, . . . ,vn−1 (not necessarily
in D) such that det(v1, . . . ,vn−1,w) = ±1. But also, we may choose the halfspace
H+

q,α defining ∆ so that q is additionally normal to all the vectors vn̄, . . . ,vn−1: recall
it was already normal to the first set of vectors identified, and the second set are by
construction in directions linearly independent to ∆; we are free to choose the behaviour
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of Hq,α beyond the affine span of ∆. However, if the vector q is a primitive integer vector
normal to this set, then it is in the direction their vector product v1 × · · · × vn−1; it is
a theorem of linear algebra that (v1× · · · ×vn−1).w = det(v1, . . . ,vn−1,w). So, we can
in each case choose q so that q.w = ±1.

We now wish to check that x + w ∈ ∆. Since x ∈ ∆ we know that q.x ≥ α and
so, that q.(x + w) ≥ α+ q.w for every defining halfspace H+

q,α or hyperplane Hq,α. For
those q such that q.w = 0 we are done. Since w lies in the span over R of the edges of
∆, those q such that q.w = ±1 must define half-spaces and not hyperplanes. If x ∈ ∆◦

then in every such case q.x > α and hence, since the equations are integral, q.x ≥ α+1;
thus q.(x + w) ≥ α. Our only difficulty arises if x lies in a (strict) face ∆′ of ∆.

Suppose then that x is in such a face ∆′ ( ∆. We show that x ∈ ∆′◦ and that
dim ∆′ = dim ∆− 1 and ∆′ ⊂ Hc,c.x, where we recall that we write c for the change in
price p′ − p under consideration.

First note that, by minimality of ∆, we know c.y ≥ c.x for all y ∈ ∆′. So ∆′ ⊂ H+
c,c.x;

let ∆′′ be the face (which we will see to be the whole of ∆′) of ∆′ given by ∆′ ∩Hc,c.x.
Suppose for a contradiction that dim ∆′′ ≤ dim ∆ − 2. By the standard properties

of polytopes we know that ∆′′ is also a face of ∆, and additionally is a face of the
polytope ∆ := ∆ ∩ H−c,c.x. The latter polyhedron has the same dimension as ∆ since,

by assumption, ∆ is not contained in Hc,c.x. So dim ∆′′ ≤ dim ∆− 2, and so ∆′′ is the
intersection of at least two maximal strict faces of ∆. But at most one of these may be
contained in the hyperplane Hc,c.x; the other must contain y such that c.y 6= c.c and
hence (by definition of ∆) must contain y such that c.y < c.x. But, since x ∈ ∆′′ which
is contained in this face, this contradicts the minimality assumption on ∆.

Thus dim ∆′′ ≥ dim ∆ − 1; since ∆′′ ⊆ ∆′ ( ∆ we conclude that ∆′′ = ∆′, whence
dim ∆′ = dim ∆ − 1 and ∆′ ⊆ Hc,c.x. Finally, if x were in the boundary of ∆′ then x
would be in a lower dimensional face of ∆ than ∆′, which we have shown not to be the
case. So x ∈ ∆′◦.

We may now modify the list of halfspaces describing ∆: replace the half-space defin-
ing the maximal face ∆′ with H+

−c,−c.x. By assumption c.w < 0 and so −c.(x + w) ≥
−c.x. By construction, this was the remaining half-space defining ∆ which required this
check, and so we know that x + w ∈ ∆ ⊆ ConvDu(p

1). Moreover, as both vectors are
integral, x + w ∈ ConvDu(p

1) ∩ Zn, and
since u is concave, it follows that x + w ∈ Du(p

1), as required. �

Example A.3. Consider the unimodular demand type D = {±(1, 0),±(0, 1)} and the
non-concave valuation of this type:

x1 = 2 x1 = 1 x1 = 0 u
2 1 0 x2 = 0
4 2 2 x2 = 1

We show that we cannot break down the demand change from every p to every other
p′ in improving ZD-steps. Consider the price change from (1, 3) to (1, 1) (noting that
(1, 3) is not a UDR price; Du(1, 3) = {(0, 0), (1, 0), (2, 0)}). The bundle (1, 0) is in
Du(1, 3), but Du(1, 1) = {(0, 1), (2, 1)}. We cannot break down the change with this
starting bundle without changing x1. However, the only vectors in ZD which would give
a change in x1 are integer multiples of ±(1, 0). The price change we consider is (0,−2)
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so a change in direction ±(1, 0) would not obey the strict law of demand. Thus, it is
impossible to break down the change in demand from price (1, 3) to (1, 1) in improving
ZD-steps.

Proof of Theorem 5.16. We follow the technique of Veblen and Franklin (1921) to
show that Dnss is unimodular. Note first that any vector v = ei − ej satisfies v.1 = 0,
where 1 = (1, 1, . . . , 1)T . So any set of n vectors that are all of the form ei − ej does
not have 1 in its span, so is not linearly independent and therefore has determinant 0.
It follows that any set of linearly independent vectors in Dnss must include a coordinate
vector ei (or −ei). Now observe that the determinant of any matrix which has this set
of vectors as its columns is non-zero (since the vectors are linearly independent), and
also ±1 times the (n− 1)× (n− 1) matrix formed when we delete row i and the column
in which ±ei was placed. But since this (n− 1)× (n− 1) matrix therefore has non-zero
determinant, its columns are linearly independent, and they are also vectors in Dn−1

ss . So
Dnss satisfies the determinant condition if Dn−1

ss does. But it is trivial that D1
ss satisfies

the condition so, by induction on n, Dnss is unimodular for all n.
We showed in the text that Dnss is maximal. �

Proof of Lemma 5.19. 1. If u is of some demand type D as described, then we
can break down the demand change from any p such that #Du(p) = 1 to p + εek in
improving ZD-steps; that is, in each case, xj+1 − xj = wv for w ∈ Z+ and v ∈ D, and
additionally, at each such step, (xj+1 − xj).ek < 0. It follows that vk < 0 for this v and
so, by assumption, that either −v ∈ Zn≥0 or

∑n
i=1 vi = 0; we conclude that

∑n
i=1 vi ≤ 0.

Thus
∑

i x
j+1
i ≤

∑
i x

j
i , as required. Applying this at each ZD-step provides the ordinary

law of aggregate demand.
Conversely, if u is not of some demand type D as described, then u must have a facet

with normal v not satisfying the description given. Both v and −v are facet normals so
without loss of generality assume that

∑n
i=1 vi > 0 but that there exists k ∈ {1, . . . , n}

such that vk < 0. It follows that ek.v 6= 0 so there exist prices p,p + εek in the UDRs
on either side of this facet; by construction the ordinary law of aggregate demand fails
for these prices.

Finally, if D is unimodular and u is concave then we can break the demand change
from any p to any p + εek in improving D-steps, and so the complete law of aggregate
demand holds.

2. Suppose u is of concave demand type D ⊂ {−1, 0, 1}n. Then, for any p and
any good i, we can move from those points in Du(p) minimal for i to those points
maximal for i along the edge vectors; as u is concave every lattice point on the edges
in also in Du(p), so we can move in steps entirely from D while staying in Du(p); since
D ⊂ {−1, 0, 1}n this illustrates the consecutive integer property.

Suppose that u is not of any demand type D ⊂ {−1, 0, 1}n; it follows that Tu has
a facet with normal v such that ‖vi‖ ≥ 2 for some good i. For any p in the interior of
this facet, the consecutive integer property fails for good i. �
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A.3 Proofs of Results in Section 6.1

Proof of Propositions 6.1 and 6.2. Proposition 6.1 is straightforward. Note that

∑
j∈J

max
xj∈A
{uj(xj)− p.xj} = max

{∑
j∈J

uj(xj)− p.

(∑
j∈J

xj

)
| xj ∈ Aj, j ∈ J

}
,

and on the other hand (since y ∈ A iff y =
∑

j∈J xj,xj ∈ AJ) that

max
y∈A
{U(y)− p.y}

= max

{
max

{∑
j∈J

uj(xj) | xj ∈ Aj,
∑
j∈J

xj = y

}
− p.y | y =

∑
j∈J

xj,xj ∈ Ajj ∈ J

}

= max

{∑
j∈J

uj(xj)− p.

(∑
j∈J

xj

)
| xj ∈ A, j ∈ J

}
,

and that the same arguments xj ∈ A, with y =
∑

j∈J xj, are maximising in either case.
The text showed the underlying sets of TU and T{uj} are the same, so completing the

proof of Proposition 6.2 only requires checking the weightings are the same. So suppose
F is a facet of TU with adjacent UDRs U and U ′; let vF be a primitive integer vector
pointing from U to U ′. Suppose agent j demands xj in U and xj′ in U ′ (for some agent
these will be distinct, but not necessarily for all). Then wj(F )vF = xj′ − xj for all j,
and so ∑

j

wj(F )vF =
∑
j

xj′ −
∑
j

xj.

So wU(F ) =
∑

j wj(F ) = w{uj}(F ), as required. �

Proof of Proposition 6.5. Suppose G−1D always has a competitive equilibrium.
Consider any agent valuations u1, . . . , uk of type D and let x be in the domain of their
aggregate valuation. Then demands G∗u1, . . . , G∗uk have type G−1D and y := G−1x
is in the domain of their aggregate valuation. By assumption competitive equilibrium
exists in the latter case: there exists a price p at which the agent with valuation G∗ui

demands yi and
∑

i y
i = y. But then in each case we may define xi := Gyi ∈ Dui(G

−Tp)
(see Proposition 4.14.1). At price G−Tp the market clears for x :=

∑
i x

i. So D has a
competitive equilibrium. The converse is shown by repeating the argument, using the
unimodular matrix G−T . �

A.4 Proof of results in Section 6.3

This Appendix gives the additional details needed to complete the proof of Theorem
6.8. Proposition A.4 shows that, for “nice” intersections, the condition of unimodularity
is necessary and sufficient for competitive equilibrium to always exist.

The second half of the proof of the sufficiency part of the theorem shows that gener-
ically all TH intersections are “nice”, and that any non-“nice” intersection is therefore
close enough to being a “nice” intersection that Theorem 6.8’s condition still suffices.
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Lemmas A.5, A.8 and A.9 demonstrate that generically all single-point intersections
of the TH are “nice”. The logic is as follows: first (Lemma A.5), we show how to perform
affine translations of agents’ THs, and bound the associated change in valuation. Now
consider an intersection of two cells from distinct agents’ THs. Generically (in the space
of affine translations) there can be no vector normal to both; if there were, a small shift
of one of the agents’ demands in the direction of this vector would mean the cells no
longer intersected at all. We argue thus in Lemma A.8.

In Lemma A.9 we show how to make all intersections ‘nice’, while bounding the
change in any agent’s valuation. Begin by considering an intersection of two cells from
distinct agents’ THs. If necessary, make small shifts as described by Lemma A.8. Now,
for each of the two cells that intersect, we nominate a linearly independent set of vectors
normal to adjacent facets. The fact that there is no vector normal to both the cells means
that the union of these sets remains linearly independent. But the intersection of the two
cells is now a cell of the TH of the aggregate demand of the two agents, and the collection
of vectors we have defined so far are normal to facets in this TH whose intersection is
this new cell. Continuing to add any additional agents’ demands that intersect the cell
generically, we can construct a set of linearly independent vectors, each normal to a
facet of the TH of aggregate demand, such that the intersection of these facets locally
defines the intersection of the cells in question.

After these small perturbations, any bundle is demanded at some price (by Propo-
sition A.4). We complete the proof of Theorem 6.8 by showing that, if a bundle is
demanded following an extremely small perturbation in agents’ valuations, it must have
also been demanded before this perturbation.108 This proves the sufficiency of unimod-
ularity (with concavity) for Theorem 6.8.

Proposition A.4. Suppose price p is in the interior of an (n − ki)-cell Ci of the TH
Tui of each of s agents i = 1, . . . , s, who have concave valuations ui, and together have
aggregate valuation Ũ . Then every integer bundle in ConvDŨ(p) is demanded at p if

108In more detail: consider an integer bundle that is “hidden” in the convex hull of aggregate demand
at a price point in a not-nice intersection. If it is not demanded at this price, agents’ aggregate utility
from this bundle, at this price vector, must be strictly lower than their aggregate utility from any
bundle that is demanded at this price. Since this bundle is a convex combination of other bundles
that are demanded at this price vector, the aggregate valuation from the bundle in question is strictly
lower than the same convex combination of the aggregate valuations of these other bundles. Let this
aggregate valuation difference be ε.

Now consider perturbing all agents’ valuation functions by arbitrarily small amounts, so that their TH
undergoes a small translation in price space. It is straightforward, although somewhat tedious, to show
that generically all the TH intersections are now “nice”. So we can choose these small perturbations so
this holds; additionally, we ensure that no agent’s valuation of any available bundle is affected by more
than ε

3m , in which m is the number of agents present.
If D is concave and unimodular, the bundle in question is (by Proposition A.4) demanded by agents

with the perturbed valuation functions at some price. But the perturbation of the valuation functions
cannot change the aggregate valuation from either this bundle, or the same convex combination of
the aggregate valuation of the other bundles, by more than ε/3. So the aggregate valuation from this
bundle is still below the same convex combination of the aggregate valuation of the other bundles, and
therefore the aggregate utility of this bundle is also still below the same convex combination of the
aggregate utility of the other bundles at any prices (since at any prices, the cost of this bundle equals
this convex combination of the cost of the other bundles). So we have a contradiction, and the lattice
point must have been demanded at the original price point. That is, Theorem 6.8’s condition is also
sufficient for non-“nice” intersections.
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each Ci is a subset of the intersection of a set of facets F i
1, . . . , F

i
ki

of Tui (not necessarily
comprising all facets of Tui that pass through Ci) with primitive integer normal vectors
vi1, . . . ,v

i
ki

and {vij | i = 1, . . . , s; j = 1, . . . , ki} are unimodular.

Proof. All bundles demanded by agent i at p are demanded throughout the (n−ki)-cell
Ci, which corresponds to a ki-dimensional polytope ∆i in the SNP of agent i. Moreover,
∆i possesses an edge in direction vij for j = 1, . . . , ki; each corresponds to the facet F i

j .
Thus, if yi is some integer bundle in Dui(p), then (by a dimension count) the affine span

of ∆i is precisely
{

yi +
∑ki

j=1 β
i
jv

i
j | βij ∈ R for j = 1, . . . , ki

}
, and in particular, Dui(p)

is contained in this set.
Thus, using equation (4) we may express aggregate demand among these agents

as DŨ(p) =
{

y +
∑s

i=1

∑ki
j=1 a

i
jv

i
j | yi +

∑ki
j=1 a

i
jv

i
j ∈ Dui(p) for i = 1, . . . , s

}
, where

y :=
∑s

i=1 yi.
Now, suppose x is an integer bundle in ConvDŨ(p). Then x − y is in the span

of the vij. But since they are an integer basis for their span, we can write x − y =∑s
i=1

∑ki
j=1 b

i
jv

i
j, for some bij ∈ Z. So we can define xi := yi +

∑ki
j=1 b

i
jv

i
j, and know that

xi ∈ Zn.
But we also know xi ∈ ConvDui(p). To see this, observe that since x ∈ ConvDŨ(p),

we can write x − y =
∑

β

∑s
i=1

∑ki
j=1 λβa

i
j,βv

i
j for some finite set of weights λβ ∈ [0, 1]

such that
∑

β λβ = 1 and such that yi +
∑ki

j=1 a
i
j,βv

i
j ∈ Dui(p) for each agent i and

for each β. But since the vij are linearly independent, there is an unique way to write

x − y as a weighted sum of the vij, so bij =
∑

β λβa
i
j,β , and so xi = yi +

∑ki
j=1 b

i
jv

i
j =

yi +
∑ki

j=1

∑
β λβa

i
j,βv

i
j ∈ ConvDui(p).

So xi is an integer vector in ConvDui(p). By concavity of ui there exists some
price at which xi is demanded by agent i (Lemma 2.5), and so by Lemma 2.6 we know
xi ∈ Dui(p). Thus x =

∑s
i=1 xi ∈ DŨ(p). That is, x is demanded at p, as required. �

We introduce the affine perturbations discussed above.

Lemma A.5. Suppose an agent has valuation function u : A → R. For any w ∈ Rn,
we may define a valuation function uw : A→ R such that, for all p ∈ Rn, we have

1. Duw(p) = Du(p + w);

2. Tuw = {p−w | p ∈ Tu};

3. ‖uw(x)− u(x)‖ ≤ R‖w‖, where R satisfies ‖x‖ < R for all x ∈ A.

Proof. Let uw(x) = u(x)− x.w. Then

Duw(p) = arg max
x∈A

{u(x)− x.w − x.p} = arg max
x∈A

{u(x)− x.(p + w)} = Du(p + w).

The remainder of the lemma follows by definition of Tu, and the Cauchy-Schwarz in-
equality. �

To prove that the hypotheses of Proposition A.4 are satisfied after such perturbations,
is convenient to use “annihilator spaces”. For a linear or affine subspace of Rn, these
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give the linear subspace of all orthogonal vectors. We recall their definition and basic
properties.

Definition A.6 (See e.g. Spence et al., 2000). If C ⊆ Rn is an affine subspace, define

C◦ := {v ∈ Rn | v.(c− c′) = 0, ∀c, c′ ∈ C}.109

Note that if D = C + w for some w ∈ Rn then D◦ = C◦.
We use annihilator spaces for the following results.

Lemma A.7 (See e.g. Spence et al., 2000). Suppose that C1, C2 ⊆ Rn are affine sub-
spaces.

1. If C1 ⊆ C2 then C◦2 ⊆ C◦1

2. If C1 ∩ C2 6= ∅ then additionally (C1 ∩ C2)◦ = C◦1 + C◦2 .

3. dimC1 + dim(C1)◦ = n

Proof. Part 1 is clear. Part 2 follows from the standard result when C1 and C2 are
linear subspaces (see, e.g. Spence et al. 2000): if −w ∈ C1∩C2 then C1 + w and C2 + w
are linear subspaces, and so ((C1 + w) ∩ (C2 + w))◦ = (C1 + w)◦ + (C2 + w)◦. But
(C1 + w) ∩ (C2 + w) = (C1 ∩C2) + w so the result follows from the note above. Part 3
similarly follows immediately from the linear case. �

Now we show that any two THs may be perturbed so that the intersection of their
cells is ‘generic’ (as given in the statement of the following lemma):

Lemma A.8. Suppose we have agents 1 and 2 with valuation functions u1 and u2 (not
necessarily concave). For any ε > 0 we may find a vector w such that, if we perturb
agent 2’s demand by w to obtain u2

w, then ‖u2
w(x)− u2(x)‖ < ε for all x ∈ A, and any

cells C1 of Tu1 and Cw
2 of Tu2w satisfy C1 ∩ Cw

2 6= ∅ ⇒ C◦1 ∩ (Cw
2 )◦ = {0}.

Proof. Suppose that C1 in Tu1 and C2 in Tu2 satisfy C1 ∩ C2 6= ∅ and C◦1 ∩ C◦2 6= {0}.
Choose w1 ∈ C◦1∩C◦2 with w1 6= 0. Then, for all η > 0, we show that (C2+ηw1)∩C1 = ∅.
For, given any c2 ∈ C2, if c1 ∈ C1 ∩ C2 then w1.(c1 − (c2 + ηw1)) = η‖w1‖2 6= 0 (since
c1, c2 ∈ C2) and so, since w1 ∈ C◦1 , it follows that c2 + ηw1 /∈ C1.

On the other hand, recall that the cells of THs are closed objects. It follows that a
sufficiently small perturbation of one of the THs will not introduce any new intersections
between cells. So there exists η1 > 0 such that if η < η1 then no new intersections
arise.110

Since THs consist of a finite number of affine cells, we may suppose that there are
in total d intersections of cells in Tu1 and Tu2 whose annihilator spaces have non-zero
intersection. We find wj and ηj as above for each in turn, and apply them all.111 Thus,

109If D ≤ Rn is a linear subspace then this definition clearly coincides with the usual D◦ := {v ∈
Rn | v.d = 0 ∀d ∈ D}.
110To be precise: if Cw

2a in Tu2
w

satisfies Cw
2a ∩ C1a 6= ∅ for any cell C1a in Tu1 then the corresponding

C2a in Tu2 satisfies C2a ∩ C1a 6= ∅.
111Strictly speaking, each ηj should be found when we compare the cells after Tu2 has undergone the

translations corresponding to intersections 1, . . . , j − 1.
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perturbing Agent 2 by w = ηv, where v =
∑d

j=1 ηj‖wj‖ and η ∈ (0, 1], gives us the
intersection properties required. To ensure that the perturbation to the agent’s valuation
is sufficiently small, we choose η < ε

R‖v‖ where R satisfies ‖x‖ < R for all x ∈ A. By

Lemma A.5.3, this implies that ‖u2
w(x)− u2(x)‖ < ε for all x ∈ A, as required. �

We may now take a set of m agents, and shift each agent’s demand so that its
valuation for any bundle is changed by at most ε, and nearly all the conditions of
Proposition A.4 are met at every intersection of the THs. The only condition we do not
insist on is that the set of primitive integer facet normals are unimodular; whether or
not this could possibly hold will depend on the demand types of the agents in question.
What we prove is that these vectors are linearly independent.

Lemma A.9. Suppose we have m agents, with valuations ui for i = 1, . . . ,m. For every
ε > 0 we may perturb each agent’s valuation by a vector wi such that ‖ui(x)−uiwi(x)‖ < ε
for all x in R, and such that, whenever a price point p is in the interior of (n − kij)-
cell Cij of the TH Tuij for agents i1, . . . , is, then each Cij is locally to p, given by the

intersection of a set of facets F
ij
1 , . . . , F

ij
kij

of Tuij (not necessarily comprising all facets

of Tuij that pass through Cij) with primitive integer normal vectors v
ij
1 , . . .v

ij
kij

, such that

the full set {vijl | j = 1, . . . , s; l = 1, . . . , kij} is linearly independent.

Proof. We make a series of perturbations of agents’ individual demands, as in Lemmas
A.5 and A.8. First, we allow Agent 1 to remain unperturbed. For i = 2, . . . ,m we
compare:

1. the TH of aggregate demand of agents 1, . . . , i− 1;

2. the TH of agent i.

In each case, we apply Lemma A.8 to find wi with ‖ui(x) − uiwi(x)‖ < ε, and such
that, after the perturbation, C◦i ∩ C◦ = {0} whenever Ci ∩ C 6= ∅, where Ci is any cell
in Tui and C is any cell in the TH of aggregate demand of agents 1, . . . , i− 1.

Write U ′ for the new aggregate demand, after all agents have been perturbed. Now
we need to see that the hypotheses of Proposition A.4 are satisfied at every intersection
of individual perturbed THs that make up TU ′ . Consider a price point p, which lies in
the interior of (n− kij)-cells Ci1 , . . . , Cis of the THs of individual demand from distinct
agents i1, . . . , is respectively, where we index so that i1 < · · · < is. From Lemma A.7.3
we know that dimC◦ij is kij .

Let C :=
⋂s
j=1 Cij . By Lemma A.7.2, we know that C◦ =

(⋂s−1
j=1 Cij

)◦
+C◦is . On the

other hand, p ∈
⋂s−1
j=1 Cij , and so there is a cell C ′ of the tropical variety of aggregate

demand of agents 1, . . . , is− 1, with p ∈ C ′. Since demand is constant in the interior of
a cell, it follows that C ′ ⊆ Cij for j = 1, . . . , is−1 and so C ′ ⊆

⋂s−1
j=1 Cij . We know that

p ∈ Cis ∩C ′ and so, by the construction of the perturbations, we know C ′◦ ∩C◦is = {0}.
As C ′ ⊆

⋂s−1
j=1 Cij , it follows by Lemma A.7.1 that

(⋂s−1
j=1 Cij

)◦
⊆ C ′◦, so we may

conclude that
(⋂s−1

j=1 Cij

)◦
∩ C◦is = {0}. Thus

C◦ =

(
s−1⋂
j=1

Cij

)◦
⊕ C◦is .
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Proceeding inductively
C◦ = C◦i1 ⊕ · · · ⊕ C

◦
is .

We conclude in particular: if v
ij
1 , . . . ,v

ij
kij

are a basis for C◦ij then {vijl | l = 1, . . . , kij ; j =

1, . . . , s} is a set of linearly independent vectors.

But if Cij =
⋂
l F

ij
l where F

ij
l are all the facets of this agent’s TH of demand which

contain Cij in their boundary, then applying Lemma A.7.2 again, C◦ij is the sum of the

spaces (F
ij
l )◦. Each (F

ij
l )◦ is spanned by a single vector v

ij
l , which we may choose to

be a primitive integer vector. We may select a maximal linearly independent subset of

these vectors, and re-index so these are {vijl | l = 1, . . . , kij}. Then C◦ij =
⊕kij

l=1(F
ij
l )◦.

We already know that Cij ⊆
⋂kij
l=1 F

ij
l so it follows (by Lemma A.7.2) that the affine

spans of Cij and
⋂kij
l=1 F

ij
l coincide. It follows that Cij is given, locally around p, by the

intersection of the facets F
ij
1 , . . . , F

ij
kij

; these facets were chosen above such that their

normal vectors are linearly independent. �

We now have the technical results we need to prove Theorem 6.8.

Proof of Theorem 6.8 Proposition 6.10 covers the case in which condition of the
theorem is not satisfied. So suppose that the condition is satisfied. Suppose we have m
agents and for j = 1, . . . ,m their valuation is uj : Aj → R; write U : A → R for the
aggregate valuation (as in Section 6.1). We have the tropical variety TU of aggregate
demand, and the corresponding SNP.

This SNP provides a subdivision of Conv(A). Our bundle x may lie at a vertex of the
subdivision, in which case there exists a price vector at which it is uniquely demanded.
If not, it lies in some k-face of the SNP for some k 6= 0. Let ∆x be one such k-face.
Let px ∈ Rn be a price in the corresponding (n− k)-cell Cx of aggregate demand. The
set {yβ | β ∈ B} of vertices of ∆x are the bundles which are uniquely demanded in an
open (n-dimensional) region of Rn with Cx in its boundary. By assumption there exist
λβ ∈ [0, 1] with

∑
β λβ = 1 such that x =

∑
β λβy

β.
Suppose that x is not demanded on aggregate at any price. Then, as in the proof of

Lemma 2.6, it must follows that U(x) <
∑

β λβU(yβ).
Pick ε so that

U(x) <
∑
β

λβU(yβ)− ε.

Now apply Lemma A.9, perturbing agents j = 2, . . . ,m so that their valuation
function is altered by no more than ε

3m
, where we recall that m is the number of agents

present. It follows, by assumption regarding the demand type D, that the conditions of
Proposition A.4 are satisfied at any intersection of agents’ demands. Let U ′ be the new
aggregate demand.

Now x lies in some k-face of the SNP of this new aggregate demand U ′, which
corresponds to some (n−k)-cell of TU ′ . Let price p′ ∈ Rn be in this cell. By Proposition
A.4, it follows that x ∈ DU ′(p

′).
However, x ∈ DU ′(p

′) means that x is weakly preferred on aggregate to any other
bundle – including all those in our original vertex set {yβ}. So, for each β ∈ B, we have

U ′(x)− x.p′ ≥ U ′(yβ)− yβ.p′. (6)
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But U ′(x) =
∑m

j=1(uj)′(xj), where xj ∈ Aj is the bundle accorded to agent j under this

optimal allocation (in particular
∑

j xj = x) and (uj)′ is the agent’s perturbed valuation
function. So

‖U ′(x)− U(x)‖ = ‖
m∑
j=1

[(uj)′(xj)− uj(xj)]‖ ≤
m∑
j=1

‖(uj)′(xj)− uj(xj)‖ ≤ m · ε

3m
=
ε

3

and hence U(x) + ε
3
≥ U ′(x). Similarly, for all β ∈ B, we have ‖U ′(yβ) − U(yβ)‖ ≤ ε

3

and so U ′(yβ) ≥ U(yβ)− ε
3
. Putting these facts together in line (6) we find:

U(x)− x.p′ ≥ U(yβ)− yβ.p′ − 2ε

3
.

Since this holds for all vertices yβ of our original k-face ∆x of the SNP, it follows that
we may take a weighted sum, using the same weights as originally identified:

U(x)− x.p′ ≥
∑
β

λβU(yβ)−
∑
β

λβy
β.p′ − 2ε

3
=⇒ U(x) ≥

∑
β

λβU(yβ)− 2ε

3
.

But we originally chose ε to satisfy U(x) <
∑

β λβU(yβ) − ε. This contradiction com-
pletes the proof. �
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