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1 Introduction

The production of goods and services in the value-added chains pervasive in modern economies

results from trading relationships among firms. For instance, manufacturing an airplane requires

thousands of specialized inputs, from carbon fiber reinforced thermoplastics (CFRPs) to advanced

electronics. The planes, in turn, are used by airlines, which must link them with many inputs,

like ticket reservation servers or onboard food and drinks, to deliver air travel services.

Forming these trading relationships requires search effort by firms. An airplane manufacturer

must find a CFRP producer and a CFRP producer must find a buyer for its products. This

search effort goes well beyond locating partners. We have in mind, among others, the effort by

buyers in analyzing vendors (e.g., assessing the quality of CFRPs delivered by a new supplier and

checking their suitability for proprietary production processes) and in completing contractual

arrangements, certifications, and regulatory compliance procedures. For the suppliers, we have

in mind the effort related to advertising and branding, participating in trade fairs, tendering

offers, adapting production processes to buyer requirements, and setting up supply procedures to

process and track orders. The ample space dedicated to these topics in operations management

textbooks (e.g., Heizer et al., 2016, or Stevenson, 2018) proves how seriously practitioners take

the building of trading relationships. Are practitioners right? What do the data say about

the role of search effort in forming trading relationships? And what are the implications for

aggregate fluctuations?

To answer these questions, we use the Occupational Employment Survey, the American

Productivity and Quality Center and the FactSet Supply Chain Relationships databases, the

BEA input-output tables, and the Center for Research in Security Prices and the Compustat

Fundamentals Annual data. By being the first to combine these micro datasets –together with

aggregate data– to study the link between search effort and trading relationships, we uncover

five novel empirical facts.

Fact 1 is that a higher search effort by a firm forecasts a firm creating more trading

relationships. Fact 2 is the positive correlation between a firm’s trading relationships and its

market value and sales. While our research design does not ascertain the causality behind these

correlations, an intuitive interpretation of Facts 1 and 2 is that firms that exert greater search

effort build more trading relationships and command greater market value and higher sales.
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This interpretation is suggestive because these correlations persist even when we employ lagged

values of our regressors as well as time and firm fixed effects.

Fact 3 is that the correlation between the increase in the search effort of a firm and the

increase in trading relationships is stronger when the search effort in the industries connected

with the firm is also higher. Fact 4 is the significant positive correlation in the increase of search

efforts of interconnected industries. There are two natural interpretations of Facts 3 and 4. One

interpretation is that firms’ behavior is correlated because they are hit by aggregate shocks.

But this interpretation is hard to reconcile with the observation that Facts 3 and 4 still appear,

even when we purge, with a two-stage estimator, the search efforts of prospective suppliers from

changes in the search efforts and economic conditions in the firm’s industry. The second, more

robust interpretation is that there are search complementarities in the data. That is, when

a firm searches with more intensity for a partner, it is more profitable for potential partners

to search with higher intensity (and conversely, when a firm searches with less intensity for a

partner, it is best for potential partners to also search with lower intensity).

Finally, Fact 5 is that the micro correlations in Facts 1-4 are also present in the aggregate:

output and intermediate inputs comove positively. Fluctuations in intermediate inputs account

for 71% of the movements in gross industry output, and this contribution increases during

recessions.

To account for these five facts and study their implications for aggregate fluctuations, we

build a dynamic general equilibrium model, which we discipline with our new firm-level evidence

on search effort. This model casts new light on some classic macroeconomic questions like the

shape of aggregate fluctuations or the effects of fiscal policy. In the model, firms that produce

intermediate and final goods must build long-lasting trading relationships to produce a final good

by exerting costly effort. Motivated by Facts 3 and 4, we assume that the matching function

among firms is supermodular even if it has (small) decreasing-returns-to-scale. Under mild

conditions (compatible with our empirical evidence), supermodularity overcomes the congestion

effects of many conventional search environments and generates search complementarities.

In terms of exogenous movements in fundamentals, households are subject to discount factor

shocks, while firms experience productivity shocks. Since households own the firms in the

economy, the discount factor shocks also affect how firms discount the future. Thus, the return

from establishing a trading relationship between firms depends on fundamentals and on the

3



search effort of potential trading partners.

The interaction between fundamentals and search effort defines three regions of state variable

values: a region where there is a unique passive stage equilibrium (where firms search for partners

in the current period with zero effort), a region where there is a unique active stage equilibrium

(where firms search for partners in the current period with positive effort), and a region where

both stage equilibria exist. In this case, we will assume that the economy stays in the same

stage equilibrium as in the previous period: if yesterday firms did not search, today firms still

do not search; if yesterday firms searched with positive effort, today firms still search. History

dependence is a transparent equilibria selection device and a strong predictor of empirical

behavior in coordination games similar to ours (see the classic findings in Van Huyck et al.,

1990, 1991). Loosely speaking, search complementarities provide a microfoundation for what

would appear, at first sight, to be increasing returns to matching à la Diamond (1982).

We close the model with a labor market where firms post job vacancies and fill them with

workers from households in an off-the-shelf Diamond-Mortensen-Pissarides (DMP) frictional

labor market. The DMP block gives us a framework to analyze unemployment and vacancies

but, for simplicity, does not present search complementarities.

Quantitatively, our model has three key elements: the degree of search complementarity in

the matching function, the coefficients of the search cost function, and the stochastic properties

of the discount factor shock. We tightly discipline all three of them by calibrating our model

to U.S. micro and macro observations. The degree of search complementarity in the matching

function replicates the degree of search complementarities in Fact 3. Our parameterization of the

search costs function is based on surveys of search effort from the American Productivity and

Quality Center administered to 4,000 firms. The discount factor shock, following Hall (2017),

matches the stochastic properties of the expected returns of the stock market index.

Given this calibration, our model matches key properties of the U.S. aggregate variables,

including the autocorrelations and skewness of their distributions, endogenous movements in

labor productivity, and a more realistic volatility of unemployment than standard business cycle

models. Since firms post more vacancies in the active stage equilibrium, output is higher and

unemployment is lower than in the passive stage equilibrium. Thus, aggregate shocks can induce

large aggregate fluctuations by switching the economy between stage equilibria. If the model

starts from the active stage equilibrium deterministic steady state, an adverse shock to the
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discount factor of 15.5% that makes households more impatient moves the system to the passive

stage equilibrium, reducing output by roughly 16%. The drop in output is in the ballpark of the

one observed for the U.S. in the financial crisis of 2008 measured as a deviation with respect to

trend (between 2007.Q4 and 2014.Q4, output per capita fell 12.4% in the U.S. with respect to

its post-war trend). Given our calibration, this is a low probability but not a rare event. Smaller

shocks fail to move the economy away from the original stage equilibrium, and the subsequent

dynamics are similar to those of conventional business cycle models. Also, we show how shocks

to the discount factor –proxied by a broad range of indexes– are correlated with unemployment,

the creation of trading relationships, and the volume of intermediate inputs and output.1

Interestingly, our model links nonlinearly the volatility of exogenous shocks with aggregate

outcomes in two distinctive ways that are not present in other business cycle models. Since these

two sharp and distinctive predictions of our model are also present in the data, they provide

strong supportive evidence for our mechanism.

First, when the volatility of shocks is high, the distribution of output is bimodal, as the model

switches between low and high search effort with high probability. Thus, we present a mechanism

that accounts for the influential results by Adrian et al. (2019), who have documented how the

empirical distribution of output has, indeed, switched between periods of uni- and bimodality.

Second, when the volatility of shocks is low, output is very persistant, as the economy rarely

switches between low and high search effort. Hence, search complementarities can transform

transitory negative shocks into protracted slumps. This is a key implication because, since

the Great Moderation started in 1984, recessions have been more infrequent but also more

persistent, particularly for unemployment (Liu et al., 2019). In comparison with standard

business cycle models (which require an exogenous variation in the persistence of shocks or

some form of hysteresis), our economy endogenously delivers this fact, allowing us to reconceive

the aftermath of the financial crisis of 2008. According to our model, output remained below

trend, and employment-to-population ratios were depressed for a decade because the economy

in 2008 moved to a stage equilibrium with less search and did not abandon it even after the

original adverse shocks evaporated. The long-lasting weak recovery from the financial crisis is a

1All our results come without adding expectational shocks as in Kaplan and Menzio (2016). We do not include
them to focus more sharply on the interaction between shocks to fundamentals and search complementarities.
For the same reason, we postpone for future research the study of non-Markov strategies by firms, alternative
stage equilibrium selection devices, and limit cycles such as those in Beaudry et al. (2016, 2018, 2020).
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displeasing consequence of the Great Moderation, not a refutation of it as often claimed.

Given the empirical success of our model, we can also use it to study fiscal policy. In our

example above, a CFRP producer can supply an airplane manufacturer or provide materials

for the construction of a new, seismic-resistant public school in California. If the government

raises its expenses (modeled as more government-owned firms such as a new public school), the

search incentives for private firms increase, and the economy can switch from a passive stage

equilibrium to an active one. In this case, the fiscal multipliers can be as high as 1.59. On

the other hand, if search effort is already high (or the fiscal expansion too small in a passive

stage equilibrium), the fiscal multiplier will be as low as 0.25. Thus, our model provides an

explanation for the strong state dependence of fiscal multipliers in the data documented by

Auerbach and Gorodnichenko (2012), Owyang et al. (2013), and Ghassibe and Zanetti (2020).

Search complementarities are an instance of the strategic complementarities defined by Bulow

et al. (1985). There is a long tradition in economics of linking strategic complementarities to

aggregate fluctuations, going back to Diamond (1982), Weitzman (1982), Howitt (1985), and

Diamond and Fudenberg (1989) and explored by Cooper and John (1988), Chatterjee et al.

(1993), and Kaplan and Menzio (2016). Recent papers with strategic complementarities, but

with mechanisms different from ours, include Schaal and Taschereau-Dumouchel (2018) (with

complementarities in production capacity), Sterk (2016) (with complementarities created by the

lost skills of unemployed workers), and Eeckhout and Lindenlaub (2018) (with complementarities

between on-the-job search and vacancy posting by firms).

How does our paper add to this tradition? First, we address the lack of empirical firm-

level evidence that has long afflicted the literature on strategic complementarities. Using new

datasets, we document five novel facts about the search efforts of firms and the forming of

trading relationships that strongly suggest the existence of strategic complementarities. Second,

we study a dynamic equilibrium model of strategic complementarities tightly disciplined by

observed data. Furthermore, this model matches key aspects of the macro and micro data,

including the time-varying bimodal distribution of output, that have remained unaccounted for.

Third, we show how the nonlinear effects of changes to the volatility of shocks on our economy

can help us think differently about the Great Moderation. Finally, we provide a novel account

of the state-dependent effects of fiscal policy.
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2 Five facts about search effort and trading relationships

We document five new facts about the search effort of firms and trading relationships. The first

four facts use microdata, while the last fact relies on aggregate data. Fact 1 is that more search

effort by a firm (as measured by two proxies we build) forecasts a firm creating more trading

relationships. Fact 2 is that more trading relationships are correlated with higher sales and

market value. Facts 1 and 2, together, indicate that firms that increase their search effort are

also firms that increase their sales and market value. Fact 3 is that the correlation between the

increase in the search effort of a firm and the increase in trading relationships is stronger when

the search effort in the industries with which the firm is connected is also higher. Fact 4 shows

a significant positive correlation in the increase of search efforts of connected industries. Facts 3

and 4 can be accounted for parsimoniously by search complementarities among firms. Thus,

Facts 3 and 4 motivate our theoretical model in Section 3 and provide empirical moments to

discipline our calibration in Section 5. Fact 5 reports that the micro correlations in Facts 1-4

also hold in the aggregate: output and intermediate inputs co-move positively in the BEA data.

Fact 1: Search effort forecasts trading relationships

We construct two proxies for search efforts using alternative firm-level datasets. With these

proxies, we show that searching activities absorb a substantial amount of firms’ resources and

changes in search efforts forecast an increase in the number of trading relationships.

Search effort proxy 1: We derive our first proxy for search efforts from the Occupational

Employment Survey (OES) database constructed by the BLS, which reports yearly employment

and wages at the 3-digit-NAICS industry level, including detailed occupation levels between

2003 and 2020. The database covers 1.1 million establishments and comprises 57% of jobs in

the U.S. The BLS collects the employment and wage information from establishments in six

semiannual panels in three consecutive years. Every six months, a new panel of data is added,

and the oldest panel is dropped. For instance, if a firm is surveyed and added to the database in

year t, the information on the firm’s employment and wages will remain in the database until

the firm is replaced with another firm in year t+ 3. This updating method results in repeated

cross-sectional data every three years.

Following Michaillat and Saez (2015), we approximate a firm k’s search effort in matching
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with suppliers by the number of workers whose occupation is ordering, buying, purchasing, and

procurement. Analogously, we approximate a firm k’s effort in matching with customers by

the number of workers whose occupation is advertising, marketing, sales, demonstration, and

promotion. On average, firms allocate 1.4% and 1.9% of employment to these two types of

search efforts, respectively.2

We start by measuring the employment involved in “buying” in industry i in period t by empbuyi,t

and employment involved in “selling” by empselli,t (we do not have information on these variables

at the firm’s level, only at the industry level). Then, we define ∆σbuyi,t =
ln(empbuyi,t )−ln(emp

buy
i,t−3)

3

and ∆σselli,t =
ln(empselli,t )−ln(empselli,t−3)

3
as our measures of search efforts for buying and selling firms

in each industry i, respectively.3

At the firm level, the change in employment in search activities is equal to the change at the

industry level plus a firm-specific idiosyncratic component:

∆σbuyi,k,t = ∆σbuyi,t +∆σ̂buyi,k,t, (1)

and

∆σselli,k,t = ∆σselli,t +∆σ̂selli,k,t. (2)

Since search efforts are measured at the industry level, and the changes in efforts at the firm level

(∆σ̂buyi,k,t and ∆σ̂buyi,k,t) are unobserved, we assume that firm-level changes in efforts are orthogonal

to the observed industry-level changes, i.e.,
(
∆σ̂buyi,k,t,∆σ̂

sell
i,k,t

)
⊥
(
∆σbuyi,t ,∆σ

sell
i,t

)
.

Search effort proxy 2: We derive a second proxy for search efforts using the American

Productivity and Quality Center (APQC) database for 2018-2021. APQC surveys over 4,000

firms about their practice in sales, marketing, contracting, and procurement, and publicly

discloses the most recent cross-section moments. The median spending on searching for suppliers

at the firm level is about 1.4% of total revenue (coincidently, in the OES 1.4% of employment is

involved in searching for suppliers). The median spending on searching for customers is about

7.5% of total revenue, which is higher than the measurement from the OES data derived from

employment within the industry (1.9%). This result is unsurprising as many efforts in marketing

and sales are outsourced to industries such as publishing and broadcasting.

2We exclude the retail and wholesale industries, since their trading relationships might not reflect the inter-firm
cooperation in production that we aim to study.

3We use third log differences due to the BLS’s data-updating method. First log differences underestimate the
change in employment, as 2/3 of the firms do not update their information in two consecutive years.
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Figure 1 shows the breakdown of spending on search activities for firms that expand lines of

customers and suppliers (the non-personnel cost to carry out the procurement process includes

systems cost, overhead cost, outsourced cost, and others). The advantage of the APQC dataset

is the detailed measurements for a wide range of search costs, which we will use to calibrate

the cost function in the theoretical model. The drawback of the APQC dataset is the lack of

time dimension given the recent collection of data. Thus, while our proxy based on the APQC

database provides a detailed cross-sectional measure of efforts in different categories, we will

use our first proxy based on the OES database to study the changes in search efforts over time.

Appendix A documents that our results below are robust to measuring search efforts using

advertisement expenses as proposed by Hall (2014).

 

40%

59%

1%

Budget for marketing

Budget for sales

Total cost to perform the process "manage sales orders"

16%

4%
4%
2%

13%

5%

56%

Non-personel cost to perform the procurement process
Cost to perform the contracts management function
Personnel cost to manage suppliers
Personnel cost to develop sourcing strategies
Personnel cost to order materials and services
Personnel cost to select suppliers and develop/maintain contracts
Cost to plan for and align supply chain resources

Figure 1: Spending on searching for suppliers and customers

Trading relationships: We obtain the number of trading relationships using FactSet Supply

Chain Relationships data. FactSet collects firms’ relationship information from public sources

such as SEC 10-K annual filings, investor presentations, and press releases since 2003. Using the

sample period 2003-2021, we obtain 289,239 distinct customer-supplier trading relationships.

Most of the trading relationships are continuative, with only 15,522 (5%) of them experiencing

a reinstatement from previously dissolved relationships.
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The observed average duration of relationships is 3.5 years (Figure 2 plots the histogram for

the duration of customer-supplier trading relationships). But since our sample ends in 2021, with

many relationship still ongoing, 3.5 years is a downward-biased estimate of the true persistence

of relationships. The number of supplier firms that sell intermediate goods to the customer firm

k that operates in industry i, in year t is nsupi,k,t, while n
cus
i,k,t is the number of customer firms that

purchase intermediate goods from the supplier firm k that operates in industry i in year t.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10 104

Figure 2: Histogram of duration (year) of trading relationships

Estimation: We now show that changes in our proxies for search efforts predict growth in

the number of trading relationships. Since our proxies for search efforts are on firms operating

in the U.S., we focus on the subset of U.S. firms within FactSet.

In particular, we estimate:

∆nsupi,k,t = β∆σbuyi,k,t−p + χt + γi,k + ϵi,k,t, (3)

where ∆nsupi,k,t is the first difference in the number of supplier firms, ∆σbuyi,k,t−p is the change in

buying effort at the firm level with p-years’ lag, χt and γi,k are year and firm fixed effects, and

ϵi,k,t is the component of ∆nsupi,k,t orthogonal to changes in search efforts and fixed effects plus

any measurement error. Using equation (1) to substitute out ∆σbuyi,k,t−p in equation (3) yields:

∆nsupi,k,t = β∆σbuyi,t−p + χt + γi,k + ηi,k,t, with ηi,k,t = β∆σ̂buyi,k,t−p + ϵi,k,t. (4)

Columns (1) and (2) in Table 1 show the estimation results for equation (4) for 0 and 1−year

lags. The coefficient β for ∆σbuyi,k,t−p is positive and statistically significant for both lags (the

estimated coefficient remains significant for lags up to p = 7). Thus, stronger search efforts

predict faster matching with suppliers in the subsequent years. This persistent effect is consistent
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Table 1: Search effort forecasts the number of relationships

(1) (2) (3) (4)
Dependent variable Change of suppliers (∆nsupi,k,t) Change of customers (∆ncusi,k,t)

Year lag (p) 0 1 0 1

∆σbuyi,t−p 0.95∗∗∗ 1.07∗∗∗

(0.17) (0.17)
∆σselli,t−p 0.55∗∗ 0.83∗∗∗

(0.26) (0.29)
Time FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
R2 0.26 0.23 0.13 0.12
Observations 24,346 24,844 26,610 26,925

Note: Yearly data 2003-2020. The dependent variables are the change in the number of suppliers (∆nsupi,k,t) and
customers (∆ncusi,k,t) matched by each firm for Columns (1)-(2) and (3)-(4), respectively. Standard errors are in
parentheses. ** and *** denote significance at the 5% and 1% level, respectively.

with the time-consuming formation of trading relationships.

Similarly, to check whether more intensive search efforts for selling forecast acquiring more

customers, we estimate:

∆ncusi,k,t = β∆σselli,k,t−p + χt + γi,k + ϵi,k,t, (5)

where ∆ncusi,k,t is the first difference in the number of customer firms and ∆σselli,k,t−p is the change

in selling effort at the firm level with p-years’ lag. As before, we use equation (2) to substitute

out ∆σselli,k,t−p in equation (5), which yields:

∆ncusi,k,t = β∆σselli,t−p + χt + γi,k + ηi,k,t, with ηi,k,t = β∆σ̂selli,k,t−p + ϵi,k,t. (6)

Columns (3) and (4) in Table 1 show the results for 0 and 1-year lags. As before, the coefficient

β for ∆σselli,k,t−1 is positive and statistically significant.

Fact 2: Trading relationships correlate with firm value and sales

Table 2 provides evidence for the positive correlation between trading relationships and a

firm’s economic fundamentals by regressing market value and sales over the number of trading

relationships. The dependent variables are the market value and sales, obtained from the Center

for Research in Security Prices (CRSP) and Compustat Fundamentals Annual data, respectively,

and the regressions ln
(
nsupi,k,t

)
and ln

(
ncusi,k,t

)
are the log of the number of suppliers and customers

constructed with FactSet data.
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Columns (1) and (2) document that a 1% increase in the number of suppliers is associated

with a 0.09% and 0.1% rise in market value and sales, respectively. Columns (3) and (4) in

Table 2 show that a 1% increase in the number of customers is associated with a 0.1% and 0.07%

rise in market value and sales, respectively.

Table 2: Match creation forecasts firm growth

(1) (2) (3) (4)
Dependent variable Market value Sales Market value Sales
ln
(
nsupi,k,t

)
0.09∗∗∗ 0.10∗∗∗

(0.01) (0.01)
ln
(
ncusi,k,t

)
0.10∗∗∗ 0.07∗∗∗

(0.01) (0.01)
Time FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
R2 0.96 0.92 0.96 0.92
Observations 22,269 22,198 23,504 23,469

Note: Yearly data 2003-2020. Standard errors are in parentheses. *** denotes significance at the 1% level.

Fact 3: Search efforts in a firm and the connected industries are

complements

Is the correlation between the search effort of a firm and the increase in trading relationships

stronger when potential trading partners in connected industries search more actively? To

answer this question, we identify each industry’s supplier and customer industries using the BEA

input-output tables, which report the use of intermediate input for 66 private industries in 3-digit

NAICS. For each industry i, let sup (i) be the set of supplier industries that sell intermediate

goods to industry i. Adapting our previous notation, we denote with σsellsup(i),t the selling efforts in

searching for customers in the suppliers’ industry to industry i. Since each industry has multiple

supplier industries, we measure the average search effort for industry i’s supplier industries as

the mean of these supplier industries’ search efforts weighted by the value of intermediate goods

that industry i purchases from them. Then, ∆σsellsup(i),t =
∑

j∈sup(i) ωi,j,t∆σ
sell
j,t , where ωi,j,t is the

fraction of the value of intermediate goods that industry i purchases from industry j, and ∆σsellj,t

is the first difference in the selling effort of industry j in searching for customers.

Analogously, we denote the buying effort of industry i’s customer industries in searching for

suppliers as σbuycus(i),t, and compute ∆σbuycus(i),t =
∑

j∈cus(i) ω̂i,j,t∆σ
buy
j,t , where ω̂i,j,t is the fraction
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of the value of intermediate goods that industry i sells to industry j and ∆σbuyj,t is the first

difference in the buying effort of industry j in searching for suppliers.

Then, we estimate:

∆nsupi,k,t = β1∆σ
buy
i,k,t−1 + β2∆σ

buy
i,k,t−1 ×∆σsellsup(i),t−1 + χt + γi,k + ϵi,k,t, (7)

where ∆σbuyi,k,t−1 ×∆σsellsup(i),t−1 is the interaction term between the changes in the search effort of

the firm and the changes in the search effort of its connected firms. According to regression (7),

the marginal contribution of firm k’s change in search effort to the relationship formation is

equal to β1 + β2 ×∆σsellsup(i),t−1. A positive value for β2 indicates that firm k’s change in search

effort forecasts a stronger formation of new trading relationships conditional on a higher search

effort in the supplier industries.

Using equation (1) to substitute out ∆σbuyi,k,t−1 in equation (7) yields:

∆nsupi,k,t = β1∆σ
buy
i,t−1 + β2∆σ

buy
i,t−1 ×∆σsellsup(i),t−1 + χt + γi,k + ηi,k,t, (8)

with ηi,k,t = β2∆̂σ
buy

i,k,t−1 ×∆σsellsup(i),t−1 + ϵi,k,t.

Table 3: Search efforts are complements

(1) (2) (3) (4)
Dependent variable Change of suppliers (∆nsupi,k,t) Change of customers (∆ncusi,k,t)

One-stage Two-stage One-stage Two-stage

∆σbuyi,t−1 1.17∗∗∗ 1.11∗∗∗

(0.21) (0.26)

∆σbuyi,t−1 ×∆σsellsup(i),t−1 4.01∗∗∗ 5.99∗∗

(1.66) (2.42)
∆σselli,t−1 1.50∗∗∗ 1.41∗∗∗

(0.32) (0.31)

∆σselli,t−1 ×∆σbuycus(i),t−1 3.22∗∗∗ 6.08∗∗∗

(1.23) (1.85)
Time FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
R2 0.29 0.32 0.14 0.16
Observations 20,533 18,741 23,939 20,994

Note: Yearly data 2003-2020. The dependent variables are the change in the number of suppliers (∆nsupi,k,t) for
columns (1) and (2) and of customers (∆ncusi,k,t) for columns (3) and (4). Standard errors are in parentheses. **
and *** denote significance at the 5% and 1% level, respectively.

Column (1) of Table (3) shows that β2 is positive and statistically significant. This estimate
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is consistent with the hypothesis of supermodularity in the matching function: stronger search

by the prospective suppliers makes a firm’s search effort more productive.

Below, Fact 4 will document that ∆σbuyi,t and ∆σsellsup(i),t are positively correlated. This is a

natural manifestation of search complementarities. But the correlation can also be a byproduct

of common shocks. If this is the case, ∆σbuyi,t−1 ×∆σsellsup(i),t−1 will be positively correlated with(
∆σbuyi,t−1

)2
. Then, a β2 > 0 in regression (8) may come from a missing quadratic term on ∆σbuyi,t−1

rather than from search complementarities.

To address this concern, we conduct a two-stage exercise. In the first stage, we purge

∆σsellsup(i),t from changes in effort in industry i (∆σbuyi,t ), the influence of aggregate conditions in

industry i (yi,t), and an industry-specific fixed effect (αi) by running:

∆σsellsup(i),t = αi + βi∆σ
buy
i,t + κiyi,t +∆ςsellsup(i),t. (9)

Thus, the residual ∆ςsellsup(i),t is the change in search efforts exerted by the suppliers of industry i

that is orthogonal to industry j’s changes in search efforts and the industry’s economic conditions.

In the second stage, we replace ∆σsellsup(i),t−1 with ∆ςsellsup(i),t−1 in equation (8).

Table 3 reports the results of our two-stage procedure in column (2). Since β2 is positive

and statistically significant, the heightened search efforts by prospective suppliers correlate with

an increase in a firm’s own search efforts, even when the search efforts of prospective suppliers

are orthogonal to changes in the search efforts and economic conditions in the firm’s industry.

Next, we examine whether the change in effort of the supplier firm forecasts a stronger

formation of new trading relationships conditional on higher search effort in the customer

industries by estimating:

∆ncusi,k,t = β1∆σ
sell
i,k,t−1 + β2∆σ

sell
i,k,t−1 ×∆σbuycus(i),t−1 + χt + γi,k + ϵi,k,t, (10)

where ∆σselli,k,t−1 ×∆σbuycus(i),t−1 is the interaction term between the change in search effort of firm

k and the change in search effort of the customer industries.

Using equation (1) to substitute out ∆σselli,k,t−1 in equation (10), we get:

∆ncusi,k,t = β1∆σ
sell
i,k,t−1 + β2∆σ

sell
i,t−1 ×∆σbuycus(i),t−1 + χt + γi,k + ηi,k,t, (11)

with ηi,k,t = β2∆̂σ
sell

i,k,t−1 ×∆σbuycus(i),t−1 + ϵi,k,t.

Column 3 in Table 3 shows the estimation results for regression (11). The coefficient β2 is
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positive and statistically significant, which documents that heightened search by a prospective

customer correlates with an increase in the firm’s own search efforts. Column 4 in the table

shows the results when we replace ∆σbuycus(i),t−1 with ∆ςbuycus(i),t−1 to purge the estimation from the

effect of common shocks. Again, the results are consistent with the idea that the matching

process among firms is supermodular in their search efforts.

Fact 4: Positive comovement of search efforts in connected industries

Next, we document the positive comovements of the search efforts between connected industries,

which are consistent with the presence of strategic complementarities in search efforts among

firms engaged in a trading relationship.

To study the comovement of search efforts in connected industries, we estimate for the

customer industry:

∆σbuyi,t = ω∆σsellsup(i),t + υi + γt + ϵi,t,

where ∆σbuyi,t is the change in search effort in industry i as a customer industry at period t, ω is

our coefficient of interest, and ∆σsellsup(i),t is the change in search effort of industry i’s supplier

industries. Controlling for firm fixed effects rules out the possibility that the comovements in

search efforts are not a consequence of correlated shocks across firms.

The estimate for the coefficient ω is equal to 0.36 (column (1) of Table 4). Its significance

at the 1% level is strong evidence that changes in the search efforts of supplier industries are

positively correlated with the changes in search efforts of customer industries beyond the presence

of common shocks.

Analogously, we estimate the equation for the supplier industry:

∆σselli,t = ω∆σbuycus(i),t + υi + γt + ϵi,t, (12)

where ∆σselli,t is the change in the search effort of industry i as a supplier industry at period

t, and ∆σbuycus(i),t is the change in the search effort of industry i’s customer industries. Table 4

shows (in column 3) that ω is positive and statistically significant, which confirms our previous

result that changes in search effort are correlated between connected industries.

As with Fact 3, a possible complication with our findings could be the presence of shocks

that are specific to each pair of connected industries and that cannot be removed by the time

fixed effects. To address this concern, we use a two-stage procedure to purge the observed search
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efforts from the influence of common shocks. The first stage is characterized by equation (9)

without ∆σbuyi,t as an independent variable. In the second stage, we replace the changes in search

efforts with the residual changes in search efforts obtained from the first stage, and study the

comovement in residual changes in search efforts that exclude the influence of common shocks.

Column (2) in Table 4 shows a positive correlation between changes in search effort in connected

industries even after excluding common shocks.

Table 4: Search efforts are positively correlated between connected industries

(1) (2) (3) (4)

Dependent variable Buying effort (∆σbuyi,t ) Selling effort (∆σselli,t )
One-stage Two-stage One-stage Two-stage

∆σsellsup(i),t 0.36∗∗∗ 0.47∗∗∗

(0.12) (0.14)

∆σbuycus(i),t 0.15∗∗∗ 0.34∗∗∗

(0.05) (0.12)
Time FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
R2 0.59 0.63 0.17 0.17
Observations 754 751 745 663

Note: Yearly data 2003-2018. The dependent variables are buying effort (∆σbuyi,t ) for columns (1) and (2) and

selling effort (∆σselli,t ) for columns (3) and (4). Standard errors are in parentheses. *** denotes significance at
the 1% level.

We can apply the same two-stage exercise to equation (12). The estimation results are

reported by Column (4) in Table 4, which verifies the positive correlation between changes in

search effort in connected industries.

Fact 5: Positive comovement of output with intermediate inputs

Fact 5 is that output and intermediate inputs co-move in the fashion predicted by search

complementarities. The BEA compiles a measure of gross output (O) equal to the sum of

an industry’s value added (V A) and intermediate inputs (II), i.e., O = V A+ II. BEA data

are annual over the period 1997-2015. Figure 3 plots the cyclical component of gross output

(blue line), intermediate inputs (red line), and industry value added (yellow line) together

with NBER-dated recession periods (grey bands). We extract the cyclical component of the

variable using an HP filter. The figure reveals that fluctuations in intermediate inputs are more

procyclical than those in output. The Great Recession witnessed a sharp fall in intermediate
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input and gross production across industries, while the value added remained more stable.

Figure 3: Intermediate inputs, value added, and gross output

To determine the relative contribution of value added and industry input to the overall

volatility of gross output, we decompose the variance of the gross industrial output in terms of

its covariance terms: Var(O) = Cov(V A,O) + Cov(II, O). Using this identity, together with

the definition O = V A+ II, and plugging in observed data, we find that the contribution of

industry inputs to movements in industrial gross output is Cov(II,V A+II)
Var(V A+II)

= 0.71.

Thus, fluctuations in intermediate input account for 71% of the movements in gross industry

output. This average contribution increases during recessions. For example, in 2008, industry

intermediate input decreased by 1.9 trillion, making up 84% of the decline in gross industrial

output (2.3 trillion).

3 A model with search complementarities

We build a dynamic general equilibrium model of business cycles that, by generating the five

facts in Section 2, allows us to revisit the aggregate behavior of the economy (Section 6), is

driven by plausible shocks (Section 7), and lets us investigate the nonlinear effect of the volatility

of shocks (Section 8) and fiscal policy (Section 9).

To do so, we postulate a discrete-time model where firms in the intermediate-goods sector

(I) and the final-goods sector (F ) are connected through trading relationships. Firms will invest

search effort in building these relationships because more effort leads to more relationships (Fact

1 in Section 2) and higher sales and profits (Fact 2). The matching function will be supermodular
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in the search effort of firms (even if it presents decreasing returns to scale). The supermodularity

will create search complementarities that replicate Facts 3 and 4. Since we will deal with general

equilibrium, including the presence of households, the model also captures Fact 5.

Households: There is a continuum of households of size 1. Households can either work one

unit of time per period for a wage w or be unemployed and receive h utils of home production

and leisure. Households do not have preferences for working –or searching for a job– in either

sector i ∈ {I, F} and receive the firms’ profits.

Households are risk-neutral and discount the future by βξt per period, where β < 1 is a

constant and ξt is a discount factor shock that follows log ξt = ρξ log ξt−1+σξϵξ,t, with ρξ ≤ 1 and

ϵξ,t ∼ N (0, 1). When ξt > 1, households are more patient than average and, conversely, when

ξt < 1 households are less patient than average. Innovations to ξt encapsulate demographic shifts,

movements in financial frictions, or fluctuations in risk tolerance. Cochrane (2011) and Hall

(2016, 2017) provide evidence that those shocks are a central source of aggregate fluctuations.

Since households own the firms, firms also employ βξt to discount future profits.

Labor matching: At the beginning of each period t, any willing new firm can post a

vacancy in either sector i ∈ {I, F} at the cost of χ per period to hire job-seeking households.

Each firm posts a vacancy for one worker. Vacancies and job seekers meet in a DMP frictional

labor market. Since this DMP block is standard, its only role is to provide a natural framework

to discuss unemployment and vacancies without undue complexity.

Given ui,t unemployed households and vi,t posted vacancies in sector i, a constant-returns-to-

scale matching technology m(ui,t, vi,t) determines the number of hires and vacancies filled in t.

The new hires start working in t+ 1. The job-finding rate, µi,t = m(ui,t, vi,t)/ui,t = µ(θi,t), and

the probability of filling a vacancy, qi,t = m(ui,t, vi,t)/vi,t = q(θi,t), are functions of each sector’s

labor market tightness ratio θi,t = vi,t/ui,t. Then, µ
′(θi,t) > 0 and q′(θi,t) < 0.

At the end of each period t, existing jobs terminate at a rate δ and unfilled vacancies expire.

The newly unemployed households are split evenly to search in each sector. Once an unemployed

household is assigned to search in one sector, it is not allowed to search in another sector (given

the symmetry across sectors and our calibration below, workers do not mind this restriction).

Appealing to a law of large numbers, unemployment, ut = uI,t + uF,t, evolves as:

ut+1 = ut − [µI (θI,t)uI,t + µF (θF,t)uF,t]︸ ︷︷ ︸
Job creation

+ δ (1− ut)︸ ︷︷ ︸
Job destruction

. (13)
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Trading relationships: Once job vacancies are filled, a final-goods firm must form a trading

relationship with an intermediate-goods firm to manufacture together, starting in t+ 1, the final

good sold to households, which is also our numeraire. A technology with variable search effort

governs inter-firm matching. Search effort is costly, but it increases the probability of forming a

trading relationship. Variable search effort generates search complementarities since the optimal

search effort by one firm will be (weakly) increasing in the number of firms searching in the

opposite sector and their search effort (see below for details). This stylized matching summarizes

more sophisticated inter-firm networks such as those in Jones (2013) and Acemoglu et al. (2012).

In a trading relationship, the intermediate-goods firm uses its worker to produce yI,t = zt,

where zt is the stochastic productivity that follows log zt = ρz log zt−1 + σzϵz,t, with ρz ≤ 1 and

ϵz,t ∼ N (0, 1). The final-goods firm takes yI,t and, employing its worker, transforms it one-to-one

into the final good, yF,t = yI,t = zt. If a firm fails to form a trading relationship in t, it produces

no output and continues searching for a partner in t+ 1. At the end of each period, a constant

fraction of existing trading relationships is destroyed because either the job is destroyed with

probability δ, or the trading relationship fails at a rate δ̃.4 In the former case, the firms dissolve.

In the latter case, the firms become single firms, but the jobs survive.

Search effort: Building on Burdett and Mortensen (1980), the number of inter-firm matches

is M (ñF,t, ñI,t, σ̃F,t, σ̃I,t) =
(
ϕ+ (ψ + σ̃0.5

F,t)(ψ + σ̃0.5
I,t )
)
H (ñF,t, ñI,t), where ñF,t is the number of

single firms in sector F with search effort, σ̃F,t; ñI,t and σ̃I,t are the analogous variables for the I

sector (because of random search, all firms within a sector search with the same intensity). The

function H (·) has constant returns to scale and it is strictly increasing in both terms. We set

up its units by choosing H (1, 1) = 1. We will explain momentarily why we specify two different

parameters, {ϕ, ψ} > 0, and why we set the power of σ̃i,t to 0.5.

Each firm optimally chooses σ̃i,t ≥ 0 to trade off search cost and the profits from matching

success. The cost of σ̃i,t is:

c (σ̃i,t) = c0σ̃
0.5
i,t + c1

σ̃
(1+ν)/2
i,t

1 + ν
, (14)

where c0 > 0 creates a concave cost tranche and c1 > 0, with ν > 1, a convex cost tranche.

4To simplify, in a trading relationship, the jobs in the intermediate-goods firm and the final-goods firm
terminate simultaneously with probability δ or survive simultaneously with probability 1− δ. In single firms, the
job destruction rate is also δ. We assume that δ + δ̃ < 1, and that the separation of job matches and trading
relationships is a mutually exclusive event.
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Given the inter-firm market tightness ratio ñF/ñI , the probability that a sector I firm will

form a trading relationship with a sector F firm is:

πI =
M (ñF,t, ñI,t, σ̃F,t, σ̃I,t)

ñI
=
(
ϕ+ (ψ + σ̃0.5

F,t)(ψ + σ̃0.5
I,t )
)
H

(
ñF,t
ñI,t

, 1

)
, (15)

and the probability that a sector F firm will form a trading relationship with a sector I firm is:

πF =
M (ñF,t, ñI,t, σ̃F,t, σ̃I,t)

ñF
=
(
ϕ+ (ψ + σ̃0.5

F,t)(ψ + σ̃0.5
I,t )
)
H

(
1,
ñI,t
ñF,t

)
. (16)

In the symmetric equilibria where ñF,t = ñI,t, we have:

πF,t = πI,t = ϕ+ (ψ + σ̃0.5
F,t)(ψ + σ̃0.5

I,t ) = ϕ+ ψ2 + ψσ̃0.5
F,t + ψσ̃0.5

I,t + σ̃0.5
F,tσ̃

0.5
I,t . (17)

We can see now why we specified two different parameters, {ϕ, ψ} > 0. The parameter ψ

determines the impact of σ̃i,t on the matching probability (17) without considering any interaction

with σ̃−i,t. Thus, ψ bounds the marginal return to searching from below when prospective

partners search with zero effort, a mechanism that will govern the degree of supermodularity in

the model. In comparison, ϕ is a scaling parameter, unrelated to σ̃i,t, that will allow us to match

the average inter-firm matching probabilities in the data. This difference separately identifies ϕ

and ψ.

Equation (17) has decreasing returns to scale on σ̃F,t and σ̃I,t. Nonetheless, σ̃
0.5
F,tσ̃

0.5
I,t , the most

relevant term for the quantitative analysis, is homogeneous of degree 1. Since we are looking for

a microfoundation for the increasing returns to scale assumption in Diamond (1982) through

the endogeneity of search effort, homogeneity of degree 1 is an intuitive baseline.5

To simplify notation, we define σi,t = σ̃0.5
i,t . Then, equation (17) becomes:

πF,t = πI,t = ϕ+ (ψ + σF,t) (ψ + σI,t) . (18)

Together with equation (14), this result implies that the net gain from searching can be negative,

in which case the firm chooses σi = 0, or positive and the firm picks σi > 0.

A key implication of the existence of these two alternatives is that we have multiple stage

(i.e., within period t) equilibria. One stage equilibrium is passive, with σI,t = σF,t = 0, low

production, and high unemployment. The other stage equilibrium is active, with {σI,t, σF,t} > 0,

5Given our calibration in Section 5, equation (17) also has decreasing returns to scale if we express it in terms
of the costs c (σ̃i,t). However, the function is nearly homogeneous of degree 1 for all but very small levels of cost
(and hence search effort). Again, this is a natural benchmark.
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high production, and low unemployment. The expression “stage equilibrium,” which we borrow

from the literature on repeated games, highlights that we look at possible outcomes within one

given period. The rational expectations equilibria for our economy are composed of a sequence

of these stage equilibria. Households and firms have rational expectations about this sequence

of stage equilibria and act accordingly.

We select among stage equilibria through history dependence following Cooper (1994). If the

economy was in a passive stage equilibrium in t− 1, firms stay in the passive stage equilibrium

in t. Conversely, if the economy was in an active stage equilibrium in t − 1, firms continue

searching with positive effort in t. Sufficiently large shocks to productivity or the discount factor

induce firms to adjust search effort, and the economy shifts from one stage equilibrium to the

other. Otherwise, the economy stays in the same stage equilibrium as in the previous period.6

An indicator function, ιt, with value 0 if the stage equilibrium is passive and 1 if active, keeps

track of the stage equilibria. This indicator function is taken as given by all agents.7

The number of trading relationships in t+ 1 comprises firms that survive job separation and

trading relationship destruction plus newly formed trading relationships:

nt+1 = (1− δ − δ̃)nt + (ϕ+ (ψ + σF,t) (ψ + σI,t))ñI,t. (19)

The number of single firms in sector i in t + 1 includes firms that survive job separation

((1− δ) ñi,t), newly created single firms whose vacancies are filled by job-seekers (µi (θi,t) · ui,t),

and firms whose trading relationships exogenously terminate (δ̃ni,t), net of the number of single

firms that form trading relationships (πi,tñi,t):

ñi,t+1 = (1− δ) ñi,t + µi (θi,t)ui,t + δ̃ni,t − πi,tñi,t. (20)

Value functions: We can now define the Bellman equations that determine the value, for

each sector i, of an unemployed household (Ui,t), of an employed household in a single firm

6The selection based on history dependence is different from Schaal and Taschereau-Dumouchel (2018), who
use a global game to select the equilibrium. With a global game, the equilibrium is uniquely and monotonically
determined by the economic fundamentals, while, in our model, it is jointly determined by economic fundamentals
and past history. As we will see later, our framework allows spells with strong fundamentals while the economy
stays in the low-activity equilibrium despite the coexistence of a high-activity equilibrium.

7There might exist mixed-strategy Nash equilibria in which firms search with positive variable effort with
some probability. We ignore those equilibria because Appendix E shows the mixed strategy is not robust:
when one sector changes the probability slightly due to a trembling-hand perturbation, the opposite sector
would immediately set the probability to either zero or one. We leave non-Markov strategies, limit cycles, and
alternative equilibria selection devices for future investigation.
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(W̃i,t) and in a trading relationship (Wi,t), of a filled job in a single firm (J̃i,t) and in a trading

relationship (Ji,t), and of a vacant job (Vi,t). We index all of these value functions by ιt since

they depend on the type of stage equilibrium at t.

The value of an unemployed household in sector i and equilibrium ι is:

Ui,t|ιt = h+ βξtEt
[
µi,tW̃i,t+1 + (1− µi,t)Ui,t+1 | ιt

]
. (21)

In the current period, the unemployed household receives a payment h. The household finds a

job with probability µi,t and circulates into employment during the next period, or it fails to

find employment with probability 1− µi,t and remains unemployed. To save space, we ignore

the state variables when presenting the equations, but they are described in Appendix J.

The value of a household with a job in a single firm in sector i is:

W̃i,t|ιt = w̃i,t + βξtEt
{
(1− δ)

[
πi,tWi,t+1 + (1− πi,t) W̃i,t+1

]
+ δUi,t+1 | ιt

}
. (22)

The first term on the right-hand side (RHS) is the wage w̃i,t (to be determined by Nash bargaining,

see Appendix B). In t+ 1, the match that survives job destruction may either form a trading

relationship with a firm in the opposite sector with probability πi,t, gaining the value Wi,t+1, or

otherwise remain a single firm with probability 1− πi,t, with value W̃i,t+1. With probability δ,

the job is destroyed, and the household transitions into unemployment.

The value of a household with a job in a trading relationship in each sector i is:

Wi,t|ιt = wi,t + βξtEt
[
(1− δ − δ̃)Wi,t+1 + δ̃W̃i,t+1 + δUi,t+1 | ιt

]
. (23)

A worker in this situation receives the wage wi,t. In t+ 1, the worker becomes unemployed with

probability δ, gaining the value Ui,t+1. With probability δ̃, the trading relationship is terminated,

and the value becomes W̃i,t+1. Otherwise, the match continues, gaining the value Wi,t+1.

The value of a single firm in sector i is:

J̃i,t|ιt = max
σi,t≥0

{
−w̃i,t − c (σi,t) + βξt (1− δ)Et

[
πi,tJi,t+1 + (1− πi,t) J̃i,t+1 | ιt

]}
. (24)

Single firms have zero revenues but they still need to pay the wage (w̃i,t) and incur the search

costs c (σi,t). In t+ 1, conditional on surviving job destruction with probability 1− δ, the firm

forms a trading relationship with probability πi,t, gaining Ji,t+1. Otherwise, the firm remains

single with value J̃i,t+1. If the job is destroyed, the firm exits with zero value.
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The value of a trading relationship for a sector I firm is:

JI,t|ιt = ztpt − wI,t + βξtEt
[
(1− δ − δ̃)JI,t+1 + δ̃J̃I,t+1 | ιt

]
. (25)

The firm’s earnings are equal to the revenue from the intermediate good, ztpt, less the wage wI,t.

Both pt and wI,t are determined by Nash bargaining. In t+ 1, with probability δ̃, the firm is

separated from its partner and becomes a single firm, gaining a value of J̃I,t+1; with probability

δ, the job match is destroyed, and the firm exits the market with zero value. Otherwise the

trading relationship continues with value Ji,t+1.

The value of a trading relationship for a sector F firm is:

JF,t|ιt = zt(1− pt)− wF,t + βξtEt
[
(1− δ − δ̃)JF,t+1 + δ̃J̃F,t+1 | ιt

]
. (26)

The profit for the trading relationship in the final-goods sector comprises revenues from selling

zt units of final goods at price 1, net of the costs of purchasing intermediate goods (ztpt) and

paying the wage (wF,t). The rest of the equation follows the same interpretation as equation

(25).

The value of a vacant job in sector i is:

Vi,t|ιt = −χ+ βξtEt
[
q (θi,t) J̃i,t+1 + (1− q (θi,t))max (0, VI,t+1, VF,t+1) | ιt

]
. (27)

Equation (27) shows that the value of a vacant job comprises the fixed cost of posting a vacancy

χ in t. With probability q
(
θi,t|ιt

)
, the vacancy is filled, and a single firm with value J̃i,t+1 is

created. The last term shows that firms that fail to recruit a worker may choose to be inactive

or post a vacancy in either sector in t+ 1.

By free-entry, we have Vi,t = 0 and the condition that pins down labor market tightness:

χ = βξtEt
[
q (θi,t) J̃i,t+1 | ιt

]
. Appendix B describes the Nash bargaining over wages between

firms in trading relationships and workers, and prices between the final-goods producer and the

intermediate-goods producer within a trading relationship.

Aggregate resource constraint: Finally, the total resources of the economy, equal to ztnt

(i.e., production per trading relationship times the number of existing trading relationships),

are used for aggregate consumption by households, ct, and to pay for vacancies and inter-firm

search:

ct +
∑
i=I,F

χvi,t +
∑
i=I,F

ñi,t

(
c0σ̃

0.5
i,t + c1

σ̃
(1+ν)/2
i,t

1 + ν

)
= ztnt. (28)
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4 Characterizing the equilibrium

The equilibrium definition for our model is standard and we include it in Appendix I. Here, we

characterize the optimal search strategy of firms and show how multiple stage equilibria make

the effect of shocks persist over time.

Optimal search effort: The value for a firm i of searching with effort σi,t > 0 when the

search effort in the other sector σj,t given a stage equilibrium ιt is:

Πi (σi,t | σj,t, ιt) = −w̃i,t − c (σi,t) + βξt (1− δ)Et
[
πi,t(Ji,t+1 − J̃i,t+1) + J̃i,t+1 | ιt

]
. (29)

The interior solution σi,t > 0 (i.e., the best response) satisfies:

c0 + c1σ
ν
i,t = β̃ (ψ + σj,t)︸ ︷︷ ︸

Search effort in sector j

ξt︸︷︷︸
discount factor shock

Et
(
Ji,t+1 − J̃i,t+1 | ιt

)
︸ ︷︷ ︸

Expected capital gain

(30)

where β̃ = β (1− δ) /τ (the wage Nash bargaining implies that the firm bears τ fraction of

the search cost). The left-hand side (LHS) of equation (30) is the marginal cost of exerting

σi,t to build a trading relationship, while the RHS is the expected benefit of searching for a

partner. Since Et(Ji,t+1 − J̃i,t+1 | ιt) depends positively on zt, condition (30) shows how higher

ξt or zt (fundamentals) and higher σj,t (search complementarities) lead to higher σi,t. Because

the optimization problem is non-convex, we also have a corner solution σi,t = 0, either because

the firms in the other sector search too little or because the discounted expected gains from

matching are too small. The next proposition summarizes this argument.

Proposition 1. The optimal σi,t is equal to:

σi,t =


[
β̃(ψ+σj,t)ξtEt(Ji,t+1−J̃i,t+1|ιt)−c0

c1

] 1
ν

if β̃ (ψ + σj,t) ξtEt
(
Ji,t+1 − J̃i,t+1 | ιt

)
> c0

0 otherwise.

(31)

This proposition follows directly from equation (30) (see Appendices F and G for additional

results and the proof of the existence of two stage equilibria). Sufficiently large shocks to either ξt

or zt move the system between interior and corner solutions, generating alternate business cycle

phases with robust search effort, a large number of trading relationships, and low unemployment

with phases marked by no search effort, few trading relationships, and high unemployment.

Transitional dynamics: To illustrate the deterministic transitional dynamics of the model,
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Figure 4 illustrates movements in search effort as a function of ξt (a similar figure could be drawn

for zt), for the calibration in Section 5. The dashed line plots the passive stage equilibrium

path with low search effort and the solid line the active stage equilibrium path with high search

effort. The arrows indicate the direction of the transition dynamics for the endogenous variable

to reach the basins of attraction of the system, represented by point σp(1) for the passive

deterministic steady state (DSS) and σa(1) for the active DSS.8 The shaded area indicates the

range of values of ξt that support multiple stage equilibria. The passive stage equilibrium does

not exist for sufficiently large values of ξt and, conversely, the active stage equilibrium fails to

exist for sufficiently small values of ξt. In the absence of innovations to ξt, the system converges

and remains on the original basins of attraction in the passive stage equilibrium, σp(1), and the

active stage equilibrium, σa(1), depending on the starting stage equilibrium.
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Figure 4: Transitional dynamics for search effort

Temporary shifts to ξt, which are sufficiently strong to change search effort, move the system

to a new stage equilibrium. For example, if the system starts at point A and a large and positive

innovation to ξt moves the system to point B, the passive stage equilibrium disappears, and the

stage equilibrium of the system becomes active. The economy moves to the new active stage

equilibrium at point C, converging to the stationary basin of attraction σa(1) in the long run.

The system remains in the active stage equilibrium until a sufficiently negative innovation to ξt

returns the system to the passive stage equilibrium. For instance, a large negative innovation to

ξt, which moves the system from point C to point D, triggers the new passive stage equilibrium

at point E, converging to the stationary basin of attraction σp(1). In comparison, innovations to

8The DSS is the steady state to which the economy converges in the absence of shocks. This model has two
different DSSs: one with active search and one with passive search. Appendix H shows the solution of the DSSs.
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ξt that move the system within the shaded area, where both stage equilibria coexist, fail to shift

the stage equilibrium because of history dependence.

5 Calibration

We calibrate the model at a monthly frequency for U.S. data over the post-WWII period. Table

5 summarizes the value and the source or target for each parameter.

Table 5: Parameter calibration

Parameter Value Source or Target

β 0.996 5% annual risk-free rate
α 0.4 Shimer (2005)
τ 0.4 Hosios condition
χ 1.19 0.45 monthly job-finding rate (Shimer, 2005)
κ 1.25 den Haan et al. (2000)
h 0.3 Thomas and Zanetti (2009)
τ̃ 0.5 Sectoral symmetry
δ 0.027 5.5% unemployment rate in active DSS

δ̃ 0.024 3.5 years’ duration of trading relationship
ϕ 0.12 22% rate of idleness in recessions
ψ 0.185 Estimation of the matching function in Section 2.2
c0 0.32 4.45% of revenue spent on search effort
c1 4.5 12% rate of idleness in booms
ν 2 Ensure concavity of best response function
ρξ 0.6 Livingston Survey
σξ 0.054 Livingston Survey

ρz 0.881/3 BLS
σz 0.008 BLS

The constant β is set to 0.996 to replicate an average annual interest rate of 5%. In keeping the

DMP block of the model standard, we assume a Cobb-Douglas labor market matching function

m(u, v) = u1−αvα, with α = 0.4, the average value in the literature (Petrongolo and Pissarides,

2001). To satisfy the Hosios (1990) condition, we set the wage bargaining power to τ = α = 0.4.

We follow den Haan et al. (2000) in selecting the inter-firm matching function that ensures that

matching probabilities are between 0 and 1: H (ñF , ñI) = (ñF · ñI)/[(ñκF/2 + ñκI/2)
1/κ]. Also

after den Haan et al. (2000), we set κ = 1.25.

We pick the cost of posting a vacancy χ = 1.19 to match the monthly job-finding rate in the

active DSS, µ (θ) = 0.45, as in Shimer (2005). Then, we select a job-separation rate δ = 0.027 to

match an unemployment rate of 5.5% in the active DSS. We set h = 0.3 to include the value of

leisure and home production and the unemployment benefit, as in Thomas and Zanetti (2009).
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Thus, the flow value of unemployment is about 61% of the average wage in the active DSS,

which is in the range of replacement rates documented by Hall and Milgrom (2008).

Compared to a standard DMP economy, our model includes seven new parameters: ψ, τ̃ ,

δ̃, ϕ, c0, c1, and ν. We set ψ to 0.185 in accordance with our estimated regression values for

equation (8), reported in Table 3. We can rewrite the matching function for firm k in sector i as:

πi,k,t = ϕ+ ψ2︸ ︷︷ ︸
constant

+ ψσi,k,t︸ ︷︷ ︸
linear term

+ σi,k,tςj,t︸ ︷︷ ︸
interactive term

+ ψςj,t︸︷︷︸
error term

,

where ςj,t is the component of σj,t that is orthogonal to σi,k,t. Imposing πi,k,t ∝ ∆nsupi,k,t yields

ψ = β1/β2 = 1.11/5.99, where β1 and β2 are the coefficients in regression (8).

The bargaining share of the intermediate-goods firm τ̃ is set to 0.5, to evenly split the total

surplus from matching between firms and make the workers indifferent between working in either

sector. The rate of termination of inter-firm matches δ̃ is 0.024 to replicate the 3.5 years’ average

duration of a match documented in Section 2.

Given the previous parameters, c1 and ϕ pin down the measure of single firms in the active

DSS and passive DSS, respectively. The ratio of single firms to employment is the rate of idleness,

i.e., the share of time when employed workers are idle due to a lack of activity (Michaillat and

Saez, 2015). According to the Institute for Supply Management, the rate of idleness in the U.S.

was about 30% for the non-manufacturing sector and 20% for the manufacturing sector during

the Great Recession, and 12% for both sectors before this event. Thus, we set ϕ = 0.12 and

c1 = 4.5 to yield a rate of idleness equal to 0.22 and 0.12 in the passive DSS and the active DSS,

respectively. We calibrate c0 to 0.32 to generate a search cost of about 4.45% of output. This

value is consistent with the fact that suppliers and customers spend 7.5% and 1.4% of revenues

searching for trading partners, respectively, as documented above. Finally, ν = 2 ensures the

concavity of the best response function of search effort.

Following Hall (2017), we use the Livingston Survey to calibrate the discount factor shock

by obtaining the median 12-months-ahead expected return rt of the stock market index. We

compute the discount factor as ξt = 1/ (1 + rt). The monthly AR(1) that fits the series of ξt has

parameters ρξ = 0.6 and σξ = 0.054. These values, given the rest of the calibration, generate a

passive stage equilibrium with 15% probability, consistent with the frequency of recessions in

the post-WWII U.S. The quarterly standard deviation (s.d.) of 5% for ξt is close to the popular
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estimate of a quarterly s.d. of 5.7% by Justiniano and Primiceri (2008, Table 1). The persistence

of the productivity shock, ρz = 0.881/3 matches the observed quarterly autocorrelation of 0.88

and the s.d., σz = 0.008 matches the quarterly s.d. of 0.02, as in Shimer (2005).

Once the model is calibrated, we compute the value functions using value function iteration

and exploit the equilibrium conditions of the model to find all variables of interest. See

Appendices C and J for details.

6 Quantitative analysis

To study the dynamics of the model, we simulate it for 3,000,000 months and time-average

the resulting variables to generate quarterly data. We start the simulation from the active

DSS, focusing on the case when only discount factor shocks are present. Appendix K provides

a quantitative analysis of the model with productivity shocks. We relegate that case to the

appendix because productivity shocks of plausible magnitude cannot move the system between

stage equilibria, unless those shocks are permanent.
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Figure 5: Simulated variables for the first 100 periods with shocks to ξt

Figure 5 reports the responses of key variables to shocks to ξt (top left panel) for the first 100

periods. The economy begins at a positive search effort with high output, low unemployment, and

a high job-finding rate. Then, in period 45, a large negative shock to ξt pushes the economy to a

prolonged drop in output (top center panel) as trading relationships terminate faster than they
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are replaced due to low effort (top right panel). Low effort generates a high unemployment rate

and low job-finding and inter-firm matching rates (bottom panels). While the mean-reversion of

ξt increases job-finding and decreases unemployment, the recovery is mild, since the economy

stays in the passive stage equilibrium until a large positive discount factor shock that makes

households more patient shifts the economy back to the active stage equilibrium in period 74. In

such a way, our model endogenizes, through varying change effort, the idea of a regime-switching

process in the evolution of output postulated by Hamilton (1989).
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Figure 6: Ergodic distribution with shocks to ξt

Figure 6 plots the ergodic distribution of selected variables implied by the entire simulation.

Endogenous switches between passive and active stage equilibria generate a distinctive bimodal

distribution of aggregate variables resembling those documented in Adrian et al. (2019) or

the ones from models with increasing returns to scale to search à la Diamond (1982), even if

the discount factor shock has a unimodal distribution.9 Consistent with U.S. data regarding

recessions, our model predicts that the economy spends about 85% of the time in the active stage

equilibrium and 15% in the passive stage equilibrium. In the former, the unemployment rate

fluctuates around 5.5%. In the latter, unemployment fluctuates around 7.5%. The job-finding

rate moves around 45% in the active stage equilibrium and 30% in the passive stage equilibrium.

Figure 7 compares the empirical distribution of real GDP per capita and the unemployment

rate (continuous line) with the ergodic distribution in the model (discontinuous line).10 Both

9See Pizzinelli et al. (2020) and Schaal and Taschereau-Dumouchel (2018) for additional evidence on skewness
and bimodality in macroeconomic variables.

10Real GDP per capita is quarterly from 1960 to 2018 and is linearly detrended in logs. The unemployment
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Figure 7: Distribution of unemployment rate and output in the data

the data and the model show skewness and bimodality.11 The fair similarity between the data

and the model offers support for the model, in particular if we recall that while we are using

shocks only to the discount factor in our model, a combination of different shocks drives the

dynamics of the real data. We will revisit this issue in more detail in Section 8.

Table 6: Second moments

u v v/u lp ξ

(a) Quarterly U.S. data, 1951-2016

Autocorrelation coefficient 0.95 0.95 0.95 0.90 −
Standard deviation 0.20 0.21 0.40 0.02 −

u 1 -0.92 -0.98 -0.25 −
Correlation matrix v 1 0.98 0.29 −

v/u 1 0.27 −
lp 1 −

(b) Benchmark model

Autocorrelation coefficient 0.76 0.44 0.63 0.91 0.35
Standard deviation 0.12 0.27 0.36 0.04 0.05

u 1 -0.67 -0.84 -0.85 -0.47
Correlation matrix v 1 0.97 0.49 0.81

v/u 1 0.65 0.76
lp 1 0.11
ξ 1

Note: Following Shimer (2005), all variables are reported in logs as deviations from an HP trend with λ = 105.

Panel (a) of Table 6 reports second moments of observed business cycle statistics following the

structure in Shimer (2005, Table 1). Panel (b) reports second moments of the benchmark model

with two DSSs. Appendix L reports the simulation of the model without search complementarities.

The results are nearly identical when the filtering is done with a linear trend, as we used in

Figure 7.

rate is monthly from 1960 to 2018.
11The Hartigan dip test for unimodality (Hartigan and Hartigan, 1985) rejects unimodality in the data for real

GDP per capita and the unemployment rate with 11% and 6% significance levels, respectively.
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Several lessons arise from Table 6. First, our model generates a robust internal propagation:

the autocorrelation coefficients of the aggregate variables are significantly larger than in the

model without complementarities and much closer to the observed ones. Complementarities

in search effort plus history dependence amplify and prolong the effect of shocks. Second, our

model generates empirically plausible s.d.’s for the selected variables that are much larger than

those in the model without complementarities. This property of the model comes from the

amplification of shocks described above. Third, our model produces endogenous movements

in labor productivity (“lp” in the table) because of the time-varying fraction of the trading

relationships over the total number of firms, ni,t/ (ñi,t + ni,t). The business cycle statistics for

labor productivity generated by our benchmark model are close to those in the data.
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Figure 8: GIRFs to a negative discount factor shock

Figure 8 shows generalized impulse response functions (GIRF) of selected variables to a 16%

(solid line) and 14% (dashed line) shock to ξt, respectively (since the model is not linear, we

use the adjective “generalized”). In t = 1, the economy starts from the active DSS. In t = 2, a

one-period innovation to the discount factor hits the economy (recall, however, that households

and firms have rational expectations that this innovation can arrive with some probability).

When the contractionary shock to ξt is 14%, the firm’s search effort declines in response to the

fall in the stream of benefits in forming a trading relationship, generating a mild decline in labor

market tightness and a rise in the unemployment rate. This shock is too small to move the

system to the passive stage equilibria and the variables converge to the original DSS. However,
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when the fall in ξt is sufficiently large, the system moves to the equilibrium with zero search

effort, low output, and high unemployment. While the shock is only a bit larger (16% vs. 14%),

its effects are quite different: search complementarities induce large nonlinearities in the model.

7 Evidence on the shocks to the discount factor

The mechanism in our model builds on two legs: the shocks to the discount factor and history

dependence. We will not discuss the latter. As argued in the introduction, history dependence is

an intuitive selection device that has shown empirical success in experiments (Van Huyck et al.,

1990, 1991). We focus, instead, on the shocks to the discount factor.

Discount factor shocks have been documented, among many others, by Justiniano and

Primiceri (2008), Fernández-Villaverde et al. (2015), Cochrane (2011), Hall (2016, 2017), and

Ikeda et al. (2020). These authors have argued that, beyond shocks to preferences, discount

factor shocks can also represent demographic shifts, movements in financial frictions, fluctuations

in risk tolerance, and changes in fiscal and monetary policy that we abstract from in the model.

To relate measures of the discount factor to changes in aggregate output, unemployment, and

inter-firm matching, we use the s.d. of the discount factor as the ratio of the current market price

of a future cash receipt to the expected value of the payment (our households are risk-neutral

and, hence, we do not need to adjust for risk).

There are three popular measures of the discount factor. In measure 1, we proxy the

discount rate rt as we did in the calibration using the measure of expected returns from the

Livingston Survey. In measure 2, we follow Hall (2017) and construct the series for the market

discount rate for dividends payable from one year (12 months) to two years (24 months) as:

ξt = pt/(Et
∑24

τ=13 dt+τ ), where pt is the market price in month t of the claim of future dividends

inferred from option prices and the stock price, and dt is the dividend paid in month t. The

data on pt are from Binsbergen et al. (2012). Finally, in measure 3, we proxy the discount factor

using the price-dividend ratio (p/d) of the stock market, as described in Cochrane (2011).

All three measures agree that i) there was a sizable decline in the discount factor during

the Great Recession (as our theory requires) and ii) the series display high variance (reflecting

the large sensitivity of the discount factor over the business cycle, also required by our theory).

The low correlation across the three measures is not surprising, since each of these series reflects
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discounting from different financial players and assets (Hall, 2017). See Appendix M for details.

Table 7: Correlation between discount rates and aggregate variables

Correlation coefficient (a) (b) (c) (d)
Unemployment rate GDP Intermediate input Match creation

Livingston Survey -0.55 0.53 0.42 0.16
S&P dividend strip p/d ratio -0.33 0.50 0.21 0.32
P/d ratio -0.75 0.80 0.53 0.79

Note: Discount rates and unemployment: monthly data from January 1996 to May 2009. GDP: quarterly data
from 1996Q1 to 2009Q1. Intermediate input: annual data from 1997 to 2009. Rate of match creation: annual
data from 1996 to 2009. Series are HP filtered.

Table 7 shows that the three measures of the discount factor are negatively correlated with

unemployment (column (a)), positively correlated with GDP and input of intermediate goods

(columns (b) and (c)), and positively correlated with match creation (column (d)), measured

from Compustat Customer Segment data. These patterns corroborate the link between shocks

to the discount factor and movements in unemployment, production, and inter-firm matching

highlighted by our model.

8 The volatility of shocks and aggregate performance

Our model links nonlinearly the volatility of shocks with aggregate outcomes. This feature has

two sharp implications. First, when volatility is high, the distribution of output is bimodal,

as the economy often switches between stage equilibria. However, when volatility is low, the

distribution of output is unimodal. This is quite a unique prediction that distinguishes our

model from most other business cycle models. Second, when volatility is low, large shocks

have particularly persistent effects. Once a large shock pushes the economy into a new stage

equilibrium, the economy will remain in it for a very long time because the probability of another

large shock that will switch equilibria is low.12 Again, this is a distinctive property of our model.

We show now that both implications of our model hold in the data.

High volatility and bimodality: Our model predicts that the bimodality of the distribution

of output will be particularly salient in periods of high volatility. To show that this is also the case

12See Appendix N for an illustration of how the duration of each stage equilibrium is inversely related to the
volatility of the shocks. Appendix O reports the histograms of the model’s endogenous variables for alternative
levels of the volatility of the shocks.
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in the data, we estimate the one-quarter-ahead conditional distribution of output with the non-

parametric approach proposed by Adrian et al. (2019). Denote yt = (ln (GDPt+1) , ln (pdt+1))

and xt = (ln (GDPt) , ln (pdt)), where ln (GDPt) and ln (pdt) are the quarterly real GDP per

capita and price-dividend ratio in logs as deviations from an HP trend, respectively.13 The log

price-dividend ratio is a proxy for the discount factor, the driving shock in our model.

We compute the joint distribution function of y conditional on x as:

p̂ (y | x) =
1

T−1

∑T
t=2Ky (y − yt)Kx (x− xt)
1

T−1

∑T
t=2Kx (x− xt)

,

where Ky (·) and Kx (·) are independent kernels for y and x, respectively, defined as:

Ky (y − yt) =
1

ω1,y

φ

(
y1 − y1t
ω1,y

)
+

1

ω2,y

φ

(
y2 − y2,t
ω2,y

)
Kx (x− xt) =

1

ω1,x

φ

(
x1 − x1t
ω1,x

)
+

1

ω2,x

φ

(
x2 − x2,t
ω2,x

)
,

where ωi,y and ωi,x are the bandwidths for the ith variable of y and x, respectively, and φ (·)

is the normal pdf. We set the bandwiths to be proportional to the in-sample unconditional

standard deviation: ω1,y = ω1,x = c · σ (ln (GDPt)), ω2,y = ω2,x = c · σ (ln (pdt)), where c is

calibrated to 0.3 as in Adrian et al. (2019).
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Figure 9: Marginal conditional distribution of output

The solid curves in Figure 9 plot the estimated conditional marginal distribution of output

in 2008.Q4 (left panel) and 2017.Q4 (right panel). Bimodality is pronounced in 2008.Q4, when

volatility was high (σ (ln (pdt)) = 0.075 vs. a sample mean of 0.052).14 In contrast, there was

no bimodality in 2017.Q4, when volatility was low (σ (ln (pdt)) = 0.031). This result is general

across the sample 1960.Q1-2021.Q1. The correlation between the Hartigan dip statistic for each

13We obtain the monthly p-d ratio from Robert Shiller’s website: http://www.econ.yale.edu/ shiller/data.htm,
then convert it to quarterly using time-averaging.

14We compute σ (ln (pdt)) as the standard deviation of the monthly p-d ratio in a 12-month window around
each quarter.
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quarter’s marginal conditional distribution of output and the volatility of the price-dividend

ratio is −0.13, which is statistically significant at the 5% level.15

To replicate the same exercise using our model, we simulate two sets of 1,000 economies. In

the first set, we set σξ = 0.081, 50% higher than in our benchmark calibration in Table 5. Each

economy runs for one quarter (three months) and starts from the active DSS with the initial

discount factor two standard deviations below its mean. In the second set, we simulate another

1,000 economies for one quarter when σξ = 0.027, 50% lower than our benchmark calibration.

To make the two sets perfectly comparable, we construct the discount factors in the second

simulation as our random draws in the first simulation multiplied by 1/3.

The dashed curves in Figure 9 plot the marginal conditional distribution of output for each

of these two simulated samples. The marginal conditional distribution of output implied by the

model in the high volatility case (the left panel) is bimodal and fairly close to the solid curve

in the same panel. The right panel shows that the conditional distribution is unimodal when

volatility is low, similar to the data.

The Great Moderation and the persistence of business cycles: Our model predicts

that a lower volatility of fundamentals is associated with more prolonged stage equilibrium

spells. This prediction is consistent with the U.S. data.

In Figure 10, the upper panel plots the U.S. employment rate (blue curve) and its trend

(orange curve) estimated from an HP filter with λ = 1600 from 1996 to 2017. The light-orange

bars indicate labor market downturns. Inspired by the NBER’s methodology, we define a labor

market downturn as starting when the employment rate falls below the trend for two quarters

and ending when the employment rate rises above the trend for two quarters. As noted by many

researchers (Jaimovich and Siu, 2012 and references therein), the figure shows how the three labor

market downturns after 1984 were longer than the previous ones. Precisely after 1984, the U.S.

economy experienced a substantial reduction in aggregate volatility, which Fernández-Villaverde

et al. (2015) attribute, in part, to a lower volatility of shocks to fundamentals. To illustrate this

point, the bottom panel in Figure 10 plots the cyclical component of real GDP per capita, with

a grey area to indicate the Great Moderation after 1984.

Our model suggests an intrinsic connection between the Great Moderation and the increasing

15Since the dip statistic is an increasing function of the probability of unimodality, a negative correlation
means unimodality is much more likely to be rejected when volatility is high.
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Figure 10: The Great Moderation and labor market downturns

persistence in labor market downturns, like the one that followed the financial crisis of 2008.

While the Great Moderation improves macroeconomic stability and reduces the occurrences of

recessions, it makes these recessions and the associated labor market downturns more durable.

9 The role of fiscal policy

In our model, government spending that stimulates search effort may permanently move the

system from a passive to an active stage equilibrium, inducing a large fiscal multiplier. To

explore this idea, we embed government spending in our economy. We focus on government

spending (government consumption expenditures and gross investment) while ignoring transfers

because, in our model, output is not demand-determined.

9.1 Government spending as a set of final-goods producers

The government owns single final-goods firms, ñGF,t, that operate together with private firms.

The only difference between government-owned and private firms is that the former do not use

labor.16 The formation of private firms remains endogenous, as described by equation (20).

16It would be easy to modify the model to force government-owned firms to hire workers to operate (and, thus,
be fully symmetric to private firms). We prefer our assumption of jobless government firms because it allows
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Government spending is equal to the output produced by government-owned firms in trading

relationships (i.e., the government “buys” the output of its firms and the government-owned

firms use those resources to pay the private intermediate firm and in production) plus the single

government-owned firms’ search cost. This spending is financed through lump-sum taxes.

We model higher government spending as an exogenous increase in the number of single

firms in the final-goods sector. These additional firms can be interpreted as new public projects

such as building a new school. Thus, the law of motion for government single final-goods firms

is ñGF,t+1 = (1− δ − πF ) ñ
G
F,t + ϵGt , where ϵ

G
t are the new government-owned single firms created

in t.17 Like private firms, government-owned firms must form a trading relationship with firms

in the intermediate-goods sector to manufacture goods (for example, a public school requires

CFRPs produced by private firms). Trading relationships with government-owned firms follow

nGF,t+1 =
(
1− δ − δ̃

)
nGF,t + πF ñ

G
F,t. A government-owned firm exits the market when its trading

relationship is terminated (either because the relationship itself fails with probability δ̃ or the

job in the private firm disappears with probability δ).

The inflow ϵGt changes the matching probabilities πI,t = [ϕ+ (ψ + σI) (ψ + σF )]H
(
1, θ̃t

)
,

in the inter-firm matching market and πF = [ϕ+ (ψ + σI) (ψ + σF )]H
(

1

θ̃t
, 1
)
, where θ̃t =

(ñF,t + ñGF,t)/ñI,t is the new inter-firm matching market tightness ratio.

Since H is increasing in both arguments, ϵGt > 0 increases the matching probability for

intermediate-goods firms (more potential partners) and decreases the matching probability for

final-goods firms (stiffer competition for partners). These changes in matching probabilities, in

turn, move search effort and, potentially, the stage equilibrium of the economy.

Government spending is equal to gt = ztn
G
F,t + ñGF,t

(
c0σ̃

0.5
F,t + c1

σ̃
(1+ν)/2
F,t

1+ν

)
. Gross aggre-

gate output comprises government and private production (as per standard national account-

ing conventions): yt = zt(n
G
F,t + nF,t), and it is used for private consumption, government

spending, and search costs. The aggregate resource constraint is yt = ct + gt +
∑

i=I,F χvi +∑
i=I,F ñi,t

(
c0σ̃

0.5
i,t + c1

σ̃
(1+ν)/2
i,t

1+ν

)
.

for a rapid increase in government spending. Job matching requires time, and it would mean that government
spending would only phase in slowly. Unfortunately, this slow phase-in would make our quantitative results less
comparable with existing findings in the literature.

17We assume that government spending shocks hit once per year. With probability 1/12, ϵGt is drawn from the
uniform distribution with the support [0, ñF,t/2]. Otherwise, ϵGt = 1. This specification ensures a non-negative
measure of government firms and that the inter-firm matching market tightness ratio does not explode.
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9.2 Shocks to government spending and equilibria switches

We assume that the economy is in the passive stage equilibrium (i.e., σI = σF = 0) before the

arrival of a positive government spending shock, ϵGt . Upon the realization of the shock, the

passive stage equilibrium continues to exist if and only if:

β̃ξtψH
(
1, θ̃t

)
Et
(
JI,t+1 − J̃I,t+1 | ι = 0

)
< c0, (32)

and

β̃ξtψH
(
θ̃−1
t , 1

)
Et
(
JF,t+1 − J̃F,t+1 | ι = 0

)
< c0. (33)

where β̃ = β (1− δ) /τ . Equation (32) shows that the passive stage equilibrium disappears if

the increase in government-owned single firms tightens the inter-firm matching market enough.

Proposition 2. Starting from the passive stage equilibrium, the size of government spending

needed to move the system to the active stage equilibrium is:

ñGF,t
ñI,t

> Ψ

 c0

β̃ξψEt
(
JI,t+1 − J̃I,t+1 | ι = 0

)
− ñF,t

ñI,t
, (34)

with Ψ
′
> 0.18

Equation (34) determines that the magnitude of the policy intervention that moves the

economy to an active stage equilibrium is proportional to the cost-benefit ratio of forming a

trading relationship, and it decreases with the measure of private firms in the final-goods sector

relative to intermediate-goods firms. A large quantity of private final-goods firms improves

the trading relationship prospects for intermediate-goods firms, decreasing the magnitude of

government spending needed to move to the active stage equilibrium.

9.3 The fiscal multiplier

We measure now the response of the economy to expansionary fiscal policy shocks and the size of

the fiscal multiplier. Once we introduce government spending, we have 12 state variables. Due to

this large number of state variables, we implement a dimensionality reduction algorithm inspired

18Denote h
(
θ̃
)
= H

(
1, θ̃
)
. Ψ is the inverse function of h (·). As h (·) is strictly increasing in θ̃ by assumption,

Ψ is also a strictly increasing function. In our calibration: h (θ) = 2
1
κ

(
1 + θ̃−κt

)−1/κ

, Ψ (x) = (2x−κ − 1)
−1/κ

.
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by Krusell and Smith (1998) that is of interest in itself and applicable to similar problems. See

Appendix J.2 for computational details.
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Figure 11: GIRFs to positive government spending shock

Figure 11 shows the GIRFs to the same 50% (dotted line) and 60% (solid line) shocks to the

relative size of the final-goods sector that we just described when the economy starts at the

passive DSS (Appendix P shows the responses for the system that starts from the active DSS).

Since the 60% fiscal expansion satisfies Proposition 2, it produces a significant and persistent

increase in output and a fall in unemployment. Nevertheless, this fiscal expansion crowds out

private consumption upon impact. This reaction is due to two mechanisms. First, a rise in

government-owned firms reduces, in the short run, the formation of trading relationships that

produce goods for private consumption. Second, the shift of equilibrium triggers an increase

in the cost associated with vacancy posting and the formation of trading relationships, which

further reduces private consumption. The first mechanism still exists in the 50% fiscal expansion,

inducing a small drop in private consumption.

We calculate the fiscal multiplier for our economy, defined as the ratio of the cumulative change

in output over one quarter and one year, generated by the one-period change in government

spending triggered by the inflow of government-owned single firms in the final-goods sector (we

could compute the fiscal multiplier at other horizons if desired). Panel (a) in Figure 12 shows the
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fiscal multiplier as a function of the inflow of government-owned single firms when the economy

is in the passive stage equilibrium at the start of the fiscal expansion. Panel (b) replicates the

exercise for the case when the economy is in the active stage equilibrium.
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Figure 12: Fiscal multiplier

In the passive stage equilibrium, a sufficiently large fiscal expansion generates a multiplier

larger than one since it triggers a jump in search effort. The fiscal multiplier peaks at the

threshold where we shift from the passive to the active stage equilibrium. In our calibration, the

peak quarterly fiscal multiplier, 1.59, is at a 55% increase in the number of government-owned

firms, which is equivalent to a 5.4% increase in government spending relative to output in the

first quarter (since the increase in government spending is persistent, the overall size of the fiscal

intervention is larger than the impact change of 5.4%). Any larger stimulus reduces the fiscal

multiplier because the crowding out of private consumption outweighs the increase in output

from the fiscal expansion. Similarly, a fiscal expansion below the threshold generates a less than

unitary fiscal multiplier since it creates a large crowding-out effect and no equilibrium switch.

Panel (b) in Figure 12 shows that the fiscal multiplier is substantially lower in the active

stage equilibrium. The increased costs of forming trading relationships for private firms in the

final-goods sector reduce private output, and we have a less than unitary fiscal multiplier for

any size of the fiscal stimulus. The multiplier declines with the size of government spending for

a crowding-out effect across a wide range of time horizons.

Our results in Figure 12 agree with the recent empirical literature that has documented the

acute state dependence of fiscal multipliers. See, for example, Auerbach and Gorodnichenko

(2012), Owyang et al. (2013), and Ghassibe and Zanetti (2020). Our model accounts for such

40



state dependence of fiscal multipliers.

10 Conclusion

This paper has documented five novel facts about the role of search effort in forming trading

relationships by combining a variety of micro and macro datasets. These five facts can be parsi-

moniously interpreted as suggesting the existence of search complementarities in the formation

of trading relationships. We have built a dynamic general equilibrium model, disciplined with

our new firm-level evidence on search effort, to account for those five novel facts and explore its

quantitative implications.

The analysis opens exciting avenues for additional research. Empirically, the role of agent

and spatial heterogeneity in search effort and trading relationships formation deserves further

exploration. Quantitatively, a direct extension would be to embed strategic complementarities

in richer models of the business cycle, such as those including money, nominal rigidities, and

financial frictions. We will pursue some of those ideas in future work.
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Appendix

We include a series of appendices with further details of the model and the quantitative exercises.

A Use signaling costs to measure search efforts

As an alternative exercise, we approximate the search effort by the signaling costs that make

firms more visible to potential trading partners. Following Hall (2014), we measure an industry

i’s signaling cost as the value of its intermediate input from the four industries of publishing,

motion picture/sound recording, broadcasting/telecommunications, and data processing/internet

publishing/other information services, obtained from the BEA input-output tables. We use

first log differences to remove the industry-specific trend in the measured signaling cost. The

difference between this measurement and our measurement in the main paper is that the former

gauges the search effort outsourced from the other industries, while the latter focuses on the

search effort exerted within the industry.

More precisely, we measure search costs as the intermediate input from the industries above

by deriving a measure of the signaling cost for industry i’s connected industries by weighting

signaling costs by the value of input-output intermediate goods traded with industry i. Then,

we estimate

∆σsigi,t = ω∆σsigcon(i),t + νi + γt + ϵi,t,

where ∆σsigi,t is the measure of changes in the signaling cost of industry i; ∆σsigcon(i),t is the change

in signaling cost of industry i’s connected industries, which include both industry i’s customer

and supplier industries; and υi and γt are the industry and the year fixed effects, respectively.

Column 1 in Table 8 shows that signaling costs are positively correlated between connected

industries, which –as in the main text– supports the existence of search complementarities.

To ensure that results are not driven by common shocks, we also implement the two-stage

regression approach described in the main text. Table 8 in column 2 shows that changes in

signaling costs are positively correlated between connected industries, supporting the existence

of search complementarities.
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Table 8: Search efforts are positively correlated between connected industries

(5) (6)

One-stage Two-stage

σsigcon(i),t 0.48*** 0.40***

(0.06) (0.06)

Time FE Yes Yes

Industry FE Yes Yes

R2 0.12 0.10

Observations 1,239 1,239

Note: Data are yearly from 1998 to 2017. Standard errors are in parentheses. *** denotes significance at the 1%
level.

B Wages and prices

During each period t, wages are pinned down by Nash bargaining between firms in trading

relationships and workers:

max
wi,t

(Wi,t − Ui,t)
1−τJτi,t (35)

and between single firms and workers:

max
w̃i,t

(W̃i,t − Ui,t)
1−τ J̃τi,t, (36)

where the parameter τ ∈ [0, 1] is the firm’s bargaining power.

The price for goods manufactured in the intermediate-goods sector is determined by Nash

bargaining between the final-goods producer and the intermediate-goods producer within the

trading relationship:

max
pt

(JF,t − J̃F,t)
1−τ̃ (JI,t − J̃I,t)

τ̃ , (37)

where the parameter τ̃ ∈ [0, 1] is the intermediate-goods producer’s bargaining power.

C Total surplus

The total surplus of a labor market match at time t in a trading relationship in either sector

i ∈ {I, F} of the economy is TSi,t = Wi,t − Ui,t + Ji,t. Analogously, the total surplus of a filled

job in a single firm is T̃ Si,t = W̃i,t − Ui,t + J̃i,t.
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Given the bargaining weight, τ , common across sectors, Nash bargaining for wages implies:

Ji,t = τTSi,t, (38)

Wi,t − Ui,t = (1− τ)TSi,t, (39)

J̃i,t = τ T̃Si,t, (40)

W̃i,t − Ui,t = (1− τ) T̃ Si,t. (41)

The free-entry condition of the labor market is:

χ = βξtτH
(
θ̃t, 1

)
Et
(
T̃ SI,t+1

)
= βξtτH

(
1, 1/θ̃t

)
Et
(
T̃ SF,t+1

)
. (42)

The total surplus of establishing a trading relationship is the sum of the capital gain from

matching for the firms in the intermediate-goods sector, JI,t − J̃I,t, and final-goods sector,

JF,t − J̃F,t is TSJVt = JI,t − J̃I,t + JF,t − J̃F,t. The price for intermediate goods, pt, is set

according to the Nash bargaining rules JI,t − J̃I,t = τ̃TSJVt and JF,t − J̃F,t = (1− τ̃)TSJVt,

where τ̃ is the intermediate-goods producer’s bargaining power.

We derive now the total surplus of a filled job in a trading relationship, TSi,t. Using the

equations for WI,t, JI,t, and UI,t in the definition of TSI,t, we get:

WI,t + JI,t − UI,t = ztpt − h

+ βξtEt

 (
1− δ − δ̃

)
(WI,t+1 + JI,t+1 − UI,t+1)

+δ̃
(
W̃I,t+1 + J̃I,t+1 − UI,t+1

)
− µI,t

(
W̃I,t+1 − UI,t+1

)
 , (43)

or, equivalently,

TSI,t = ztpt − h+ βξtEt
[(

1− δ − δ̃
)
TSI,t +

(
δ̃ − µI,t (1− τ)

)
T̃ SI,t

]
, (44)

where, in the interest of space, we omit the variable ιt.

Analogously, the total surplus of a filled job in a trading relationship for the firm in the

final-goods sector F is:

TSF,t = zt (1− pt)− h+ βξtEt
[(

1− δ − δ̃
)
TSF,t +

(
δ̃ − µF,t (1− τ)

)
T̃ SF,t

]
. (45)
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Next, we derive the total surplus of a filled job in a single firm, T̃ Si,t. The equations for

W̃I,t, J̃I,t, and UI,t yield:

J̃I,t + W̃I,t − UI,t = −h− c
(
σ∗
I,t

)
+

βξtEt

 (1− δ)
(
1− π∗

I,t

) (
J̃I,t+1 + W̃I,t+1 − UI,t+1

)
+

(1− δ) π∗
I,t (WI,t+1 + JI,t+1 − UI,t+1)− µI,t

(
W̃I,t+1 − UI,t+1

)
 , (46)

where σ∗
I,t is the search effort that maximizes J̃I,t and π

∗
I,t is the matching probability induced

by σ∗
I,t. By using the definition of T̃ Si,t above, we re-arrange the previous equation as:

T̃ SI,t = −h− c
(
σ∗
I,t

)
+ βξtEt

[
(1− δ) πI,tTSI,t+1 + ((1− δ) (1− πI,t)− (1− τ)µI,t) T̃ SI,t+1

]
. (47)

Nash bargaining for wages, as shown by equation (40), indicates that firm and worker choose

search effort to maximize their joint surplus T̃ SI,t. Specifically, since σ
∗
I,t maximizes J̃I,t, it also

maximizes T̃ SI,t. Thus, equation (47) becomes:

T̃ SI,t = max
σI,t≥0

{
− h− c (σI,t)

+ βξtEt
[
(1− δ) πI,tTSI,t+1 + ((1− δ) (1− πI,t)− (1− τ)µI,t) T̃ SI,t+1

]}
, (48)

and where πI,t is an increasing function of σI,t.

We denote the gain for total surplus from forming a trading relationship as ∆TSi,t =

TSi,t − T̃ Si,t, and rewrite equation (48) as:

T̃ SI,t = max
σI,t≥0

{
− h− c (σI,t)

+ βξtEt
[
(1− δ) πI,t∆TSI,t+1 + ((1− δ)− (1− τ)µI,t) T̃ SI,t+1

]}
. (49)

Similarly, we write the total surplus for single firms in the final-goods sector as:

T̃ SF,t = max
σF,t≥0

{
− h− c (σF,t)

+ βξtEt
[
(1− δ)πF,tTSF,t+1 + ((1− δ) (1− πF,t)− (1− τ)µF,t) T̃ SF,t+1

]}
, (50)
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or, equivalently,

T̃ SF,t = max
σF,t≥0

{
− h− c (σF,t)

+ βξtEt
[
(1− δ)πF,t∆TSF,t+1 + ((1− δ)− (1− τ)µF,t) T̃ SF,t+1

]}
. (51)

Finally, we derive the total surplus of a trading relationship, TSJVi,t. The Nash bargaining

for the intermediate goods price and wage yields ∆TSI,t =
τ̃
τ
TSJVt and ∆TSF,t =

(
1−τ̃
τ

)
TSJVt.

Using equations (44) and (48) in the definition of ∆TSi,t produces:

∆TSI,t = min
σI,t

{
ztpt + c (σI,t) + β

[(
1− δ − δ̃

)
− (1− δ) πI,t

]
ξtEt (∆TSI,t+1)

}
, (52)

or after using the Nash bargaining condition ∆TSI,t =
τ
τ̃
TSJVt:

TSJVt = min
σI,t

{τ
τ̃
[ztpt + c (σI,t)] + β

[(
1− δ − δ̃

)
− (1− δ) πI,t

]
ξtEt (TSJVt+1)

}
. (53)

Analogously, the total surplus of a trading relationship from sector F ’s optimization problem is:

TSJVt = min
σF,t

{ τ

1− τ̃
[zt (1− pt) + c (σF,t)]

+ β
[(

1− δ − δ̃
)
− (1− δ) πF,t

]
ξtEt (TSJVt+1)

}
. (54)

Combining equation (53)×τ̃+equation (54)× (1− τ̃), pt cancels out and we find:

TSJVt = τ · zt + β
(
1− δ − δ̃

)
ξtEt (TSJVt+1)

+ min
σI,t

{
τ · c (σI,t)− β (1− δ)πI,tξtEt (τ̃ · TSJVt+1)

}
+min

σF,t

{
τ · c (σF,t)− β (1− δ) πF,tξtEt [(1− τ̃) · TSJVt+1]

}
. (55)

The first-order conditions for {σI,t, σF,t} in equation (55) are:

β (1− δ) (ψ + σF,t)H
(
θ̃t, 1

)
τ̃ ξtEt (TSJVt+1) = τ [c0 + c1 (σI,t)

ν ] , (56)

β (1− δ) (ψ + σI,t)H
(
1, θ̃−1

t

)
(1− τ̃) ξtEt (TSJVt+1) = τ [c0 + c1 (σF,t)

ν ] . (57)

The active stage equilibrium exists if and only if there exists a pair (σI,t, σF,t) > 0 that jointly
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solves equations (56) and (57). In the symmetric equilibrium for which τ̃ = 1/2 and θ̃t = 1,

equations (56) and (57) become:

β̃ (ψ + σF,t) ξtEt
(
JI,t+1 − J̃I,t+1

)
= c0 + c1 (σI,t)

ν , (58)

β̃ (ψ + σI,t) ξtEt
(
JF,t+1 − J̃F,t+1

)
= c0 + c1 (σF,t)

ν , (59)

where β̃ = β (1− δ) /τ . Equivalently, we can express the first-order conditions as:

β (1− δ) (ψ + σF,t) ξtEt (∆TSI,t+1) = c0 + c1 (σI,t)
ν (60)

β (1− δ) (ψ + σI,t) ξtEt (∆TSF,t+1) = c0 + c1 (σF,t)
ν . (61)

D The deterministic steady states of the model

We study now the existence of the deterministic steady states (DSSs) of the model that appear

when we shut down the shocks ξt and zt by making them constant and equal to their mean

values (both equal to 1). The model encompasses two types of DSSs: a passive DSS with zero

search effort (σI = σF = 0) and active DSSs with positive search effort (σI > 0, σF > 0).

Proposition 3. The level of output is strictly lower and the unemployment rate is strictly higher

in a passive DSS than in an active DSS.

Proof. We consider the case of symmetric sectors, so we drop the sector subscripts. We first

show that the labor market tightness ratio is strictly lower in the passive DSS, i.e., θpas < θact,

or, equivalently T̃ S
pas

< T̃S
act
, as implied by the free-entry condition of the labor market.

We start with

T̃ S
act

= −h+

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β

{
(1− δ)πact ·∆TSact +

[
(1− δ)− µact (1− τ)

]
T̃ S

act
}
, (62)

and

µact =

(
βτT̃S

act

χ

) α
1−α

. (63)
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The values for T̃ S
act

and θact solve equations (62) and (63). We rewrite equation (63) as

χ = βτqactT̃ S
act

= βτqpasT̃ S
pas
. (64)

Given the Cobb-Douglas matching function for the labor market, equation (64) is equivalent to:

θact =

(
βτT̃S

act

χ

) 1
1−α

. (65)

Applying equation (64) to equation (62), delivers:

(
1− τ

τ

)
χθact =

{
− h−

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β (1− δ) πact ·∆TSact − [1− β (1− δ)] T̃ S

act
}
, (66)

where we used µact = θactqact. In equation (64), θ is strictly increasing in T̃ S. In equation (66), θ

is linear and strictly decreasing in the total surplus for a single firm, T̃ S. Since σact and ∆TSact

are solved below in equations (94) and (95), they are treated as constant terms here.

Hence, values for θact and T̃ S
act

solve:

(
1− τ

τ

)
χθ =

{
− h−

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β (1− δ) πact ·∆TSact − [1− β (1− δ)] T̃ S

}
(67)

θ =

(
βτT̃S

χ

) 1
1−α

. (68)

Similarly, values for T̃ S
pas

and θpas solve:(
1− τ

τ

)
χθ = [−h+ β (1− δ) πpas ·∆TSpas]− [1− β (1− δ)] T̃ S, (69)

θ =

(
βτT̃S

χ

) 1
1−α

. (70)

In equations (67) and (69), θ is linear and strictly decreasing in T̃ S. In equations (68) and (70),

θ is strictly increasing in T̃ S.
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For θact > θpas, it must be that the intercept term in equation (66) is greater than the

intercept term in equation (69), which occurs if:

−h−

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β (1− δ) πact ·∆TSact > −h+ β (1− δ) πpas ·∆TSpas. (71)

To simplify notation, denote W (σ) = −h+ W1(σ)
W2(σ)

, where

W1 (σ) =
[
β
(
1− δ − δ̃

)
− 1
] [
c0σ + c1

σν+1

1 + ν

]
+ β (1− δ)

[
ϕ+ (ψ + σ)2

]
,

W2 (σ) = 1− β
{(

1− δ − δ̃
)
− (1− δ)

[
ϕ+ (ψ + σ)2

]}
.

It can be shown that equation (71) is equivalent to W (σact) > W (0). We verify that, for

σ ∈
(
0,
√
1− ϕ− ψ

)
, dW1

dσ
/W1 >

dW2

dσ
/W2, which implies dW/dσ > 0. Consequently, equation

(71) holds, and θact > θpas.

Since the job-finding rate is strictly increasing in labor market tightness, µact > µpas. Since

u = δ/ (δ + µ) in the DSS, uact < upas holds.

Finally, we show that yact > ypas. Since y = n and n = 1− ñ− u, yact > ypas is equivalent to

showing that ñact + uact < ñpas + upas.

In the DSS, it holds that:

ñ+ u =
δ̃ + (π + µ+ δ) δ

δ+µ

δ + π + δ̃
. (72)

The RHS of equation (72) is strictly decreasing in both µ and π. Given that µpas < µact and

πpas < πact, it holds that ñact + uact < ñpas + upas, or, equivalently, yact > ypas.

Intuitively, zero search effort in the passive DSS implies few trading relationships and low

production. A small probability of forming a trading relationship reduces the value of a single

firm and generates a fall in posted vacancies and an increase in unemployment.

The next two propositions establish conditions for the existence of the different DSSs.

Proposition 4. The passive DSS exists if and only if

β(1− δ)τψ

2− 2β
[(

1− δ − δ̃
)
− (1− δ) (ϕ+ ψ2)

] < c0. (73)
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Proof. This proposition holds if it is optimal for firms in one sector to search with zero effort

when firms in the opposite sector search with zero effort. In such a case, the Nash equilibrium

with zero search effort exists in the passive DSS.

The firm’s maximization problem in the passive DSS is:

T̃ S
pas

= max
σ≥0

−h−
(
c0σ + c1

σν+1

1 + ν

)
+ β

(1− δ) [ϕ+ ψ (ψ + σ)] ·∆TSpas

+ [(1− δ)− µpas (1− τ)] T̃ S
pas

 . (74)

The total surplus of a single firm T̃ S
pas

is strictly concave in σ, for σ > 0. Hence, the corner

solution σ = 0 is optimal if and only if the first-order derivative is non-positive at σ = 0:

c0 + c10
ν ≥ β (1− δ)ψ∆TSpas, (75)

where ∆TSpas is given by equation (92), or, equivalently:

c0 >
βτ (1− δ)ψ

2− 2β
[(

1− δ − δ̃
)
− (1− δ) (ϕ+ ψ2)

] , (76)

where we assume zss = 1, ξss = 1, and τ̃ = 0.5.

Proposition 4 states that the passive DSS exists for any sufficiently large value of c0—that is,

when the benefit from an additional unit of search effort is lower than the cost associated with

it. In such a case, σI = σF = 0. The critical cost for the existence of the passive DSS is c0. In

comparison, c1 does not appear in Proposition 4.

Proposition 5. An active DSS exists if and only if there exists σ ∈
(
0,
√
1− ϕ− ψ

)
that solves

1 +
(
c0σ + c1

σ1+ν

1+ν

)
2− 2β

[(
1− δ − δ̃

)
− (1− δ)

(
ϕ+ (σ + ψ)2

)] =
c0 + c1σ

ν

β(1− δ)τ (ψ + σ)
. (77)

Proof. This proposition holds if there exist σ ∈
(
0,
√
1− ϕ− ψ

)
(to guarantee that the matching

probability is bounded by one) and ∆TS ∈ R that solve equations (95) and (94).
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By substituting equation (95) into equation (94), we get:

1 +
(
c0σ + c1

σν+1

1+ν

)
2− 2β

[(
1− δ − δ̃

)
− (1− δ)

[
ϕ+ (σ + ψ)2

]] =
c0 + c1σ

ν

βτ (1− δ) (ψ + σ)
, (78)

where we assume τ̃ = 1/2, ξss = 1, zss = 1.

The LHS of equation (77) captures the marginal gain of searching with positive effort in

the active stage equilibrium. The RHS reflects the marginal cost of searching. In the active

DSS, both quantities must be equal. Proposition 5 defines the parameter values that guarantee

the existence of the active DSS. The restriction σ ∈
(
0,
√
1− ϕ− ψ

)
ensures that the matching

probability ϕ+ (ψ + σI)(ψ + σF ) is within (0,1).

Proposition 6. The active and passive DSSs coexist if and only if equations (73) and (77) hold

simultaneously.

Equations (73) and (77) can hold simultaneously, since they depend on different parameter

combinations. The passive DSS characterized by equation (73) is uniquely pinned down when

σI = σF = 0. In comparison, the system allows for multiple active DSSs, since equation (77) can

hold for different symmetric (σI,t, σF,t) > 0. When the best response function is strictly concave

(i.e., ν > 1), the system admits, at most, two DSSs (if ν < 1, we would only have one active and

unstable equilibrium). The argument is formalized next.

Figure 13: Existence of DSSs

Figure 13 illustrates, for a range of values of c0 (x-axes) and ψ (y-axes), the conditions for

the existence of a passive DSS, an active DSS, and the coexistence of DSSs stated in the main

text when the model is calibrated as in Section 5. The yellow-shaded area shows the values
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that guarantee the existence of such a DSS, while the blue area shows the non-existence region.

Panel (a) shows that conditional on the value of ψ, the passive DSS exists when the value of c0

is sufficiently large. Panel (b) demonstrates that the active DSS exists for sufficiently low values

of c0. Panel (c) shows that two DSSs exist when c0 is in the medium range.

Lemma 1. The system has a unique passive DSS and at most two active DSSs.

Appendix F establishes the stability of the DSSs and it shows that a slight deviation of a

subset of firms from their best response will fail to cause the system to deviate from the initial

DSS permanently.

E Mixed-strategy Nash equilibria

This appendix discusses the role of mixed-strategy Nash equilibria in our model. We first

establish the condition for the existence of a mixed-strategy Nash equilibrium in the DSS (the

case with stochastic shocks is similar, but more cumbersome to derive). Then, we argue that such

a mixed-strategy Nash equilibrium exists and is unique for the calibration in Section 5. However,

this mixed-strategy Nash equilibrium is unstable: a small deviation from the mixed-strategy

makes the system converge to the pure-strategy Nash equilibrium.

In a mixed-strategy setting, firms randomize their search effort by choosing σ = 0 with

probability q and choosing σ = σ̂ with probability (1− q). We numerically verify that the

solution to equation (60) is unique in the range of 0 < σ̂ <
√
1− ϕ − ψ. So firms cannot

randomize their search effort by choosing between multiple positive efforts. The random choice

is independent across firms. Due to the law of large numbers, the average search effort in both

sectors is σ = q · 0 + (1− q) σ̂. For a single firm, the inter-firm matching probability is given by

π (σ) = ϕ+ ψ (ψ + σ) (ψ + σ). In the mixed-strategy Nash equilibrium, the inter-firm matching

probability takes two values: π (0) = ϕ+ ψ (ψ + σ) and π (σ̂) = ϕ+ (ψ + σ̂) (ψ + σ).

A mixed-strategy Nash equilibrium consists of a tuple {q, σ̂} with σ̂ ∈
(
0,
√
1− ϕ− ψ

)
and

q ∈ (0, 1). The tuple {q, σ̂} implies that single firms are indifferent between choosing σ = 0 and

σ = σ̂, i.e., T̃ S (0) = T̃ S (σ̂). Since ∆TS (0) = TS − T̃ S (0) and ∆TS (σ̂) = TS − T̃ S (σ̂), it

holds that ∆TS (0) = ∆TS (σ̂). We denote ∆TS (0) = ∆TS (σ̂) = ∆TS.

According to equation (52):

∆TS = zsspss + β
[(

1− δ − δ̃
)
− (1− δ) π (0)

]
∆TS, (79)
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where c (0) = 0. From equation (49), the single firm’s total surplus with zero search effort is:

T̃ S (0) = −h+ β
[
(1− δ) π (0)∆TS + ((1− δ)− (1− τ) θα) T̃ S (0)

]
. (80)

Analogously, the single firm’s total surplus by choosing σ̂ search effort satisfies:

T̃ S (σ̂) = −h− c (σ̂) + β
[
(1− δ) π (σ̂)∆TS + ((1− δ)− (1− τ) θα) T̃ S (σ̂)

]
. (81)

Since T̃ S (0) = T̃ S (σ̂) in the mixed-strategy Nash equilibrium, combining equations (80)

and (81) delivers:

c (σ̂) = β (1− δ) (π (σ̂)− π (0))∆TS. (82)

Finally, according to the first-order condition for {σI,t, σF,t} in equation (60):

β (1− δ) (ψ + σ)∆TS = c0 + c1σ̂
ν . (83)

In sum, we have the three equations (79), (82), and (83) and three unknowns (i.e., σ̂, q,

∆TS). The mixed-strategy Nash equilibrium exists if the system of equations has a solution for

the three unknowns. Using the calibration in Section 5, the mixed-strategy Nash equilibrium is

q = 0.3425, σ̂ = 0.0164, and ∆TS = 2.7417. The average search effort σ is (1− q)× σ̂ = 0.0107.
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Figure 14: Best response in the mixed-strategy Nash equilibrium

The left panel in Figure 14 displays the firm’s optimal search effort in sector F as a function

of σI . The firm chooses a positive search effort if σI > 0.0107 (i.e., for values to the right of the

vertical dashed line). The firm chooses a zero search effort if σI < 0.0107 (i.e., for values to the
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left of the vertical dashed line). The firm is indifferent between choosing σ = 0.0164 and σ = 0

if σI = 0.0107 (i.e., if sector I uses the mixed-strategy qI = 0.3425, σ̂I = 0.0164).

The right panel in Figure 14 plots σF as a function of σI . The firm chooses a positive search

effort if σI > 0.0107 (i.e., for values to the right of the vertical dashed line). The firm would

choose a zero search effort if σI < 0.0107 (i.e., for values to the left of the vertical dashed line).

If σI < 0.0107 (i.e., if sector I uses the mixed-strategy qI = 0.3425, σ̂I = 0.0164), a fraction

0.3425 of firms chooses σ = 0, while the rest of the firms choose σ = 0.0164, which implies

σF = 0.0107 (i.e., the cross marker).

Figure 14 shows that the mixed-strategy Nash equilibrium is unstable: a decrease in σI

induces all firms in sector F to search with zero effort and the system converges to the pure-

strategy Nash equilibrium with zero search effort (i.e., passive stage equilibrium). Similarly,

an increase in σI induces all firms in sector F to search with positive effort; hence, the system

converges to the pure-strategy Nash equilibrium with positive search effort (i.e., active stage

equilibrium).

F Stability of DSSs

The next proposition establishes the stability of the DSSs. This stability guarantees that a slight

deviation of a subset of firms from their best response will fail to cause the system to deviate

from the initial DSS permanently.

Proposition 7. Suppose the active and passive DSSs coexist. The passive DSS is stable. When

two active DSSs coexist, one DSS is stable and the other DSS is unstable. When only one active

DSS exists, it is unstable.

Proof. We first show that the Nash equilibrium in the passive DSS is stable. To do so, we

demonstrate that there exists an ϵ > 0, such that when a firm in sector j deviates from the

passive DSS by searching with a small and positive effort bounded by ϵ, it remains optimal for

the firm in the opposite sector i to search with zero effort:

c0 + c10
ν > β (1− δ) (ψ + σj)E (∆TSi) , (84)

where σj ∈ (0, ϵ). The RHS of equation (84) is a function of σj, which is continuous at σj = 0

(note that E (∆TSi) is a continuous function of σj). Given the existence of the passive DSS,

57



we know that c0 + c10
ν > β (1− δ)ψ∆TSpas. Because of continuity, there exists ϵ > 0, so that

equation (84) holds when σj < ϵ.

Next, we show that one Nash equilibrium in the active DSS is stable when two active DSSs

exist. The best response function of sector i implied by equations (60) and (61) in the active

DSS is:

σi =


[
β(1−δ)(ψ+σj)∆TSact−c0

c1

] 1
ν

if β (1− δ) (ψ + σj)∆TS
act ≥ c0

0 if β (1− δ) (ψ + σj)∆TS
act < c0,

(85)

which is strictly increasing and concave in σj since c1 > 0 and ν > 1. When two active DSSs

exist, the best response curve (85) intersects with the 45-degree line at σF = σI = σ∗ and

σF = σI = σ∗∗ with 0 < σ∗ < σ∗∗ <
√
1− ϕ−ψ. Due to strict concavity, we have dσi

dσj
|σi=σj=σ∗> 1

and dσi
dσj

|σi=σj=σ∗∗< 1. Therefore, the active Nash equilibrium at σF = σI = σ∗ is unstable, while

the one at σF = σI = σ∗∗ is stable.

Finally, consider the case when the passive DSS and one active DSS exist, where σF = σI = σ∗

and 0 < σ∗ <
√
1− ϕ− ψ. Since the passive DSS exists, the inequality c0 > β (1− δ)ψ∆TSpas

holds. In addition, we have that ∆TSact < ∆TSpas, which results from equations (92) and

(93). We also have that c0 > β (1− δ)ψ∆TSact. So σi (σj) = 0 in the active DSS for σj ∈ [0, σ̂]

with σ̂ = c0
β(1−δ)∆TSact − ψ. Since σF = σI = σ∗ is the only intersection between σi (σj) and the

45-degree line in the range σj ∈ [σ̂, σ∗] with σi (σ̂) = 0, we must have dσi
dσj

|σi=σj=σ∗≥ 1. When

the derivative is equal to one, the best response curves are tangent to the 45-degree line; when

the derivative is greater than one, the best response curve may have two intersections with the

45-degree line, in which case we have 0 < σ∗ <
√
1− ϕ− ψ < σ∗∗ which ensures that only one

intersection (σ∗) is the active stage equilibrium. Since the derivative is greater than or equal to

one, the active stage Nash equilibrium at σF = σI = σ∗ is unstable.

For the remainder of the analysis, we mainly focus on stable DSSs. Also, we can study

the transition path from an arbitrary point in the state space of the system to the DSS. The

endogenous state variables of the system are the unemployment rates (uI,t, uF,t), the measure of

single firms (ñI,t, ñF,t), the measure of firms in trading relationships (nI,t, nF,t), and the current

equilibrium (ιt). Knowledge of ñi,t and ui,t gives us ni,t = 1− ñi,t − ui,t.

Figure 15 shows the transition path of the system to the DSS for different initial values of

the unemployment rate (x-axes) and the measure of single firms (y-axes) and the calibration in

Section 5. Since we consider the case of a symmetric economy, the analysis is representative
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(a) Initial passive stage equilibrium
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(b) Initial active stage equilibrium

Figure 15: Transition path to the DSS

of each sector. Panel (a) shows the transition path to the DSS when the system starts from a

passive stage equilibrium (with each red dot representing a DSS of the system). Given history

dependence, the system remains in the passive stage equilibrium and converges to the passive

DSS indicated by the higher red circle, where the unemployment rate is 7.5% and the measure

of single firms is 22%. Analogously, panel (b) shows that the system converges to the active and

stable DSS, when it starts from an active stage equilibrium. In the active DSS (the lower red

dot), the unemployment rate is 5.5%, and the measure of single firms is 12%.

G Existence of two stage equilibria

The following propositions characterize the conditions for the existence of passive and active

stage equilibria and their coexistence.

Proposition 8. The passive stage equilibrium exists if and only if

∂Πi (0|0, ιt = 0)

∂σi,t
≤ 0 for i = I, F (86)

or equivalently

c0 > β̃ψξtEt(Ji,t+1 − J̃i,t+1 | ιt = 0). (87)

Proposition 8 states that the passive stage equilibrium exists when the marginal benefit from

increasing search effort is negative.Thus, the existence of the passive stage equilibrium requires
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either a low ξt or a small zt+1 (and, hence, a low Et(Ji,t+1 − J̃i,t+1 | ιt = 0)).

Proposition 9. The active stage equilibrium exists if and only if there exists a pair of positive

search efforts ({σI,tσF,t} > 0) that satisfies:

∂Πi (σi,t | σj,t, ιt = 1)

∂σI,t
= 0 for i = {I, F} (88)

or, equivalently,

c0 + c1σ
ν
i,t = β̃ (ψ + σj,t) ξtEt(Ji,t+1 − J̃i,t+1 | ιt = 1), (89)

with (σI,t, σF,t) > 0 and the second derivatives of Πi are negative.

Proposition 9 states that an active stage equilibrium exists when the optimal response of the

firm is to choose σi,t > 0 that satisfies equation (89). The next proposition states the condition

for the coexistence of the two stage equilibria.

Proposition 10. The active and passive stage equilibria coexist if and only if Propositions 8

and 9 hold simultaneously.

H Solving for the DSSs

To solve for the DSSs, we evaluate the equilibrium conditions of the model when the variables

are constant over time and the exogenous shocks take their average value. The model entails a

passive and an active (stable) DSS. We disregard the active and unstable DSS in our analysis.

We denote the variables referring to the passive and active DSS with superscript “pas” and

“act,” respectively.

Using equation (55), the total surplus of a trading relationship in the passive DSS is:

TSJV pas = τ · zss + 2τ · c (0)

+ βξss
[(

1− δ − δ̃
)
− τ̃ (1− δ) πpasI − (1− τ̃) (1− δ) πpasF

]
TSJV pas (90)

where c (0) = 0, πpasI = (ϕ+ ψ2)H
(
1, θ̃pas

)
, and,

πpasF =
(
ϕ+ ψ2

)
H
(
1, 1/θ̃pas

)
. (91)
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As in our baseline calibration, we set τ̃ = 0.5 and assume a symmetric equilibrium so that

θ̃pas = 1. Applying these conditions in equation (90) yields:

TSJV pas =
τ · zss

1− βξss
[(

1− δ − δ̃
)
− (1− δ) (ϕ+ ψ2)

] . (92)

The gain of total surplus from forming a trading relationship in the passive DSS is determined

by ∆TSpasI = τ̃
τ
TSJV pas and ∆TSpasF =

(
1−τ̃
τ

)
TSJV pas, which are useful in deriving the total

surplus of a filled job in the passive DSS.

Analogously, the total surplus of a trading relationship in the active DSS is:

TSJV act =

τ ·
[
zss +

(
c0σ

act
I + c1

(σact
I )

ν+1

1+ν

)
+

(
c0σ

act
F + c1

(σact
F )

ν+1

1+ν

)]
1− βξss

[(
1− δ − δ̃

)
− τ̃ (1− δ) πactI − (1− τ̃) (1− δ)πactF

] , (93)

where:

πactI =
[
ϕ+

(
σactF + ψ

) (
σactI + ψ

)]
H
(
1, θ̃act

)
,

and

πactF =
[
ϕ+

(
σactF + ψ

) (
σactI + ψ

)]
H
(
1, 1/θ̃act

)
.

By imposing the symmetry conditions τ̃ = 1/2, θ̃act = 1 and σactF = σactI = σact, equation (93)

becomes:

TSJV act =

τ ·
[
zss + 2

(
c0σ

act + c1
(σact)

ν+1

1+ν

)]
1− βξss

[(
1− δ − δ̃

)
− (1− δ)

[
ϕ+ (σact + ψ)2

]] . (94)

In the active DSS, the first-order condition for {σI,t, σF,t} described by equations (56) and

(57) is:
β (1− δ) (ψ + σact) ξssTSJV act

2
= τ

[
c0 + c1

(
σact
)ν]

. (95)

Equations (94) and (95) can be used to solve numerically for σact and TSJV act.

The gain of total surplus from forming a trading relationship in the active DSS is determined

by ∆TSactI = τ̃
τ
TSJV act and ∆TSactF =

(
1−τ̃
τ

)
TSJV act. Next, we derive the total surplus of a

filled job in a single firm and the job-finding rate in the DSS. Using equation (47), the total
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surplus of a filled job for a single firm in sector I in the passive DSS is:

T̃ S
pas

I = −h+ β
{
(1− δ)πpasI ·∆TSpasI + [(1− δ)− µpasI (1− τ)] T̃ S

pas

I

}
, (96)

where ∆TSpasI and πpasI were solved analytically as in equations (91) and (92). Using the

matching function and free-entry condition in the labor market, the job-finding rate in the

passive DSS is:

µpasI =

(
βτT̃S

pas

I

χ

) α
1−α

. (97)

Equations (96) and (97) are solved numerically for T̃ S
pas

I and µpasI .

Applying the same approach, we solve for T̃ S
pas

F and µpasF . Analogously, the total surplus of

a filled job in a single firm and the job-finding rate in the active DSS solves:

T̃ S
act

i = −h+

[
c0σ

act
i + c1

(σacti )
ν+1

1 + ν

]
+ β

{
(1− δ) πacti ·∆TSacti +

[
(1− δ)− µacti (1− τ)

]
T̃ S

act

i

}
, i ∈ F, I (98)

and

µacti =

(
βτT̃S

act

i

χ

) α
1−α

, i ∈ F, I. (99)

The total surplus of a filled job in a trading relationship in the DSS is TSli = T̃ S
l

i+∆TSli, i ∈

{I, F} , l ∈ {act, pas}. The firm’s asset value in the DSS is J li = τTSli, J̃
l
i = τ T̃S

l

i, i ∈

{I, F} , l ∈ {act, pas}. Finally, we can derive the DSS value for the remaining variables.

Substituting the job-finding rate into the matching function of the labor market, we get

θpas = (µpas)
1
α and θact = (µact)

1
α .

The value for the unemployment rate, the measure of single firms, and the measure of trading

relationships in the passive and active DSS are:

upas =
δ

δ + µpas

uact =
δ

δ + µact

ñpas =
δ̃ +

(
µpas − δ̃

)
upas

δ + πpas + δ̃
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ñact =
δ̃ +

(
µact − δ̃

)
uact

δ + πact + δ̃

npas = 1− upas − ñpas

nact = 1− uact − ñact.

The value for total final output in the passive and active DSSs is ypas = zssnpas and yact = zssnact.

I Equilibrium

A recursive, symmetric equilibrium of type ιt for our economy is a collection of Bellman equations

Ui,t, W̃i,t, Wi,t, J̃i,t, Ji,t, and Vi,t, a variable search effort σi,t, and sequences for unemployment

ut, single firms ñi,t, trading relationships nt, the price of the intermediate good pt, and wages

w̃i,t and wi,t, all for i ∈ {I, F}, such that:

1. Ui,t, W̃i,t, Wi,t, J̃i,t, Ji,t, and Vi,t satisfy equations (21)-(27).

2. The free-entry condition Vi,t = 0 holds.

3. σi,t maximizes the asset value of the single firm J̃i,t.

4. The sequences of unemployment ut, single firms ñi,t, and trading relationships nt follow

the laws of motion in equations (13), (20), and (19), respectively.

5. The intermediate-goods price pt and the wage for single and trading relationships, w̃i,t and

wi,t, respectively, are determined by the Nash bargaining equations (35)-(37).

6. The type of equilibrium ιt is consistent with σi,t.

7. ξt and zt follow their stochastic processes.

8. The aggregate resource constraint (28) is satisfied.

J Model solution

In this appendix, we outline the algorithm to solve the model numerically.
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J.1 Solution without government spending

We first discuss the solution to the benchmark case without government spending. The vector

of state variables is St = (zt, ξt, ιt−1, ut, nt, ñt), where we omit the sector subscripts. At the

beginning of period t, St is taken as given. The states zt and ξt are exogenous, and the states

ιt−1, ut, nt, and ñt are endogenous and predetermined. To derive the solution of the system, we

require the value functions TSJV (St), and T̃ S (St); two policy functions σ (St), and θ (St); and

the transition rule of ιt = ι (ιt−1, St). The transition rule for the other endogenous states (ut, nt

and ñt) is directly given by the model once the other functions have been found.

Because of sectoral symmetry, θ̃t = ñF,t/ñI,t = 1. As we show below in equation (100), a

fixed θ̃ implies that the value functions, policy functions, and the transition rule for ιt depend

on (zt, ξt, ιt−1) only.

Step 1: Solve for TSJV , σ, and ι. Equation (55) can be rewritten as:

TSJV (zt, ξt, ιt−1) = min
σt≥0

τ · [zt + 2c (σt)] + β
{(

1− δ − δ̃
)
− (1− δ) [ϕ+ (ψ + σt) (ψ + σt)]

}
∗ ξtEt [TSJV (zt+1, ξt+1, ιt)] , (100)

where σt is the search effort in the opposite sector, taken as given by the firms. In the symmetric

equilibrium, σt = σt.

The equilibrium type ιt is determined by the best response functions implied by equation

(100) and the history dependence of equilibrium selection. Specifically, if ιt−1 = 0 (passive stage

equilibrium in t− 1), we first verify whether the passive stage equilibrium continues to exist in

period t by checking whether:

argmin
σt≥0

2c (σt)− β̃ [ϕ+ (ψ + σt)ψ] ξtEt [TSJV (zt+1, ξt+1, ιt = 0)] = 0 (101)

holds. If it does, the passive stage equilibrium exists and persists (ιt = ιt−1 = 0). Otherwise, the

passive stage equilibrium does not exist and we switch to the active stage equilibrium (ιt = 1).

Analogously, if ιt−1 = 1 (active stage equilibrium in t− 1), we verify whether the active stage

equilibrium continues to exist in period t by checking whether:

argmin
σt≥0

2c (σt)− β̃ [ϕ+ (ψ + σt) (ψ + σ∗)] ξtEt [TSJV (zt+1, ξt+1, ιt = 1)] > 0 (102)
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holds. If it does, the active stage equilibrium exists and persists (ιt = ιt−1 = 1). Otherwise, the

active stage equilibrium does not exist and we switch to the passive stage equilibrium (ιt = 0).

We use value function iteration methods to solve for the value function TSJV , the policy

function σ, and the transition rule of ι using equation (100) and conditions (101) and (102).

Step 2: Solve for T̃ S and θ. Equation (47) can be rewritten as:

T̃ S (zt, ξt, ιt−1) = −h− c (σt)+βξtEt

 (1− δ) πt∆TS (zt+1, ξt+1, ιt)+

((1− δ)− (1− τ) θα (zt, ξt, ιt−1)) T̃ S (zt+1, ξt+1, ιt)

 , (103)
where we used ∆TSt+1 = TSt+1 − T̃ St+1 and µt = θαt .

The free-entry condition of the labor market (equation 42) can be rewritten as:

χ = βξtτθ
α−1 (zt, ξt, ιt−1)Et

[
T̃ S (zt+1, ξt+1, ιt)

]
. (104)

With ∆TSt = τ̃TSJVt/τ , σt, and ιt being solved in step 1, we find the value function T̃ S

and the policy function θ with equations (103) and (104) by using value function iteration.

J.2 Solution with government spending

We consider now the case with government spending. This case is challenging to solve since,

in general, it implies sectoral asymmetry. The model’s vector of state variables is: St =(
zt, ξt, ϵ

G
t , ιt−1, u

F
t , u

I
t , n

F
t , n

I
t , n

G
t , ñ

F
t , ñ

I
t , ñ

G
t

)
. States zt, ξt, and ϵGt are exogenous, and states

ιt−1, u
F
t , u

I
t , n

F
t , n

I
t , n

G
t , ñ

F
t , ñ

I
t , and ñ

G
t are endogenous. To derive the solution of the system, we

need the solution for the value functions TSJV (St), T̃ SF (St), and T̃ SI (St) (the other value

functions can be derived from these three value functions), the four policy functions σI (St),

σF (St), θI (St), and θF (St), and the transition rule of ιt = ι (ιt−1, St). The transition rule of the

other endogenous states is directly given once the other functions have been found.

In the asymmetric case, the value functions, the policy functions, and the transition rule of

ιt depend on the entire vector of states St rather than a subset of St as in Appendix J.1. The

reason is that the measure of single firms
(
ñFt , ñ

I
t , ñ

G
t

)
determines the inter-firm market tightness

ratio θ̃t, which affects firms’ value and policy. In addition, the transition rule of
(
ñFt , ñ

I
t , ñ

G
t

)
depends on the

(
uFt , u

I
t , n

F
t , n

I
t , n

G
t

)
.
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Given the high dimension of the state space, we simplify the model solution with a fore-

cast rule for θ̃ that only depends on a small number of state variables. This approach is

inspired by similar ideas in Krusell and Smith (1998). Intuitively, firms do not need to know(
uFt , u

I
t , n

F
t , n

I
t , n

G
t , ñ

F
t , ñ

I
t , ñ

G
t

)
to make decisions if the forecast rule is accurate, which greatly

reduces the dimension of the state space when solving the value and policy functions.

We choose the forecast rule:

log
(
θ̃t+1

)
=
(
aθ̃ + aθ̃,ιιt−1

)
log
(
θ̃t

)
+ (az + az,ιιt−1) log (zt)

+ (aξ + aξ,ιιt−1) log (ξt) + (aG + aG,ιιt−1) ϵ
G
t , (105)

where A =
(
aθ̃, aθ̃,ι, az, az,ι, aξ, aξ,ι, aG, aG,ι

)
is the vector of coefficients to be determined.

To do so, we proceed as follows:

Step 1: Initialize the algorithm. We initialize the forecast rule with some initial guess:

A(0) =
(
a
(0)

θ̃
, a

(0)

θ̃,ι
, a(0)z , a(0)z,ι , a

(0)
ξ , a

(0)
ξ,ι , a

(0)
G , a

(0)
G,ι

)
. (106)

Step 2: Solve for TSJV , σF , σI, and ι. Equation (55) can be rewritten as:

TSJV
(
zt, ξt, ϵ

G
t , ιt−1, θ̃t

)
= τ · zt + β

(
1− δ − δ̃

)
ξtEt

[
TSJV

(
zt+1, ξt+1, ϵ

G
t+1, ιt, θ̃t+1

)]
(107)

+ min
σI,t

τ · c (σI,t)− β (1− δ) πI,tξtEt
[
τ̃TSJV

(
zt+1, ξt+1, ϵ

G
t+1, ιt, θ̃t+1

)]
+min

σF,t

τ · c (σF,t)− β (1− δ)πF,tξtEt
[
(1− τ̃)TSJV

(
zt+1, ξt+1, ϵ

G
t+1, ιt, θ̃t+1

)]
,

where πI,t = [ϕ+ (ψ + σF,t) (ψ + σI,t)]H
(
θ̃t, 1

)
, πF,t = [ϕ+ (ψ + σF,t) (ψ + σI,t)]H

(
1, 1/θ̃t

)
,

log
(
θ̃t+1

)
=
(
a
(q)

θ̃
+ a

(q)

θ̃,ι
ιt−1

)
log
(
θ̃t

)
+
(
a(q)z + a(q)z,ι ιt−1

)
log (zt)

+
(
a
(q)
ξ + a

(q)
ξ,ι ιt−1

)
log (ξt) +

(
a
(q)
G + a

(q)
G,ιιt−1

)
ϵGt ,

and A(q) =
(
a
(q)

θ̃
, a

(q)

θ̃,ι
, a

(q)
z , a

(q)
z,ι , a

(q)
ξ , a

(q)
ξ,ι , a

(q)
G , a

(q)
G,ι

)
is the vector of coefficients of the forecast rule

in the q-th iteration.

The equilibrium type ιt is determined by the best response functions implied by equation

(100) and the history dependence of equilibrium selection. If ιt−1 = 0 (passive stage equilibrium
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in period t− 1), we verify whether the passive stage equilibrium still exists in the current period

t, i.e., ιt = 0, by checking whether:

arg min
σI,t≥0

c (σI,t)− β̃ [ϕ+ (ψ + σI,t)ψ] ξtEt
[
τ̃TSJV

(
zt+1, ξt+1, ϵ

G
t+1, ιt = 0, θ̃t+1

)]
= 0

(108)

arg min
σF,t≥0

c (σF,t)− β̃ [ϕ+ (ψ + σF,t)ψ] ξtEt
[
(1− τ̃)TSJV

(
zt+1, ξt+1, ϵ

G
t+1, ιt = 0, θ̃t+1

)]
= 0

(109)

hold. If these conditions hold, ιt = ιt−1 = 0. Otherwise, ιt = 1.

Analogously, if ιt−1 = 1 (active stage equilibrium in t− 1), we verify whether the active stage

equilibrium still exists in the current period, i.e., ιt = 1, by checking whether:

arg min
σI,t≥0

c (σI,t)− β̃ [ϕ+ (ψ + σI,t) (ψ + σF,t)] ξtEt
[
τ̃TSJV

(
zt+1, ξt+1, ϵ

G
t+1, ιt = 1, θ̃t+1

)]
> 0

(110)

and

arg min
σF,t≥0

c (σF,t)−β̃ [ϕ+ (ψ + σI,t) (ψ + σF,t)] ξtEt
[
(1− τ̃)TSJV

(
zt+1, ξt+1, ϵ

G
t+1, ιt = 1, θ̃t+1

)]
> 0

(111)

hold. If these conditions hold, ιt = ιt−1 = 1. Otherwise, ιt = 0.

Given the forecast rule with A(q), we can solve for the value function TSJV , the policy

function σ, and the transition rule ι with equation (107) and conditions (108)-(111) using value

function iteration.

Step 3: Solve for T̃ S and θ. Equation (47) can be rewritten, for i ∈ {I, F}, as:

T̃ S
(
zt, ξt, ϵ

G
t , ιt−1, θ̃t

)
= −h− c (σi,t)

+ βξtEt


(1− δ) πi,t∆TS

(
zt+1, ξt+1, ϵ

G
t+1, ιt, θ̃t+1

)
+(

(1− δ)− (1− τ) θαi

(
zt, ξt, ϵ

G
t , ιt−1, θ̃t

))
∗T̃ S

(
zt+1, ξt+1, ϵ

G
t+1, ιt, θ̃t+1

)
 , (112)

where we have used the fact that ∆TSi,t+1 = TSi,t+1 − T̃ Si,t+1 and µi,t = θαi,t.
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We also have, for i ∈ {I, F}, the free-entry condition implied by equation (42):

χ = βξtτθ
α−1
i,t

(
zt, ξt, ϵ

G
t , ιt−1, θ̃t

)
Et
[
T̃ S
(
zt+1, ξt+1, ϵ

G
t+1, ιt, θ̃t+1

)]
. (113)

With ∆TSi,t, σI,t, σF,t and ιt being solved in step 2 (in particular, ∆TSt = τ̃TSJVt/τ), we

can solve for the value function T̃ Si,t and the policy function θi,t approximately with equations

(112) and (113) using value function iteration.

Step 4: Simulate the model. We simulate the model for 10,000 periods (disregarding the

first 2,000 as a burn-in) with random draws of
{
zt, ξt, ϵ

G
t

}
. Then, we compute the realized

equilibrium inter-firm market tightness ratio θ̃t.

Step 5: Update the forecast rule. Based on the simulated data, we update the coefficient of

the forecast rule A(q) with A(q+1) using ordinary least squares. If A(q) and A(q+1) are sufficiently

close to each other, we stop the iteration. Otherwise, we return to step 2. The converged

forecasting rule explains the fluctuations of θ̃t well, with an R2 of 0.91.

K Simulations based on shocks to productivity

In this appendix, we complete our discussion of the effects of technology shocks in the model.

Figure 16 plots the ergodic distribution of selected variables for the case where we only have

AR(1) shocks to technology, zt (for transparency, we eliminate the discount factor shocks). As

outlined in the paper, persistent exogenous disturbances to the technological process fail to

move the system to a different equilibrium, the equilibrium is always active, and the ergodic

distributions of the variables of interest are unimodal.

In Figure 17, we plot the ergodic distribution of selected variables for the case where we have

shocks both to technology, zt and to the discount factor, ξt. We recover bimodality, but this

feature is induced by the shocks to ξt and their ability to switch equilibria. The main effect of

the shocks to productivity is to spread out the ergodic distribution in Figure 6 in the main text

(only shocks to ξt) around its two modes.

Figure 18 shows the GIRFs to a range of persistent negative productivity shocks when the

economy starts from the active DSS. Negative productivity shocks are unable to generate a shift

in equilibrium even when their magnitude gets very large. In each case, the costly search effort
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Figure 16: Ergodic distribution with AR(1) shocks to zt
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Figure 17: Ergodic distribution with shocks to ξt and shocks to zt

falls after the productivity shock, and then gradually recovers. The effect of a productivity

shock on the labor market tightness ratio and the unemployment rate is also transitory. The

mechanism is that the gain of matching with a partner (TS− T̃ S) in the active stage equilibrium

is inelastic with the change in productivity. This result is similar to the one in Shimer (2005),

who points out that the gain of matching with a worker, T̃ S and TS, is inelastic with the change

in productivity in a canonical DMP model. Since T̃ S and TS move in the same direction in

reaction to productivity shocks, the response of TS − T̃ S to productivity shocks is even weaker.
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As a result, the existence condition for the active stage equilibrium in equation (89) keeps

holding: if we start at the active DSS, firms find it desirable to search actively for a partner

even when productivity is low.
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Figure 18: GIRFs to a negative productivity shock

We also experiment with permanent changes in productivity. In t = 1, the economy starts

from the active DSS with positive search effort, and in t = 2 a permanent fall in productivity

hits the economy. This permanent shock may shift the equilibrium of the system by affecting

the expected gain of match Et(Ji,t+1 − J̃i,t+1). For example, in an economy in the active stage

equilibrium, a sufficiently large fall in zt decreases the expected gain from trading relationship

formation and moves the system to the passive stage equilibrium.

We assess the magnitude of the fall in zt needed to move the system from the active to the

passive stage equilibrium. Figure 19 shows the GIRFs to a 30% (solid line) and 40% (dashed

line) permanent decline in productivity (zt). The first shock is unable to move the system to

the active stage equilibrium because the expected gain from inter-firm matching is relatively

inelastic to permanent changes in productivity. Productivity shocks induce J̃i,t+1 and Ji,t+1 to

comove, leading to a weak response of Et(Ji,t+1 − J̃i,t+1) to the shock. This finding is consistent

with Shimer (2005). In comparison, a sufficiently large productivity shock of 40% pushes the

economy to the passive stage equilibrium. This analysis suggests that a permanent productivity

shock is unlikely to move the system between equilibria unless the shock is massive.
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Figure 19: GIRFs to a negative permanent productivity shock

L Second moments of the model without search comple-

mentarities

Table 9 reports the simulations of the model without search complementarities.

Table 9: Second moments, model without search complementarities

u v v/u lp ξ

Autocorrelation coefficient 0.52 0.13 0.35 1 0.35
Standard deviation 0.03 0.07 0.09 0 0.05

u 1 -0.51 -0.74 0 -0.74
Correlation matrix v 1 0.96 0 0.96

v/u 1 0 1.00
lp 1 0
ξ 1

Note: Following Shimer (2005), all variables are reported in logs as deviations from an HP trend with λ = 105.

M Measures of the discount factor

Figure 20 plots the three measures of the discount factor (discount factor from dividend strip,

the price-to-dividend ratio, and the Livingston Survey) for the period between January 1996

and May 2009. All three measures agree that i) there was a sizable decline in the discount factor

71



 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ja
n

-9
6

Se
p

-9
6

M
ay

-9
7

Ja
n

-9
8

Se
p

-9
8

M
ay

-9
9

Ja
n

-0
0

Se
p

-0
0

M
ay

-0
1

Ja
n

-0
2

Se
p

-0
2

M
ay

-0
3

Ja
n

-0
4

Se
p

-0
4

M
ay

-0
5

Ja
n

-0
6

Se
p

-0
6

M
ay

-0
7

Ja
n

-0
8

Se
p

-0
8

M
ay

-0
9

Measurements of discount factor

Recession Dividend strip p/d ratio LivingstonFigure 20: Alternative measures of the discount factor
Note: Alternative measures of the discount factor from dividend strip (orange line), the price-to-dividend ratio
(gray line), and the Livingston Survey (blue line).

during the Great Recession (as our theory requires) and ii) the series display high variance

(reflecting the large sensitivity of the discount factor over the business cycle, also required by

our theory). The low correlation across the three measures is not surprising, since each of these

series reflects discounting from different financial players and assets (see Hall, 2017).

N Volatility and duration of stage equilibria

To gain intuition, we derive an analytical characterization of the effect of volatility on the

likelihood and duration of each stage equilibrium by simplifying the model in Section 3. First,

we assume that firms produce their output without labor. Thus, we can drop the whole DMP

module of the model and set a constant measure of size 1 of firms in each sector. Second, we

assume that δ̃ = 1, i.e., all trading relationships terminate after one period. Also, trading

relationships start producing in the same period in which firms match. Hence, the firm’s problem

is equivalent to a sequence of stage maximization problems and we do not need to specify a

discount factor. To ease the algebra, we also set ρz = 0, and as in the calibration in Section 5,

τ̃ = 0.5 and ν = 2.

Under these simplifications, each firm optimally chooses the level of its search effort, σi,t, given

the search effort of the firms in the opposite sector, σ−i,t, and productivity, zt, by maximizing:

Ji,t(σi,t, σ−i,t, zt) = (ϕ+ (ψ + σi,t) (ψ + σ−i,t))
zt
2
− c0σi,t − c1

σ3
i,t

3
.
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The first term of the RHS is the inter-firm matching probability defined in equation (18)

multiplied by half the expected production, πi,tzt (recall the equal split of output between the

firms given τ̃ = 0.5) minus the cost of searching.

The interior solution σi,t > 0 satisfies:

c0 + c1σ
2
i,t = (ψ + σ−i,t)

zt
2
. (114)

Otherwise, σi,t = 0. Hence, as in the benchmark model, the simplified model entails passive

and active stage equilibria. The passive stage equilibrium with zero search effort exists if and

only if c0 > ψ zt
2
. Thus, a productivity threshold z̄ = 2c0

ψ
determines whether the passive stage

equilibrium exists.

Lemma 2. The passive stage equilibrium exists if and only if zt < z̄.

Recall that we assumed that ψ > 0. If ψ = 0, a passive stage equilibrium always exists

regardless of the value of zt.

In an active stage equilibrium, firms in each sector optimally choose a positive search effort

that comes from finding the fixed point of the product of equation (114) for each sector:

σF,t = σI,t =
zt +

√
z2t + 8ψzt − 16c0c1

4c1
. (115)

This optimal search effort is increasing in zt.
19 From equation (115), the threshold for the active

stage equilibrium is z = 4
(√

ψ2c21 + c1c0 − ψc1

)
, and we get the following lemma.20

Lemma 3. An active stage equilibrium exists if and only if zt ≥ z.

Proposition 11 merges lemmas 2 and 3.

Proposition 11. The economy retains multiple equilibria if zt ∈ (z, z̄). The passive stage

equilibrium is the unique equilibrium if zt ≤ z. The active stage equilibrium is the unique

equilibrium if zt ≥ z̄.

Proposition 11 establishes that if economic fundamentals are sufficiently weak or strong, the

stage equilibrium is unique, either passive or active; otherwise, we have two stage equilibria.

19There is a second fixed point, σi,t =
zt−

√
z2t+8ψzt−16c0c1

4c1
. However, this solution is locally unstable.

20To prevent the marginal search cost from converging to zero when σi,t is zero, the term c0 must be positive.
If c0 = 0, it yields z = 0. In such an instance, the active stage equilibrium exists for any positive value of zt.
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Sufficiently large shocks to zt move the system between the two alternative stage equilibria.

Proposition 11 is empirically relevant because we can calibrate ψ to a small number so that z̄ is

low and c1 to a large number so that z is high. In that way, the model will allow multiple stage

equilibria for a wide range of productivity z < 1 < z̄.

Since we have set ρz = 0, log (zt) ∼ N (0, σ2
z). Using the distribution for zt and the thresholds

z and z, we derive the transition matrix between equilibria:

Active Passive

Active 1− Φ [log (z) /σz] Φ [log (z) /σz]

Passive 1− Φ [log (z̄) /σz] Φ [log (z̄) /σz]

where Φ(·) is the cdf of the standard normal distribution. The next proposition establishes that

aggregate volatility plays a critical role in the selection and duration of each stage equilibrium.

Proposition 12. The expected duration of a passive stage equilibrium spell is 1
Φ[log(z)/σz ] , and

the expected duration of an active stage equilibrium spell is 1
1−Φ[log(z̄)/σz ]

. The duration of each

equilibrium is inversely related to the volatility of zt.

Proposition 12 shows that a reduction in volatility induces the system to remain for a

prolonged spell in one stage equilibrium, with a decreased probability for the system to move to

the alternative stage equilibrium. However, if a large change in fundamentals triggers a change

in the stage equilibrium, the economy would stay there for a long time.

Next, we use our benchmark model to gauge the changes in the volatility of shocks. Table

10 reports business cycle statistics for a low (column (a)) and a high (column (b)) variance

of shocks to the discount factor (σξ). As before, we simulate the model for 3,000,000 months

and time average to obtain quarterly data. The first and second rows report the number of

periods and the average duration of the passive stage equilibrium, respectively, and the third

row reports the transition matrix between equilibria. We calibrate high and low volatility by

following Justiniano and Primiceri (2008), who estimate that the volatility of the discount factor

is equal to 0.07 before 1984 and 0.04 after that date.

The passive stage equilibrium materializes with a probability of around 7% in the low-

volatility economy, in contrast with a 26% probability in the high-volatility economy. Despite

the lower chance of moving to a passive stage equilibrium, the low-volatility economy stays

longer on average in a passive stage equilibrium, 11.8 quarters, than the high-volatility economy,
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Table 10: Variance of shocks and duration of equilibria

(a) (b)
Std(ξ) = 0.04 Std(ξ) = 0.07

Fraction of periods in passive stage equilibrium 0.07 0.26
Average number of quarters in passive stage equilibrium 11.8 4.5
Transition matrix

Active Passive Active Passive
Active 0.99 0.01 0.94 0.06
Passive 0.08 0.92 0.20 0.80

4.5 quarters. Low volatility induces less frequent but long-lasting periods of low output and

high unemployment.

The last two rows in Table 10 report the transition matrix between equilibria. The low-

volatility economy transitions between equilibria infrequently. The probability of moving from

active stage equilibrium to passive stage equilibrium is equal to 1%, and the probability of a

reverse move from passive stage equilibrium to active stage equilibrium is equal to 8%. The

rotation among equilibria gets much higher in the high-volatility economy, as the probability of

moving from an active to a passive stage equilibrium is 6%, and the probability of a reverse

move is 20%.

These dynamics are consistent with the large and persistent low employment-to-population

ratio in the aftermath of the financial crisis of 2007-2009. The financial crisis was preceded

by a long spell of stable economic conditions during the Great Moderation that started in

the mid-1980s, which the model identifies as a prerequisite for the persistence in the low

employment-to-population ratio.

O Volatility of shocks

The panels in the left column of Figure 21 plot the ergodic distribution of endogenous variables

with shocks to ξ in the case of high volatility (σhighξ = 1.5σξ). The panels in the middle column

of Figure 21 repeat the same exercise, but in the case of low volatility (σhighξ = 0.75σξ). In

both cases, we see the bimodal distributions that we discussed in the main text and the long

left tail of output when the volatility of ξt is high. Finally, the panels in the right column of

Figure 21 display the results when the volatility is ultra low (σultralowξ = 0.5σξ), in which case

the bimodality disappears.
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Figure 21: Ergodic distribution with shocks to ξ with different volatilities

Note: The left, middle, and right columns display the ergodic distributions for high, low, and ultra low volatility
cases, respectively.

P GIRFs to government spending shock in the active

stage equilibrium

This appendix studies the effect of government spending shocks when the economy starts from

the active stage equilibrium. Figure 22 shows the response in the level of selected variables

to a 50% (the solid line) and a 60% (the dashed line) government spending shock. Since the

economy is already in the active stage equilibrium, the effects of the fiscal expansion are limited

and transitory.
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Figure 22: GIRFs to positive government spending shock in the active stage
equilibrium

Q Separation rate of inter-firm matches

This appendix shows that our main results are robust to different calibrations for the inter-firm

matches’ separation rate, δ̃. Panels (a)-(c) of Figure 23 display the histogram of output for low

δ̃ (50% lower than our benchmark calibration), medium δ̃ (our benchmark calibration), and high

δ̃ (50% higher than our benchmark calibration), respectively. The three panels show a bimodal

distribution of output, while a higher δ̃ entails a higher probability of the passive equilibrium

and lower modes of the output distribution.
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Figure 23: Histogram of output for different δ̃
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