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Abstract

We develop a general theory of state-dependent �scal multipliers in a framework featuring interaction between
two empirically relevant goods market frictions: idle productive capacity and unsatis�ed demand. Our key novel
�nding is that the source of economic �uctuations determines the cyclicality of �scal multipliers. Policies that stimulate
aggregate demand, such as government spending and consumption tax cuts, have multipliers that are large in demand-
driven recessions, but small and possibly negative in supply-driven downturns. On the other hand, policies that
boost aggregate supply, such as cuts in taxes on labor income and �rms’ payroll and sales, are ine�ective in demand-
driven recessions, but powerful if the downturn is driven by supply factors. Spending austerity, implemented by a
reduction in government consumption, can be the policy with the largest multiplier in severe supply-side recessions
and demand-driven booms, provided elasticities of labor demand and supply are su�ciently low. We obtain model-
free empirical support for our theoretical predictions by using a novel econometric speci�cation that allows us to
estimate spending and tax cut multipliers in recessionary and expansionary episodes, conditional on those being
either demand- or supply-driven.
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Ghilardi, Yuriy Gorodnichenko, Dirk Krueger, Sarolta Laczó (discussant), Ben Lester, Hamish Low, Alessandro Mennuni, Michael McMahon, Pas-
cal Michaillat, Emi Nakamura, Adrian Peralta-Alva, Nicolas Petrosky-Nadeau, Omar Rachedi, Valerie Ramey, Ricardo Reis, Emmanuel Saez, Petr
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1 Introduction

A long tradition in economics, starting with the general theory of Keynes (1936), envisages the possibility that the

e�ect of �scal policy on output is di�erent in times of economic contractions and expansions.1 �is notion of state

dependence of �scal multipliers has received renewed a�ention in recent years, when nominal interest rates reached

the e�ective lower bound in a number of advanced economies, granting �scal policy a chief stabilizing role. Despite the

long history and recent revival, there is still no comprehensive theoretical framework to study the sources, magnitudes

and policy implications stemming from state dependence of di�erent �scal instruments. Our study aims to �ll this

gap in the literature, and develops a general analytic theory of state-dependent �scal multipliers for a broad range of

spending and taxation policies. A key novel prediction of our theory is that �scal multipliers’ variation over the business

cycle is pinned down by the source of economic �uctuations, a result that we prove in closed-form. Further, we perform

model-free econometric assessment of our novel theoretical predictions and �nd strong empirical support in US data.

Our theoretical framework accounts for empirically relevant frictions in the goods market, which manifest them-

selves in idle productive capacity on the �rms’ side and unsatis�ed demand on the side of households. We track conges-

tion in the goods market by looking at the ratio of households’ shopping visits to �rms’ productive capacity; intuitively,

whenever the goods market is congested, there is li�le idle capacity and large amount of unsatis�ed demand, and vice

versa. In our model, the e�ectiveness of �scal policy is pinned down by the degree of goods market congestion. Demand-

side stimuli that raise the number of visits are ine�ective whenever congestion is already high, as they strongly crowd

out private consumption. Supply-side stimuli that expand productive capacity are ine�ective whenever congestion is

already low, as they weakly crowd in private consumption. In demand-side recessions, visits drop and the goods market

becomes less congested; by contrast, supply-side recessions witness shrunk capacity and hence stronger congestion.

�erefore, the cyclical properties of �scal multipliers are pinned down by the type of shocks that drive the business

cycle, and we establish the following properties for a range of spending and taxation instruments.

First, multipliers associated with �scal instruments that stimulate aggregate demand, such as government consump-

tion spending and consumption tax cuts, are countercyclical under demand-driven �uctuations and procyclical under

supply-driven �uctuations. A recession originated by a lack of demand generates a reduction in the number of house-

hold visits, thus lowering congestion in the goods market. In such environment, a demand-side �scal stimulus that

boosts aggregate demand and increases the number of visits leads to an increase in production without raising con-

gestion. Consequently, the crowding out of private consumption is small, leading to a high value of the multiplier. By

contrast, a supply-driven recession, originated by a fall in productivity, generates a contraction in capacity and hence an

increase in congestion. A demand-side �scal stimulus that leads to an increase in the number of visits results in a further

increase in congestion that crowds out private consumption and generates a small and possibly negative multiplier.

Second, multipliers associated with interventions that stimulate aggregate supply, such as reductions in taxes on

�rms’ payroll, sales and households’ labor income, are countercyclical under supply-driven �uctuations and procyclical

under demand-driven �uctuations. A supply-driven recession is associated with a drop in capacity and hence a surge

in congestion; in such an environment, a tax cut that expands capacity leads to a substantial drop in congestion, which

leads to strong crowding in of private consumption, and hence a high multiplier. Instead, in a demand-side recession,

where visits and congestion drop, expanding capacity through tax cuts leads to a further drop in congestion, thus
1�e seminal study to formalize the concept of �scal multiplier is Kahn (1931), which was subsequently extended in Keynes (1936).
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generating a weak crowding in of private consumption, and hence a low multiplier.

�ird, our theoretical framework assigns an important role to �scal austerity, implemented by a reduction in gov-

ernment consumption, in severe supply-driven recessions and demand-driven booms. In particular, we show that states of

the world exist where goods market congestion is su�ciently high so that a demand-driven stimulus crowds out private

consumption at a ratio of more than one-to-one, and the multiplier becomes negative. Moreover, provided elasticities of

labor supply and labor demand are su�ciently low so that supply-side stimuli generate a very small drop in congestion,

a government consumption austerity, which reduces visits and thus crowds in private consumption, becomes the policy

with the highest multiplier. Our results provide a theoretical rationale for empirical �ndings in Alesina et al. (2015) on

the preferential properties of spending-based austerity programs, as well as an alternative justi�cation for austerity that

does not rely on government credibility to avoid default (Reinhart and Rogo�, 2010).

Fourth, we develop and estimate an econometric speci�cation that allows for model-free testing of our novel the-

oretical predictions. We build on the local projections approach of Jordà (2005) and estimate spending and tax cut

multipliers in recessionary and expansionary episodes, conditional on those being demand- or supply-driven in nature.

We determine the nature of each episode by looking at the co-movement between cyclical components of economic

activity and in�ation. A positive co-movement is taken to be indicative of demand-driven �uctuations, whereas nega-

tive co-movement corresponds to supply-driven �uctuations. Empirical studies as early as Bayoumi and Eichengreen

(1992) have widely used this approach to pinning down the source of �uctuations, but we are the �rst study to exploit

such co-movement in a state-dependent local projections se�ing. In accordance with our theory, we �nd (cumulative)

spending multipliers to be high in demand- and low in supply-side recessions, especially at horizons shorter than two

years; the opposite pa�erns hold for tax cut multipliers.

Contribution to the literature. Our study contributes to the growing literature on theories of �scal state depen-

dence.2 Early studies focus on �scal policy at the e�ective lower bound, showing that �scal multipliers rise substantially

when nominal interest rates are close to zero (Christiano et al., 2011; Coenen et al., 2012; Fernández-Villaverde et al.,

2015, Rendahl, 2016 and Roulleau-Pasdeloup, 2020), although more recent studies challenge such �ndings under fully

non-linear solutions (Boneva et al., 2016; Lindé and Trabandt, 2018), under market incompleteness (Hagedorn et al.,

2019) or when the liquidity trap is driven by a self-ful�lling expectations shock (Mertens and Ravn, 2014). As for mul-

tipliers away from the e�ective lower bound, Michaillat (2014) establishes that government employment multipliers

increase in times of high unemployment, Canzoneri et al. (2016) and Faria-e-Castro (2019) show that the widening

of credit spreads caused by �nancial frictions increases government spending multipliers during recessions, Shen and

Yang (2018) show that spending multipliers become countercyclical under downward nominal wage rigidity, Boehm

and Pandalai-Nayar (2020) show that �rm-level capacity constraints lead to �scal multipliers that vary with utilization

and Cloyne et al. (2020) �nd large �scal multipliers when monetary policy is less activist. Fernández-Villaverde et al.

(2019) show that search complementarities between producing �rms generate multiple equilibria and that the �scal

multiplier becomes state dependent if �scal policy is su�ciently powerful to move the economy across equilibria. In

the study most related to ours, Michaillat and Saez (2019) conduct a normative analysis in a model with search frictions

to show that the socially optimal stock of government spending can vary with unemployment.3 Ziegenbein (2017) and
2See Ramey (2019) for a comprehensive review of recent developments in the �scal policy literature.
3�ough the conceptual framework used is similar, our analysis substantially di�ers from that in Michaillat and Saez (2019) in a number of

ways, both in terms of �ndings and of the model used. First, and most importantly, Michaillat and Saez (2019) do not study the role played by the
source of �uctuations in determining cyclicality of �scal multipliers. Second, the supply side of our economy is fully endogenous and allows us
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Sims and Wol� (2018) show that multipliers out of tax cuts vary signi�cantly across the business cycle and are larger

in states in which output is high.

Compared to the aforementioned studies, we are the �rst study to jointly rationalize state dependence in a broad

range of spending and taxation multipliers and to develop a tractable model with closed-form solutions. To the best of

our knowledge, we are also the �rst study to link the state dependence of �scal multipliers to the source of economic

�uctuations. Our theoretical �ndings o�er direct guidance for the conduct of �scal policy, particularly to establish the

e�ectiveness of alternative �scal instruments in a given phase of the business cycle.

Our study also contributes to the empirical literature on �scal state dependence, and our econometric �ndings o�er

a resolution to the debate on the degree of variation of �scal multipliers over the business cycle. Early studies �nd

government spending multipliers to be substantially larger in recessions compared to expansions both in the US (Auer-

bach and Gorodnichenko, 2012; Fazzari et al., 2014) and internationally (Auerbach and Gorodnichenko, 2013). However,

more recently, Ramey and Zubairy (2018) construct a comprehensive historical dataset for government spending in the

US, and �nd almost acyclical spending multipliers. Moreover, empirical studies do not �nd spending multipliers to be

substantially larger at the e�ective lower bound, either in the UK (Cra�s and Mills, 2013), the US (Ramey and Zubairy,

2018), or Japan (Miyamoto et al., 2018). Ziegenbein (2017), Eskandari (2019) and Ferraro and Fiori (2020) �nd that tax

cut multipliers are highly procyclical.

Our key empirical contribution is in showing that once the estimation controls for the source of economic �uctua-

tions, both spending and tax cut multipliers exhibit signi�cant state dependence and that their variation over phases of

the business cycle is consistent with our theory. Note that our estimation of state-dependent spending multipliers uses

the same dataset as Ramey and Zubairy (2018), and our speci�cation nests theirs as a special case where the source of

�uctuations is irrelevant. We therefore o�er a resolution to the empirical debate on state dependence of spending mul-

tipliers on both empirical and theoretical grounds. Barnichon et al. (2017) propose an alternative resolution to recover

state dependence by controlling for the sign of the spending shock.

�e rest of the paper is structured as follows. Section 2 develops the theoretical framework. Section 3 derives and

discusses the key results on the state dependence of spending and taxation multipliers. Section 4 studies the relative

e�ectiveness of spending and taxation multipliers and investigates the role for �scal austerity. Section 5 quanti�es

the state dependence of multipliers in a dynamic version of the model. Section 6 develops an econometric model that

supports our theoretical results. Section 7 concludes and outlines possible directions for future research.

2 �e theoretical framework

To motivate our theoretical framework, we begin by providing empirical evidence of idle productive capacity on the

�rms’ side and unsatis�ed demand on the households’ side. We then introduce these features to the model by embedding

search-and-matching frictions into the goods market in an otherwise standard production economy. We will use the

model to study the cyclical properties of spending and taxation multipliers in Section 3.

to study multipliers from both government consumption, which is the exclusive focus of Michaillat and Saez (2019), as well as a wider range of
�scal instruments, including government employment, distortionary taxation on consumption, labor income, and �rms’ sales. �ird, the dynamic
version of our model is set in discrete time and features transition dynamics, which allow us to study multipliers at di�erent time horizons that
can be mapped to empirical estimates in the literature. Fourth, we provide model-free econometric assessment of the predictions of our model,
whereas Michaillat and Saez (2019) only perform model-based simulations.
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2.1 Market clearing, idle capacity and unsatis�ed demand

�e textbook de�nition of goods market clearing in a closed economy with �xed capital is:

Y = C +G, (1)

where Y is the productive capacity of the economy and C +G represents aggregate demand coming from households

and the government. In most standard models, equation (1) implies that �rms sell o� their entire capacity; otherwise

prices fall su�ciently to clear any excess supply. At the same time, aggregate demand is generally assumed to be

satis�ed frictionlessly, with no resources spent on completing the purchases.

Despite the common assumption of a frictionless goods market in macroeconomic models, the data strongly en-

dorses the presence of frictions that generate idle productive capacity and unsatis�ed demand. Panel (a) of Figure 1

uses �rm-level US data collected by the Institute for Supply Management (ISM) to show that, on average, �rms in man-

ufacturing sectors sell around 80 percent of their current productive capacity, and the proportion of utilized capacity is

subject to regular business cycle �uctuations, with much limited fractions utilized in recessions.

Similar frictions are present on the aggregate demand side. Several studies in the �elds of business logistics and

marketing research document that around 15 per cent of visits to US retail stores are unsuccessful due to stockouts

(Taylor and Fawce�, 2001). Panel (b) of Figure 1 shows that demand frictions are also cyclical, with visits to stores

being on average more successful on weekdays, as opposed to weekends, when shops tend to be more congested. Such

frictions also are encountered in online stores, where as many as 25 per cent of online orders cannot be ful�lled due

to out-of-stock items (Jing and Lewis, 2011). Finally, evidence from the American Time Use Survey (ATUS) shows that

unsuccessful shopping visits are indeed costly for households, with an average American spending roughly one hour

per day on queuing and searching for products.

Workhorse macroeconomic models do not jointly account for idle productive capacity and unsatis�ed demand,

despite their clear empirical relevance. In the rest of the section, we outline a theoretical framework that jointly models

those features in an otherwise standard macroeconomic model.

2.2 A model with search-and-matching frictions in the goods market

We begin our analysis with a static model that features a goods market with search-and-matching frictions in spirit of

Michaillat and Saez (2015).4 We assume a competitive labor market.5 �e economy is composed of households, �rms,

and the government. Firms hire labor in order to manufacture an endogenous productive capacity (k), and consumers

and the government make a total of v visits in order to purchase goods. Due to search-and-matching frictions, part of

productive capacity remains idle and not all visits are successful, as encapsulated by the matching function that maps

productive capacity (k) and visits (v) into sales (y):

y = (k−δ + v−δ)−
1
δ , (2)

4We develop a dynamic version of our model in Section 5. Our framework builds on the general-disequilibrium model by Barro and Grossman
(1971), whose application to �scal policy is considered in van Wijnbergen (1987). Recent studies with goods market search frictions include Bai
et al. (2012), Den Haan (2013), Gourio and Rudanko (2014), Brzustowski et al. (2018) and Roldan-Blanco and Gilbukh (2020).

5Adding search-and-matching frictions to the labor market with �exible wages leaves our results for �scal multipliers unchanged.
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Figure 1: Evidence on frictions in the United States goods market

(a) Share of current productive capacity utilized (b) Share of successful visits to retails stores

Notes: panel (a) shows a time series of the share of current capacity utilized by US �rms, as calculated by the Institute for Supply
Management (ISM) with NBER recessions denoted by grey shaded areas, as reported by Michaillat and Saez (2015); panel (b) shows the
share of successful visits to retail stores on di�erent days of the week, as reported by Taylor and Fawce� (2001).

where δ > 0 ensures that y <min{k,v}. We de�ne goods market tightness (x) as the ratio of visits to capacity:

x ≡ v
k
. (3)

Abstracting from aggregate uncertainty, each unit of productive capacity is sold with probability:

f (x) ≡
y

k
= (1+ x−δ)−

1
δ , (4)

where f (0) = 0, limx→+∞ f (x) = 1, and f ′(x) > 0,∀x ∈ [0,+∞). Intuitively, the probability of selling a unit of pro-

ductive capacity is higher in a tighter goods market, and vice versa. Similarly, a purchasing visit is successful with

probability:

q(x) ≡
y

v
= (1+ xδ)−

1
δ , (5)

where q(0) = 1, limx→+∞ q(x) = 0 and q′(x) < 0,∀x ∈ [0,+∞). �e probability of a successful visit is lower in a tighter

goods market, and vice versa. 6,7

Within this framework, it is useful to think of productive capacity (k) as the size of the “store” and visits (v) as the

length of the “queue” comprising private and government consumers. Goods market tightness (x) can be interpreted

as the number of queuing consumers per square meter of the store or as a measure of congestion in the goods market.

�is interpretation will be helpful to develop the intuition behind our results.
6Note that the transaction probabilities f and q have the standard, convenient property: f (x)k = q(x)v = y. Another useful property is that

f ′(x) = q(x)1+δ .
7Petrosky-Nadeau et al. (2016) provide evidence that the average time spent shopping fell in the demand-de�cient period of 2008-2010, which

is consistent with the property that the probability of a successful visit rises in a less congested goods market.
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2.3 Households

�ere is a continuum of identical households of size one. Households make vc visits in order to purchase and consume

c units of the produced good. �ere is a cost ρ ∈ (0,1) of the produced good per visit.8 Total sales of the produced good

to households (yc) comprise household consumption (c) and search costs (ρvc):

yc = c+ ρvc. (6)

Since each visit is successful with probability q(x), total sales are equal to yc = q(x)vc, and the consumption of c units of

the produced good requires c/(q(x)−ρ) visits. �erefore, the total number of goods that need to be purchased (inclusive

of the cost of search) in order to consume c units is given by:

[1 +γ(x)]c, (7)

where γ(x) ≡ ρx
f (x)−ρx represents the wedge introduced by search-and-matching frictions that strictly rises in goods

market tightness, such that γ ′(x) > 0,∀x ∈ (0,xm).9 Intuitively, a tighter goods market diminishes the probability of a

successful visit, increasing the expected number of visits required for a successful purchase, thus raising total search

costs.

�e representative household gains utility from consumption of the produced good (c), the non-produced good (m)

that is in �xed exogenous supply (m̄), and gains disutility from supplying labor (l). �e non-produced good is traded

in a frictionless competitive market, and we use it as the numeraire by normalizing its price to one.10 Every household

is small relative to the size of the market, and therefore takes the price (p), wage (w), goods market tightness (x) and

hence the search wedge [1 +γ(x)] as given. �e representative household maximizes utility function:

max
c,m,l

[
χ
c1−σ

1− σ
+ ζ(m)− l

1+ψ

1+ψ

]
(8)

subject to the budget constraint

p[1 +γ(x)]c+m ≤ wl +Π+ m̄− T , (9)

where χ > 0 determines the relative preference for the produced good, ψ is the inverse Frisch elasticity of labor supply,

p is the price of the produced good, [1+γ(x)] is the search wedge, w is the wage received per unit labor supplied, Π is

pro�ts from �rms owned by the representative household, and T is a lump-sum tax introduced by the government to

�nance its activities. �e representative household also receives an endowment of the non-produced good equal to its
8�e visiting cost can be interpreted as the cost of time spent queuing in shops, or alternatively the (expected) cost of returning a purchased

good that the customer did not like. �is interpretation is supported by empirical evidence. According to the American Time Use Survey (ATUS),
the average American spends approximately one hour per day on shopping and queueing. Our formulation for search costs allows us to treat
government and private customers symmetrically, as we discuss in section 2.5. An alternative way to model search costs for the households is to
assume that there is a utility cost per visit. In Appendix F, we show that results of the analysis continue to hold with this alternative approach to
modelling search costs.

9We restrict the admissible values of tightness to (0,xm), where xm is given by the condition f (xm) = ρxm; this approach ensures that the
aggregate supply of the produced good, net of search costs, remains positive.

10Introducing the numeraire good m allows us to separately pin down both the price of the produced good p, as well as the wage w, in our
static framework.
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(�xed) supply m̄. Finally, ζ(.) is an increasing di�erentiable function.

Lemmas 1 and 2 report the consumption function, c(p,x), and labor supply function, l(w), respectively, that solve

the representative household’s maximization problem.11

LEMMA 1. �e consumption function c(p,x) is the optimal consumption choice in the representative household’s problem

evaluated under non-produced goods market clearing (m = m̄) and is equal to:

c(p,x) =
χ

p[1 +γ(x)]
, (10)

where ∂c
∂p < 0, ∂c∂x < 0 and ∂c

∂χ > 0.

Proof. Appendix A.

Equation (10) shows that, ceteris paribus, higher preference parameter χ increases consumption since it generates

larger utility for every unit of consumption; higher price (p) and tightness (x) increase the relative price of consumption

and hence decrease consumption.

LEMMA 2. �e labor supply function l(w) is the optimal labor supply choice in the representative household’s problem

evaluated under non-produced goods market clearing (m = m̄), and is equal to:

l(w) = w
1
ψ , (11)

where ∂l
∂w > 0.

Proof. Appendix A.

Equation (11) shows that, ceteris paribus, higher wage (w) increases the supply of labor. �e elasticity of labor supply

is equal to εs ≡ 1
ψ , and if ψ→∞, labor supply becomes perfectly inelastic and �xed at one.

2.4 Firms

�e economy is populated by a continuum of identical, perfectly competitive �rms that manufacture an identical good

that is sold in a goods market characterized by search-and-matching frictions. Firms have access to a production tech-

nology that transforms labor input (n) into productive capacity (k):

k(n) = anα , (12)

where α ∈ (0,1] is returns to labor and a > 0 is the level of productivity. In the presence of search-and-matching

frictions, every unit of productive capacity is utilized with probability f (x). Abstracting from uncertainty, the repre-
11For simplicity, in the remainder of the main text of the paper we will focus on the simpli�ed case of log utility of consumption (σ = 1). Our

choice of log utility of consumption is consistent with mean estimates of the coe�cient of relative risk aversion in microeconomic studies (Che�y,
2006). Appendix E provides closed-form solutions for a generic CRRA utility of consumption. We also normalize the supply of the non-produced
good so that ζ′(m̄) = 1.
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sentative �rm achieves the following level of sales y(x,n):

y(x,n) = f (x)k(n) = f (x)anα . (13)

Each �rm is small relative to the size of the market and thus takes the price (p) and wage (w) as well as goods market

tightness (x) and probability f (x) as given. �e pro�t maximization problem of the representative �rm is:

max
n

Π = [pf (x)anα −wn(1 + τ)] , (14)

where τ ∈ [0,1) is a payroll tax from the government, which is a fraction τ of the representative �rm’s wage bill.

Lemma 3 reports the labor demand function n(w;p,x,τ) that solves the representative �rm’s pro�t-maximization

problem.

LEMMA 3. �e labor demand function n(w;p,x,τ) is the solution to the representative �rm’s pro�t maximization problem

and is equal to:

n(w;p,x,τ) =
[
αpf (x)a
w(1 + τ)

] 1
1−α

, (15)

where ∂n∂p > 0, ∂n∂x > 0, ∂n∂w < 0, ∂n∂a > 0 and ∂n
∂τ < 0.

Proof. Appendix A.

Equation (15) shows that, ceteris paribus, a higher price (p) increases the revenue from every unit sold and hence

incentivizes production and labor demand. Higher tightness (x) increases the probability of selling each unit produced

and hence also incentivizes production and labor demand. Labor demand decreases with the cost of hiring labor, given

by the wage (w). A payroll tax τ > 0 increases the cost of hiring and thus lowers labor demand. Finally, higher

productivity (a) increases the marginal product for each unit of labor hired, increasing labor demand. �e (absolute)

elasticity of labor demand is given by |εd | ≡ 1
1−α , with the case of constant returns (α = 1) corresponding to a perfectly

elastic labor demand.

2.5 Government

�e government consumes an exogenous quantity G of the privately produced good and is subject to the same search-

and-matching frictions as private consumers. �us, for a given desired government consumption of the produced good

G, the government must purchase [1 + γ(x)]G units, where [1 + γ(x)] is the same wedge as that faced by private

consumers.12 Given the rate of payroll tax τ and hence the tax revenue wnτ collected, the government imposes a

lump-sum tax T on the households to balance the public budget:

T = p[1 +γ(x)]G −wnτ. (16)
12Our assumption of identical costs per visit for households and the government, and hence of identical search wedges, is made for algebraic

simplicity and is inessential for our results. Our results hold even if we assume that the government faces a smaller (ρG < ρ) or zero (ρG = 0)
visiting cost.
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�ere are alternative ways of including government spending into our model. For example, government spending on

defense or other public goods may be introduced in the model as government spending on employing labor to produce

public goods that are o�ered to private consumers. Appendix C.1 extends the baseline model to allow for government

employment and production of public goods, and it shows that the cyclical properties of the multiplier out of public

employment are identical to those of the government consumption multiplier.

We focus on distortionary payroll taxes in the baseline model. Appendix C.2 considers alternative distortionary

taxation on �rms’ sales and on households’ labor income, showing that the cyclical properties of multipliers out of

cuts to sales tax and labor income tax are identical to those of cuts to the payroll tax. In addition, Appendix C.2 also

considers distortionary taxation of households’ consumption and shows that cyclical properties of the multiplier out

of consumption tax cuts are identical to those of the government consumption multiplier considered in the baseline

model.

2.6 Market clearing

�e economy is composed of three distinct markets for the produced good (c), the non-produced good (m), and labor

(n). By Walras’ Law, we obtain equilibrium allocations by determining market clearing in any two markets. We focus

on the markets for the produced good and labor and allow the market for the non-produced good to be the residual

market.

Aggregate demand consists of the households’ demand c(p,x) and the government’s exogenous demand G. Aggre-

gate supply is given by the fraction of the �rm’s sales y(x;n) = f (x)k(n;τ) that is not spent on the cost of search, and

hence is given by f (x)k(x;τ)/[1 +γ(x)]. �e market clearing condition in the goods market is:

f (x)
1 +γ(x)

k(n;τ)︸            ︷︷            ︸
Aggregate supply

= c(p,x) +G︸     ︷︷     ︸
Aggregate demand

. (17)

Panel (a) of Figure 2 shows goods market clearing in the tightness-quantity space. �e aggregate supply curve is

backward-bending: it rises in tightness between (0,x∗) and falls in tightness for values (x∗,xm). For a given productive

capacity k, goods market tightness exerts two counteracting e�ects on aggregate supply. On the one hand, higher x

increases the probability f (x) of selling each produced good, thus raising aggregate supply; on the other hand, search

costs, encapsulated by the wedge [1 + γ(x)], increase in tightness, diverting more sales towards covering search-and-

matching costs. �e increase in the selling probability outweighs the increase in search costs for tightness below the

e�cient level (x < x∗), and thus output increases. On the other hand, aggregate supply decreases for tightness above

the e�cient level (x > x∗). Aggregate supply is maximized at x = x∗, where the two e�ects o�set each other, which

corresponds to the social planner’s allocation in our economy, as we formally show in Appendix G.1.

�e aggregate demand curve is downward sloping in the tightness-quantity space, as consumption c(p,x) falls in

tightness, ceteris paribus, as established in Lemma 1. Each aggregate demand curve in the tightness-quantity space is

drawn for a particular value of the price p. Increasing the price causes a counter-clockwise rotation of the aggregate

demand curve, as less consumption c(p,x) can be a�orded for every level of tightness. Changes in government spending

G correspond to parallel shi�s in the aggregate demand curve, as more is demanded for a given level of tightness. Market

10



Figure 2: Supply and demand in goods and labor markets, and �scal interventions

(a) Goods market (b) Labor market

Notes: Panel (a) shows aggregate demand (c(p,x)+G), aggregate supply
(
f (x)

1+γ(x)k(n;τ)
)
, and sales (f (x)k(n;τ)) curves in the tightness-

quantity space; an increase in government spending manifests itself as an outward shi� in the aggregate demand curve (general
equilibrium e�ects not shown); Panel (b) shows labor demand (n(w;p,x,τ)) and labor supply (l(w)) curves in the wage-employment
space; a cut in the rate of payroll tax manifests itself as an outward shi� in the labor demand curve (general equilibrium e�ects are not
shown).

clearing in the labor market is achieved by equating labor demand, n(w;p,x,τ), to labor supply, l(w):

l(w)︸︷︷︸
Labor supply

= n(w;p,x,τ)︸       ︷︷       ︸
Labor demand

. (18)

Panel (b) of Figure 2 shows labor market clearing in the wage-employment space. �e labor supply function is upward

sloping, as established in Lemma 2, since higher wages encourage households to work more, and the labor demand

function is downward sloping in the wage-employment space, as established in Lemma 3. Note that the labor demand

function is drawn for a particular value of price p, tightness x, and government labor taxes τ . Lower τ causes an outward

shi� of the labor demand curve, as the cost of hiring an extra worker falls for every level of employment. Similarly,

higher p and x increase the e�ective selling price pf (x), which encourages more labor demand at every level of wages.

Equilibrium is described by price, wage, tightness, and allocations that satisfy the optimality conditions of house-

holds, �rms, the government budget constraint, and the market clearing conditions. �e system is indeterminate be-

cause once optimality and market clearing conditions have been combined, we are le� with two equations in three

unknowns (p,x,w). We therefore need a selection mechanism to choose a speci�c equilibrium across the in�nitely

admissible combinations.13

13Goods market tightness (x) is taken as given by agents in a decentralized economy, and indeterminacy is a common feature of search-and-
matching models. A standard approach to resolve indeterminacy in the search-and-matching framework of the labor market is adding Nash
bargaining over the wage.
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2.7 Comparative statics: two polar equilibria

In the baseline model, we resolve indeterminacy by considering two polar equilibrium cases. First, in a competitive

equilibrium, tightness is �xed at its socially e�cient level x∗, formally de�ned in Appendix G.1, and p and w adjust

fully �exibly to satisfy optimality and market clearing conditions.14 Second, in a �xprice equilibrium, price p is �xed

at a constant value p0, and x and w adjust to satisfy optimality and market clearing conditions. Appendix B extends

our analysis to more general equilibrium cases. In the reminder of this section, we take a closer look at equilibrium

mechanics under the two polar cases of our model by considering comparative statics of key variables of interest fol-

lowing demand-side and supply-side shocks, represented by permanent changes in the preference parameter (χ) and

technology parameter (a), respectively.

2.7.1 Competitive equilibrium

A competitive equilibrium is formally de�ned as follows:

DEFINITION 1. A competitive equilibrium is a pair (p∗,w∗) and associated allocations, such that the agents’ optimality

conditions and the market clearing conditions are satis�ed with tightness at its e�cient level (x = x∗).

Following a positive demand shock, parameterized as a permanent increase in χ, households choose to consume

more, hence increasing the number of visits; since tightness is to remain �xed at x∗, the price p has to rise to discourage

further consumption and expand capacity, until markets clear with more sales in the new equilibrium.15 On the other

hand, a�er a positive supply shock, represented by a permanent rise in a, capacity expands. In order to keep tightness

�xed, the price has to fall, thus encouraging more consumption and more visits until markets clear with higher sales in

equilibrium. Lemma 4 formally summarizes the comparative statics for the competitive equilibrium:

LEMMA 4. In a competitive equilibrium, the comparative statics of tightness (x), sales (y) and the price (p):

dx
dχ

= 0,
dy

dχ
> 0,

dp

dχ
> 0;

dx
da

= 0,
dy

da
> 0,

dp

da
< 0. (19)

Proof. Appendix A.

Figure 11 in Appendix D provides graphical representation of comparative statics following demand- and supply-

side shocks in a competitive equilibrium.

2.7.2 Fixprice equilibrium

A �xprice equilibrium is formally de�ned as follows:

DEFINITION 2. A �xprice equilibrium is a vector (p0,x,w) and associated allocations, which satisfy the agents’ opti-

mality conditions and the market clearing conditions with �xed price p0 (p = p0).

14�e name competitive equilibrium is a reference to the directed search literature and in particular, the competitive search equilibrium in Moen
(1997), where full adjustment via prices and wages leads to e�cient allocations.

15In Appendix G.1, we show that the socially e�cient level of tightness is given by the condition f ′(x∗) = ρ and hence x∗ is invariant to changes
in either χ or a.
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A�er a positive demand shock, consumption and visits rise. Since the price p is �xed, the only way to clear such

excess demand is for the tightness x to rise, which increases the cost of search, thus discouraging any further con-

sumption until markets clear with higher sales in the new equilibrium. At the same time, following a positive supply

shock, capacity expands, and the only way for such excess supply to be cleared is through a fall in tightness, which en-

courages consumption until markets clear.16 Lemma 5 below formally summarizes the comparative statics in a �xprice

equilibrium:

LEMMA 5. In a �xprice equilibrium, the comparative statics of tightness (x), sales (y), and the price (p) are:

dx
dχ

> 0,
dy

dχ
> 0,

dp

dχ
= 0;

dx
da

< 0,
dy

da
= 0,

dp

da
= 0. (20)

Proof. Appendix A.

Figure 12 in Appendix D provides graphical representation of comparative statics following demand- and supply-

side shocks in a competitive equilibrium.

3 Fiscal multipliers: key analytical results

In this section, we establish our key novel analytical results regarding cyclical properties of �scal multipliers. In partic-

ular, we consider the demand-side multiplier, associated with government consumption, and the supply-side multiplier,

associated with payroll tax cuts.17 We show that in a competitive equilibrium, where tightness is �xed and price and

wage are fully �exible, the two multipliers are identical and acyclical, and they are pinned down exclusively by the

elasticities of labor supply and demand. In a �xprice equilibrium, where the price is �xed and tightness and wages clear

markets, the demand-side multiplier is countercyclical under demand-side �uctuations and procyclical under supply-side

�uctuations. On the other hand, the supply-side multiplier is procyclical under demand-side �uctuations and countercycli-

cal under supply-side �uctuations. Finally, we provide evidence that equilibria featuring price rigidity and �uctuations

in tightness provide a be�er description of the US economy at business cycle frequencies, thus endorsing equilibria

featuring state-dependent �scal multipliers, whose cyclicality depends on the source of economic �uctuations.

3.1 De�nitions

A �scal multiplier measures the e�ect of a marginal change in the �scal instrument, be it government spending or a tax

rate, on GDP in equilibrium. �e next two de�nitions characterize the demand-side �scal multiplier, associated with

increases in government consumption spending, and the supply-side �scal multiplier, associated with payroll tax cuts,

respectively.18

16Note that following a positive supply shock, the level of sales remains unchanged in a �xprice equilibrium. �is is because, on the one hand,
capacity k expands, but on the other, tightness the utilization rate f (x) drops. �e two e�ects cancel each other out only as long as prices remain
completely �xed: as we show in Lemma 9 in Appendix B.2 In equilibria featuring rigid but not completely �xed prices, sales increase following
a positive supply shock, while tightness still falls.

17In this section, we limit our a�ention to the two polar equilibria: competitive and �xprice. Appendix B studies �scal multipliers under more
general equilibrium types whereas Appendix C extends the analysis to multipliers out of government employment, as well as consumption, sales,
and labor income tax cuts.

18For simplicity and to retain direct comparability with related studies, the multipliers are evaluated at the point where there is no government
intervention, so that G = 0 and τ = 0.
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DEFINITION 3. �e demand-side �scal multiplier, ϕd(x), is given by:

ϕd(x) ≡ d{c+G}
dG

=
dc
dG

+1. (21)

Equation (21) shows that the demand-side multiplier depends on the response of private consumption to government

spending.19 Using Lemma 1, the following equation holds:

dc
dG

=
∂c
∂p

dp

dG
+
∂c
∂x

dx
dG

. (22)

From Lemma 1, we know that ∂c∂p ,
∂c
∂x < 0. Further, in a competitive equilibrium, x is �xed at its e�cient level x∗, so that

dx
dG = 0 and private consumption is crowded in (out) i� dp

dG <(>)0. Similarly, in a �xprice equilibrium, the price, p, is

�xed at a parameter, p0, and therefore dp
dG = 0, and private consumption is crowded in (out) i� dx

dG <(>)0.

DEFINITION 4. �e supply-side �scal multiplier, ϕs(x), is given by:20

ϕs(x) ≡ 1
c+G

d{c+G}
d[−τ]

= −1
c
dc
dτ
. (23)

Using Lemma 1, the following equation holds:

dc
dτ

=
∂c
∂p

dp

dτ
+
∂c
∂x
dx
dτ
. (24)

It is straightforward to show that following a marginal decrease in τ in a competitive equilibrium, private consumption

is crowded in (out) i� −dpdτ <(>)0; in a �xprice equilibrium private consumption is crowded in (out) i� − dxdτ <(>)0.

3.2 Competitive equilibrium multipliers

We �rst derive the �scal multipliers in a competitive equilibrium, where p andw are fully �exible, and adjust in response

to shocks to maintain tightness at the e�cient level (x = x∗) to satisfy the equilibrium conditions:

PROPOSITION 1. In a competitive equilibrium, the demand- and supply-side �scal multipliers are equal and given by:

ϕ∗ ≡ α
1+ψ

=
1− 1

|εd |

1+ 1
εs
, (25)

where α ∈ (0,1] and ψ > 0 are, respectively, returns to labor and inverse Frisch elasticity, whereas |εd | = 1
1−α and εs = 1

ψ

are (absolute) elasticities of labor demand and labor supply. Hence ϕ∗ ∈ (0,1], and it is pinned down by elasticities of labor

demand and labor supply.

Proof. Appendix A.
19In our framework, the e�ect of a marginal increase in government consumptionG on GDP is equivalent to the growth rate of GDP associated

with a marginal increase in the share of government consumption in GDP, since d{c+G}dG = d{c+G}/{c+G}
d(G/{c+G}) . �is feature will be important later when

we formally de�ne the supply-side �scal multiplier in a manner that makes it comparable to its demand-side counterpart.
20We de�ne the supply-side multiplier as the growth rate in GDP associated with a marginal decrease in the rate of tax on the �rms’ payroll

bill. �is approach is needed to make the supply-side �scal multiplier comparable to the demand-side �scal multiplier, which, as established
above, can be represented as growth rate of GDP associated with a marginal change in the share of government consumption in GDP.
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Proposition 1 outlines several important results. First, in a competitive equilibrium, the demand- and supply-side

multipliers are equal, implying that either of the two �scal interventions generates the same e�ect on GDP. However, in

accordance with De�nitions 3 and 4, althoughϕ∗ is identical and between zero and one for both �scal policy instruments,

consumption is crowded out ( dcdG < 0) under demand-side �scal policy, and it is crowded in (− dcdτ > 0) under supply-side

�scal policy.

Second, the competitive equilibrium multiplier in Proposition 1 coincides with the government spending multiplier

derived in Woodford (2011) for a New Keynesian model considered in the limit of fully �exible prices and wages, param-

eterized for our preferences and technology speci�cations. One can therefore treat ϕ∗ as a benchmark for multipliers

under fully �exible prices, in either our model with goods market search frictions or in a New Keynesian model.

�ird, the competitive equilibrium multiplier is determined exclusively by the relative elasticities of labor supply

and demand, equal to εs ≡ 1
ψ and |εd | ≡ 1

1−α , respectively. As labor supply becomes perfectly inelastic (ψ →∞), the

multiplier decreases (ϕ∗→ 0). �e intuition is straightforward. When the ratio of “queue length” to “store size” is to be

kept at the e�cient level and the “store size” is �xed, the only way to accommodate additional government customers

in the queue is for the price to increase to the point where private customers in the queue are crowded-out one-for-one.

Similarly, payroll tax cuts that lead to higher employment and larger “store size” result in higher wages with no change

in employment and consumption when labor supply is perfectly inelastic and tightness is kept at the e�cient level.

On the other hand, when the demand and supply of labor are perfectly elastic (α = 1 andψ = 0), the �scal multiplier

reaches the maximum value of one (ϕ∗ = 1). In this case, any additional queue length from government customers

generates an increase in employment and enlarges the capacity of the store, without crowding out consumption and

retaining tightness at the e�cient level. Any payroll tax cuts leave wages unchanged and increase the supply of labor

and hence the production of goods, which enlarges the capacity of the store. �e only way to retain tightness at the

e�cient level is for the price to fall, leading to a one-for-one crowd-in of private customers into the queue.

Given the mapping between the elasticities of labor supply and labor demand and the competitive equilibrium

multipliers, we interpret ϕ∗ as a measure of �exibility of the labor market. �e more elastic the labor demand (larger

α) and labor supply (smaller ψ), the larger the multiplier in a competitive equilibrium.

It is now straightforward to show that both demand- and supply-side �scal multipliers are acyclical in a competitive

equilibrium, as outlined formally below:

COROLLARY 1. In a competitive equilibrium, both demand- and supply-side multipliers are acyclical.

Proof. A trivial consequence of Proposition 1: in a competitive equilibrium, both multipliers are equal to ϕ∗ = α
1+ψ and

do not change when either preference χ or technology a varies.

In a competitive equilibrium, prices and wages are fully �exible and adjust to ensure that tightness remains at the

e�cient level (x∗) in response to demand- and supply-side shocks. Hence, both the utilization probability, f (x), and the

search wedge, [1 + γ(x)], remain unchanged over the business cycle, leading to a �xed level of private consumption

crowding out and hence a constant multiplier.
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3.3 Fixprice equilibrium multipliers

3.3.1 Demand-side �scal multiplier

Before studying the demand-side �scal multiplier in a generic �xprice equilibrium, we make an intermediate step and

derive the multiplier in the special case of �xed capacity, which arises under a perfectly inelastic labor supply (ψ→∞).

�e properties of such �xed capacity �scal multiplier will be helpful for studying �scal multipliers in a generic �xprice

equilibrium as well as for deriving a link between demand- and supply-side �scal multipliers.

LEMMA 6. Let the �xed capacity �scal multiplier, θ(x), be the demand-side �scal multiplier in a �xprice equilibrium

under �xed labor supply, such that

θ(x) ≡ d{c+G}
dG

|ψ→∞. (26)

It can be shown that θ(x) has the following properties:

θ(x) =


(0,−∞), if x ∈ (x∗,xm)

0, if x = x∗

(0,1), if x ∈ (0,x∗)

(27)

θ′(x) < 0, ∀x ∈ (0,xm),

where xm is given by f (xm) = ρxm.

Proof. Appendix A.

Lemma 6 outlines several results. First, in an e�cient �xprice equilibrium, where x = x∗, the First Welfare �eorem

applies and the �xed capacity �scal multiplier is equal to zero, just like the competitive equilibrium multiplier under

perfectly inelastic labor supply (ψ → ∞), such that θ(x∗) = ϕ∗ψ→∞ = 0. Just as in a competitive equilibrium under

perfectly inelastic labor supply, ψ →∞, the only way additional government spending can be accommodated under

�xed labor supply and a �xed price is by crowding out private consumption, which is achieved by an increase in

tightness. Moreover, in an e�cient �xprice equilibrium, the crowding out of consumption is exactly one-for-one, as

the increase in tightness fails to increase supply in the goods market, which is already at its maximum, given the �xed

capacity.

Second, whenever x ∈ (0,x∗), additional demand from government spending is accommodated via higher tightness,

which crowds out private consumption less than one-for-one. �is is because under under x ∈ (0,x∗), the e�ect of

higher tightness on increasing the fraction of capacity utilized f (x) dominates the e�ect of increasing the search wedge

[1 +γ(x)], so that aggregate supply increases following the government consumption increase.

�ird, whenever x ∈ (x∗,xm), higher government spending crowds out private consumption more than one-for-one.

�is is driven by the fact that under x ∈ (x∗,xm) the e�ect of higher tightness on increasing the cost of search [1+γ(x)]

dominates the e�ect on increasing the fraction of capacity utilized f (x), and aggregate supply falls following the rise

in government consumption.

Having established the properties of θ(x), we can now provide a convenient expression for the demand-side �scal

multiplier in a generic �xprice equilibrium:
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PROPOSITION 2. In a �xprice equilibrium, the demand-side �scal multiplier, ϕd(x), is given by:

ϕd(x) = ϕ∗︸︷︷︸
State-invariant component

+ θ(x)× (1−ϕ∗)︸           ︷︷           ︸
State-dependent component

, (28)

where ϕ∗ = α
1+ψ is the competitive equilibrium multiplier. Hence, ϕd(x) ∈ (−∞,1) and dϕd (x)

dx < 0,∀x ∈ (0,xm).

Proof. Appendix A.

Proposition 2 establishes several important results. First, the demand-side �scal multiplier can be represented as

the sum of a state-invariant component, given by the competitive equilibrium multiplier ϕ∗, and a state-dependent

component that is a function of the underlying goods market tightness. Moreover, in the special case of an e�cient

�xprice equilibrium, where x = x∗, the state-dependent component disappears since θ(x∗) = 0, and the �xprice demand-

side multiplier collapses to the multiplier in a competitive equilibrium, ϕd(x∗) = ϕ∗.

Second, from the properties of θ(x), it follows that in a �xprice equilibrium, the demand-side �scal multiplier lies

between one and negative in�nity and strictly falls in tightness on the whole domain. Hence, government expenditure

always crowds out private consumption, and the crowding-out e�ect is stronger whenever the goods market tightness is

higher, as shown graphically in Panel (a) of Figure 3. To outline the intuition behind this �nding, consider our narrative

of “store size” and “queue length”. A low goods market tightness environment is akin to a short queue for a given size

of the store. When the government implements demand-side �scal expansion by sending its customers to join a short

queue, it does not make the shop excessively crowded and hence achieves a relatively high multiplier since the crowding

out e�ect is limited. Instead, in a high tightness environment, the government sends customers to join a crowded store,

which results in strongly crowding out private customers and delivering a low multiplier.

�ird, as seen in Panel (a) of Figure 3, under su�ciently high tightness x̂, the demand-side �scal multiplier turns

negative, implying that private consumption gets crowded out more than one-for-one. �is is despite the fact that in

a generic �xprice equilibrium higher tightness increases labor demand and, ceteris paribus, gives a boost to capacity

and aggregate supply. Moreover, as we establish in the next corollary, such threshold x̂ always exists, regardless of the

elasticities of labor demand and labor supply:

COROLLARY 2. �ere always exists tightness x̂ ∈ (x∗,xm), such that ϕd(x̂) = 0 and ϕd(x) < 0,∀x ∈ (x̂,xm), and it is

equal to:

x̂ = θ−1
(
−

ϕ∗

1−ϕ∗

)
, (29)

where dx̂
dϕ∗ > 0.

Proof. Appendix A.

To interpret this �nding, recall that Lemma 5 establishes that in a �xprice equilibrium tightness increases follow-

ing a positive demand-side or a negative supply-side shock. �us, Corollary 2 implies that in a �xprice equilibrium

the demand-side multiplier can become negative either under a su�ciently strong demand-driven overheating or a

su�ciently severe supply-side contraction.
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Figure 3: Fiscal multipliers in a �xprice equilibrium

(a) Demand-side �scal multiplier, ϕd(x)

(b) Supply-side �scal multiplier, ϕs(x)

Notes: Panels (a) and (b) show demand-side and supply-side �scal multipliers in a �xprice equilibrium of a calibrated
version of our model (α = 0.3,δ = 2,ρ = 0.1,ψ = 0.2) for values of goods market tightness in the range (0, 14xm) (to avoid
extreme values as x gets closer to xm); Panel (a) shows that the demand-side �scal multiplier ϕd(x) starts at one when
x = 0, then strictly falls in goods market tightness, and turns negative a�er x = x̂; Panel (b) shows that the supply-side
�scal multiplier ϕs starts at zero when x = 0, then strictly rises in tightness, tending to in�nity as x→ xm.
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Most importantly, results in Proposition 2 imply well-de�ned, cyclical properties of the demand-side �scal multi-

plier, outlined in the next corollary:

COROLLARY 3. In a �xprice equilibrium, the demand-side �scal multiplier, ϕd(x), is countercyclical under demand-side

�uctuations and procyclical under supply-side �uctuations.

Proof. From Lemma 5, we know that in a �xprice equilibrium dx
dχ > 0, dxda < 0; further, from Proposition 2, we know that

in a �xprice equilibrium dϕd (x)
dx < 0,∀x ∈ (0,xm). Hence, dϕ

d (x)
dχ = dϕd (x)

dx
dx
dχ < 0,∀x ∈ (0,xm) and dϕd (x)

da = dϕd (x)
dx

dx
da >

0,∀x ∈ (0,xm).

Corollary 3 establishes that the demand-side multiplier, associated with government consumption, is large in demand-

driven recessions and supply-driven expansions, but small in supply-driven recessions and demand-side expansions. Intu-

itively, a demand-driven recession lowers the length of the “queue”, whereas a supply-driven expansion increases the

size of the “store”; in both cases, congestion of the store falls. In such cases, an increase in government consumption

adds government customers to an uncongested store, leading to a small amount of private consumption crowding out,

and hence a higher multiplier.21 Conversely, both a supply-driven recession and a demand-driven expansion make the

“store” more congested, leading to strong crowding out of private consumption, and hence a lower multiplier, following

an increase in government consumption.

3.3.2 Supply-side �scal multiplier

�e next proposition provides an expression for the supply-side �scal multiplier in a generic �xprice equilibrium:

PROPOSITION 3. In a �xprice equilibrium, the supply-side �scal multiplier, ϕs(x), is given by:

ϕs(x) = ϕ∗︸︷︷︸
State-invariant component

− θ(x)×ϕ∗︸    ︷︷    ︸
State-dependent component

, (30)

where ϕ∗ = α
1+ψ is the competitive equilibrium multiplier. Hence, ϕd(x) ∈ (0,+∞) and dϕd (x)

dx > 0,∀x ∈ (0,xm).

Proof. Appendix A.

Proposition 3 shows that the supply-side multiplier is the sum of a state-invariant component, equal to the com-

petitive multiplier ϕ∗, and a state-dependent component that depends on goods market tightness. Similarly to the

demand-side multiplier, the supply-side �scal multiplier collapses to its competitive equilibrium value in the special

case of an e�cient �xprice equilibrium with x = x∗, so that ϕs(x∗) = ϕ∗

�e supply-side �scal multiplier is always positive and strictly increases in goods market tightness on the whole

domain, shown graphically in Panel (b) of Figure 3. Hence, supply-side �scal policy always crowds in private consump-

tion and does so more strongly in a tighter goods market. Supply-side �scal policy in the form of a payroll tax cut

encourages more labor demand for a given wage, which in turn increases capacity and reduces goods market tightness,

lowering the search wedge and encouraging higher consumption; the la�er positive e�ect on consumption through
21Michaillat (2014) shows that a similar result holds in a labor market with search-and matching-frictions following shocks to public employ-

ment.
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capacity expansion is stronger whenever capacity is already low, relative to the number of visits. Intuitively, the pay-

roll tax cut increases the size of the “store” and hence reduces its congestion, thus crowding in private consumption;

moreover, such crowding in of private consumption is stronger whenever the store already is very congested.

�e next corollary uses the results from Proposition 3 to establish the cyclicality properties of the supply-side �scal

multiplier in a �xprice equilibrium:

COROLLARY 4. In a �xprice equilibrium, the supply-side �scal multiplier, ϕs(x), is procyclical under demand-side �uc-

tuations and countercyclical under supply-side �uctuations.

Proof. From Lemma 5, we know that in a �xprice equilibrium dx
dχ > 0, dxda < 0; further, from Proposition 3, we know

that in a �xprice equilibrium dϕs(x)
dx > 0. Hence, dϕ

s(x)
dχ = dϕs(x)

dx
dx
dχ > 0,∀x ∈ (0,xm) and dϕs(x)

da = dϕs(x)
dx

dx
da < 0,∀x ∈

(0,xm).

Corollary 4 establishes that the supply-side multiplier, associated with payroll tax cuts, is high in supply-driven

recessions and demand-driven expansions, but low in demand-driven recessions and supply-driven expansions. Intuitively,

a supply-driven recession makes the size of the “store” smaller, whereas a demand-driven expansion increases the

“queue” length; in either case, the store becomes more congested. In such cases, a supply-side policy that generates an

increase in capacity produces large �scal multipliers by lowering the congestion of the “store” and strongly crowding

in private consumption. On the other hand, in demand-driven recessions and supply-driven expansions the “store”

becomes much less congested, so that any further increases in capacity generate only modest decreases in the cost of

search, and hence a very modest crowding in of private consumption.22

3.4 Robustness of results

In Appendices B and C, we extend our results to more general equilibrium types and alternative �scal policy instruments,

respectively, summarized below.

3.4.1 Robustness I: more general equilibrium types

In Appendix B, we solve for demand-side and supply-side multipliers under much more general equilibrium types and

establish their cyclical properties.

First, we show that results obtained under a competitive equilibrium fully extend to a class of �exible equilibria,

where tightness is �xed at an arbitrary level xL ∈ (0,xm) and does not respond to shocks, instead le�ing fully �exible

prices and wages (pL,wL) accommodate any disturbances. Such equilibria could be obtained, for example, when the

price is established by Nash bargaining between �rms and households, or when the price is set at a �xed mark-up over

the marginal cost. We show that any such equilibrium will have both demand- and supply-side multipliers �xed at

ϕ∗ = α
1+ψ and acyclical.

Second, we show that the cyclicality properties established under a �xprice equilibrium extend to a more general

class of frictional equilibria, where prices are partially rigid. Such equilibria could occur, for example, if the price is
22Landais et al. (2018) show that the e�ect of unemployment insurance on employment is weaker if recessions are driven by labor demand

shocks. �e �nding can be interpreted as special case of the present result that supply-side multipliers are procyclical under demand-driven
cycles.
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set at an intermediate level between a �xed parameter (p0) and the price under a �exible equilibrium (pL), so that

p = (p0)ε(pL)1−ε and ε ∈ (0,1] pins down the degree of price rigidity. More generally, we show that in any frictional

equilibrium, where the elasticity between p and pL lies in [0,1), the demand- and supply-side multipliers still fall and

rise in tightness, respectively, and hence preserve the cyclicality properties established under a �xprice equilibrium.

3.4.2 Robustness II: alternative �scal policy instruments

In Appendix C, we extend our analysis to alternative �scal instruments, such as government employment, as well as

distortionary taxation of households’ consumption, labor income, and �rms’ sales.

First, we show that multipliers out of consumption tax cuts and government employment strictly fall in tightness and

hence their cyclicality properties are identical to those of the government consumption multiplier established earlier.

In any �exible equilibrium, both multipliers are still acyclical. In any frictional equilibrium, however, a cut in the rate

of consumption tax encourages higher consumption and more visits by private households; the la�er lengthens the

“queue”, making the shop more congested and thus raising the search cost, crowding out some of the initial increase

in private consumption. Consumption tax cuts implemented under high goods market congestion are associated with

stronger crowding out, and hence a lower value of the multiplier. As for government employment, whenever the

government hires a fraction of the labor supply, it removes labor resources from the private sector, which shrinks the

capacity of privately produced goods, making the goods market more congested and crowding out private consumption.

Whenever the government employs labor under already very high tightness, congestion rises even more strongly and

private consumption becomes more crowded out.

Second, we show that multipliers out of cuts in the rate of labor income tax and the rate of �rms’ sales tax are both

identical to the multiplier out of a cut in the rate of �rms’ payroll tax. Hence both of them also strictly rise in goods

market tightness and their cyclical properties also are just like those of the supply-side multiplier that we considered

earlier. Indeed, in any �exible equilibrium, both multipliers are acyclical. In any frictional equilibrium, however, a cut in

the rate of labor income tax increases labor supply, ceteris paribus, whereas lowering the rate of the sales tax encourages

more labor demand. Either of those policies leads to higher equilibrium employment and hence higher capacity. �e

la�er lowers goods market tightness and crowds in private consumption, doing so more strongly whenever goods

market tightness is more congested in the �rst place.

3.5 Evidence on the equilibrium type

Our analysis shows that the joint dynamics of price and tightness adjustment pin down the cyclical properties of �scal

multipliers. On one hand, whenever tightness is �xed over the business cycle, and prices and wages are fully �exible,

�scal multipliers are acyclical. On the other hand, whenever tightness varies over the business cycle and prices are

rigid, �scal multipliers are state-dependent with cyclicality determined by the source of economic �uctuations. In this

section, we use data on the cyclical component of goods market tightness to assess which equilibrium type provides a

be�er framework to analyze cyclical properties of �scal multipliers.

Figure 4 plots time series for (the cyclical component of) US goods market tightness, as constructed by Michaillat

and Saez (2015). It is immediately apparent that goods market tightness varies signi�cantly over time, suggesting that

equilibria that feature cyclical variations in tightness provide a be�er description of the US economy at business cycle
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Figure 4: Cyclical components of US goods market tightness and sales

Source: Michaillat and Saez (2015).

frequencies. �e la�er also implies that equilibria featuring state-dependent �scal multipliers, with their cyclicality

determined by the source of economic �uctuations, are more empirically relevant.

Figure 4 also shows a strong co-movement between the cyclical components of goods market tightness and sales,

which, according to Lemma 5, re�ects the dominance of demand shocks as the primary source of �uctuations.23 Com-

bined with the cyclicality properties established in Corollary 3, the la�er suggests that the demand-side multiplier is, on

average, countercyclical. �is �nding is consistent with some empirical literature (Auerbach and Gorodnichenko, 2012,

2013, Fazzari et al., 2014), although Ramey and Zubairy (2018) estimate spending multipliers to be mildly countercyclical

at best. �e predominance of demand shocks, combined with cyclicality properties established in Corollary 4, suggest

that the supply-side multiplier is, on average, procyclical. Such a �nding is consistent with the econometric �ndings in

Ziegenbein (2017) and Eskandari (2019), who estimate multipliers out of tax cuts to be much lower in recessions than

in expansions.

�e fact that spending and tax cut multipliers are, respectively, countercyclical and procyclical, on average, gives us

no indication on their relative sizes in a particular recessionary or expansionary episode. Indeed, our analytical results

show that depending on the type of shock that generates the episode in the �rst place, the magnitudes of both multipliers

may be substantially di�erent. In order to gain further understanding of the behavior of the relative magnitudes of

demand- and supply-side multipliers, in the next section, we provide further analytical results regarding the particular

states of the world in which the size of multipliers is di�erent. Subsequently, in Section 5 we develop and calibrate a

quantitative dynamic version of our model, and we use a non-linear solution method to evaluate both spending and
23Strictly speaking, Lemma 5 only applies whenever prices remain completely �xed over the business cycle. In Lemma 9 in Appendix B.2

we show that in any equilibrium where prices are partially rigid, but not completely �xed, tightness and sales co-move under demand-driven
�uctuations and counter-move under supply-driven �uctuations.
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taxation multipliers in shock-speci�c recessionary and expansionary episodes.

4 Fiscal multipliers: additional analytical results

In this section, we provide further analytical results that describe how the relative size of demand- and supply-side

multipliers in a �xprice equilibrium varies with states of goods market tightness. First, we establish that the demand-

side multiplier is lower than the supply-side multiplier whenever goods market tightness is above the socially e�cient

level, and vice versa. Second, we show that for su�ciently low elasticities of labor supply and demand, there always

exists a su�ciently high level of tightness that makes spending austerity, implemented by a reduction in government

consumption, the policy with the largest multiplier. Our results suggest that spending austerity may be the most

e�ective way of boosting the economy in severe supply-side recessions and demand-side expansions.

4.1 Link between demand- and supply-side multipliers

Recall that Propositions 2 and 3 establish that demand- and supply-side multipliers in a �xprice equilibrium move in

the opposite direction to the changes in goods market tightness. We combine the two propositions to conveniently link

the two multipliers and study the e�ect of goods market tightness on the relative size of multipliers.

COROLLARY 5. In a �xprice equilibrium, the demand-side and supply-side �scal multipliers are related as:

ϕd(x)︸︷︷︸
Demand-side multiplier

= θ(x)︸︷︷︸
Fixed capacity multiplier

+ ϕs(x)︸︷︷︸
Supply-side multiplier

. (31)

Hence, the demand-side multiplier is lower whenever x ∈ (x∗,xm), higher whenever x ∈ (0,x∗), and equal to the supply-side
multiplier in an e�cient �xprice equilibrium, where x = x∗.

Proof. Appendix A.

Corollary 5 establishes that in the special case of an e�cient �xprice equilibrium, where x = x∗ and θ(x∗) = 0, the

size of demand- and supply-side multipliers is the same, ϕd(x∗) = ϕs(x∗) = ϕ∗, in accordance with Propositions 2 and

3. When x ∈ (x∗,xm) and hence θ(x) ∈ (−∞,0), the demand-side multiplier is smaller than the supply-side multiplier,

ϕd(x) < ϕs(x), since enlarging capacity by stimulating supply lowers tightness and search costs in the ine�ciently

congested goods market, thus crowding in private consumption and making supply-side policies more e�ective. �e

opposite result holds when x ∈ (0,x∗) and θ(x) ∈ (0,1), making the demand-side multiplier higher than the supply-side

multiplier.

Corollary 5 provides additional intuition on the transmission mechanism of government spending. One can in-

terpret the demand-side multiplier as re�ecting the impact of government spending on GDP holding capacity �xed,

equivalent to θ(x), combined with a policy that increases capacity, isomorphic to ϕs(x). �e intuition for such result

is straightforward. An increase in government spending raises GDP (c+G) and crowds out private consumption since

additional visits from the government raise tightness. However, this increase in tightness also increases f (x), which
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stimulates labor demand and expands capacity and thus lowers tightness, which is isomorphic to a cut in the rate of

payroll tax that also stimulates capacity.

4.2 Austerity multipliers

So far, we have focused on policies that either increase government consumption or cut the rate of payroll tax. However,

policymakers also have reverse options at their disposal, namely spending austerity, implemented as a reduction in

government consumption, and also an increase in the tax rate.

In our framework, the multiplier from austerity implemented by a reduction in government consumption is the

mirror image of the demand-side multiplier, and is equal to −ϕd(x). Similarly, the multiplier from an increase in the

rate of payroll tax is equal to −ϕs(x). From Proposition 3, we know that ϕs(x) ∈ (0,+∞),∀x ∈ (0,xm), which implies

that the multiplier from an increase in the rate of payroll tax is negative on the whole domain of tightness, and hence

in no state of the world can it be the policy option with the highest multiplier. However, the la�er is not the case when

it come to spending policies. We already know from Corollary 5 that whenever x ∈ (x∗,xm) the supply-side multiplier

exceeds the demand-side multiplier; moreover we know from Corollary 2 that there exists x̂ ≥ x∗ such that whenever

x ∈ (x̂,xm), the spending multiplier is in fact negative, implying that the austerity multiplier is positive. Yet, is there an

admissible level of tightness such that the austerity multiplier is su�ciently positive to exceed the supply-side multiplier

from tax cuts? �e next corollary establishes that the answer is yes, as long as the elasticities of labor demand (|εd |)

and labor supply (εs) are su�ciently low, as encapsulated by ϕ∗ = α
1+ψ =

1− 1
|εd |

1+ 1
εs

.

COROLLARY 6. For su�ciently low elasticities of labor demand and labor supply such that ϕ∗ < 0.5, an Austerity

Threshold x̃ ∈ [x̂,xm) exists such that:

−ϕd(x) > ϕs(x) > ϕd(x), ∀x ∈ (x̃,xm). (32)

Furthermore, x̃ is given by:

x̃ = θ−1
(
−

2ϕ∗

1− 2ϕ∗

)
, ϕ∗ < 0.5 (33)

and hence dx̃
dϕ∗ > 0.

Proof. Appendix A.

Panel (a) of Figure 5 compares the austerity multiplier against demand- and supply-side multipliers for an inelastic

labor market (ϕ∗ < 0.5). It shows that the multiplier associated with government consumption austerity exceeds the

supply-side multiplier (dashed line) and demand side multiplier (dark-solid line), provided that tightness is larger than

x̃.24 Panel (b) reports that case for a �exible labor market (ϕ∗ > 0.5), showing that if the labor market is su�ciently

�exible, the supply-side multiplier is always lager than the austerity multiplier, and the Austerity �reshold does not

exist.

In intuitive terms, Corollary 6 states that the store can be so congested, that decreasing tightness by removing

government customers from the queue could be more e�ective at crowding in private consumption than enlarging the
24Note that x̃ ≥ x̂. Reaching the Austerity �reshold requires tightness to be larger than the threshold that makes the government spending

multiplier negative, de�ned in Corollary 2.
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Figure 5: Comparing �scal multipliers in a �xprice equilibrium

(a) Inelastic labor market (ϕ∗ < 0.5)

(b) Elastic labor market (ϕ∗ > 0.5)

Notes: Panels (a) and (b) show demand-side, supply-side and spending austerity multipliers in a �xprice equilibrium of a
calibrated version of our model (δ = 2,ρ = 0.1,ψ = 0.2); in Panel (a), we set α = 0.3, so that the elasticity of labor demand
is relatively low and ϕ∗ = 0.25 < 0.5 – in this case one can see that Austerity �reshold x̃ exists, and for all x ∈ (x̃,xm)
spending-austerity is the policy with the highest multiplier; in Panel (b), we set α = 0.65 so that labor demand is relatively
elastic and ϕ∗ = 0.57 > 0.5 – in this case, Austerity �reshold does not exist and spending austerity is never the policy with
the highest multiplier.
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store by tax cuts. In particular, this could only be the case when the elasticities of labor demand and labor supply

are su�ciently low, so that tax cuts that encourage more labor demand are not e�ective at increasing equilibrium

employment and capacity. Based on our results about cyclical �uctuations in tightness in Lemma 5, the Austerity

�reshold could be reached in an economy with su�ciently inelastic labor markets, which is hit by either a very strong

positive demand-side shock or following a severe negative supply-side shock.

Recent studies by Alesina et al. (2015) provide evidence that austerity programs based on spending reductions are

more powerful than programs based on tax increases when it comes to stimulating GDP during recessions. Our results

provide a theoretical underpinning for such �ndings, suggesting that di�erences between spending- and tax-based

austerity programs are especially pronounced in countries with in�exible labor markets and under high goods-market

tightness, arising in supply-side side recessions, or in demand-side expansions.

5 Fiscal multipliers in a quantitative dynamic model

In this section, we develop and calibrate a discrete-time dynamic version of our model and use a non-linear solution

method in order to quantitatively assess cyclical properties of both spending and taxation multipliers, conditional on

di�erent sources of �uctuations.25 Relative to our static model, we make the additional assumption of long-term cus-

tomer relationships between households and �rms, which is empirically relevant and it allows us to map our matching

process to realistic goods market frictions.26 �e dynamic model corroborates the �nding in our static model and

shows substantial state dependence conditional on a particular type of shock that drives the business cycle, especially

for impact multipliers.

5.1 Goods market with long-term customer relationships

Sales materialize through long-term customer relationships between �rms and consumers from private and government

sectors that are subject to an exogenous destruction rate η per period. �e total number of long-term customer rela-

tionships at the end of period t is yt . At the beginning of each period t, �rms inherit (1 − η)yt−1 relationships that

have survived destruction in the previous period t−1, and they hire labor nt to yield current capacity kt = atnαt , which

they utilize through the relationships carried over from last period, leaving [kt − (1 − η)yt−1] as unutilzed capacity.

Households and the government make vt visits to form new relationships that �ll the unutilzed capacity. However, not

every purchasing visit is successful. �e number of new customer relationships formed in each period is tracked by the

matching function: [
(kt − (1− η)yt−1)−δ + v−δt

]− 1
δ , (34)

where δ > 0 ensures that not every unit of unitilized capacity is �lled and not every visit is successful. Goods market

tightness is de�ned as: xt ≡
vt

kt−(1−η)yt−1
, and the probability of �lling a unit of unutilized capacity is given by f (xt) ≡

(1 + x−δt )−
1
δ , f ′ > 0, whereas the probability of a given visit yielding a new relationship is given by q(xt) ≡ (1 + xδt )

− 1
δ ,

q′ < 0.
25In this section we limit our a�ention to multipliers out of government consumption and payroll tax cuts. In Appendix H.1, we study cyclical

properties of multipliers out of cuts in taxes on consumption and labor supply in our dynamic model.
26Michaillat and Saez (2015) o�er cross-country evidence that long-term customer relationships are prevalent in goods markets; for example,

they report that in the US around 77 per cent of sales go to long-term customers. Moreover, Gourio and Rudanko (2014) show theoretically how
such desire to accumulate long-term customers can be microfounded.
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5.2 Households

As in the static version of our model, households face a cost ρ ∈ (0,1) of consumption goods per visit. �ey form

long-run customer relationships both to consume and purchase goods that go towards satisfying the total cost of visits.

At the beginning of period t, households have (1−η)yct−1 relationships that survived from the previous period, and the

number of new relationships formed in period t is: yct − (1−η)yct−1. Since every visit is only successful with probability

q(xt), the total number of visits required to form new relationships in period t is (yct − (1− η)yct−1)/q(xt), yielding the

following expression for yct :

yct = ct + ρ
[
yct − (1− η)yct−1

q(xt)

]
, (35)

which can be rearranged to obtain a more familiar-looking expression for yct :

yct = [1+γ(xt)]ct − (1− η)γ(xt)yct−1, (36)

where, as before, γ(xt) ≡
ρxt

f (xt)−ρx
is the wedge introduced by search-and-matching frictions.

�ere is a continuum of identical in�nitely lived households. Markets are assumed to be complete, so a full set

of Arrow-Debreu securities is available. �e representative household is small relative to the size of the market, and

maximizes expected discounted lifetime utility, taking prices, wages and goods market tightness as given:

max
{ct+s ,yct+s ,mt+s ,Bt+s+1,lt+s}∞s=0

Et

∞∑
s=0

βs
χt+s c1−σt+s

1− σ
+ ζ(mt+s)− ν

l
1+ψ
t+s
1+ψ


subject to the budget constraint and the equation of motion of their customer relationships:

pty
c
t +mt +Et

[
Ft,t+1Bt+1

]
≤ wtlt + m̄t +Bt +Πt − Tt , ∀t ≥ 0 (37)

yct = [1+γ(xt)]ct − (1− η)γ(xt)yct−1, ∀t ≥ 0 (38)

where lnχt = ρχ lnχt−1 + ε
χ
t , ε

χ
t ∼iid (0,σ2

χ), is an exogenous process for the relative preference for consumption,

β is the utility discount factor, ν captures relative labor disutility, and the rest of the notation carries over from the

static version of the model. �e exogenous supply of the non-produced good is assumed to be constant over time

(m̄t = m̄,∀t ≥ 0) and as before, we normalize it so that ζ′(m̄) = 1.

�e optimization problem yields the following �rst-order conditions for the intertemporal choice of consumption:

χtc
−σ
t + β(1− η)Et

[
χt+1c

−σ
t+1

[1 +γ(xt)]
[1 +γ(xt+1)]

γ(xt+1)
]

︸                                                           ︷︷                                                           ︸
Expected marginal bene�t

= pt[1 +γ(xt)]︸         ︷︷         ︸
Marginal cost

, (39)

and for the labor supply and the stochastic discount factor:

lt = [wt/ν]
1
ψ , Ft,t+s = β

s. (40)
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Note that for η = 1, the consumption function in (39) nests equation (10) in the static model, with the comparative statics

intuition preserved. However, when η ∈ (0,1), the marginal utility from consuming an extra unit of the good consists

of both the contemporaneous component (χtc−σt ) as well as a forward-looking component, which stems from the fact

that a fraction (1−η) of relationships in period t will be preserved in period t+1, leading to further consumption. �e

intuition behind the labor supply function in (40) remains unchanged from the static case.

5.3 Firms

�ere is a continuum of identical perfectly competitive producing a homogenous good. At the beginning of each period

t, �rms have (1− η)yt−1 customer relationships that have survived from the previous period t − 1. Firms hire labor nt
that yields current capacity kt = atnαt , leaving [atn

α
t − (1−η)yt−1], a fraction f (xt) of which is then utilized. �e la�er

gives the following equation of motion for �rms’ sales:

yt = (1− η)yt−1 + f (xt) [atnαt − (1− η)yt−1] , ∀t ≥ 0 (41)

where lnat = ρa lnat−1 + ε
a
t , and εat ∼iid (0,σ2

a ), is an exogenous process for productivity.

�e representative �rm is small relative to the size of the market, and therefore maximizes its lifetime discounted

pro�ts taking prices, wages, and tightness as given:

max
{yt+s ,nt+s}∞s=0

Et

∞∑
s=0

Ft,t+s [pt+syt+s −wt+snt+s(1 + τt+s)]

subject to equation (41). �e optimization problem yields the following optimality condition:

pt + (1− η)Et
[
Ft,t+1

wt+1(1 + τt+1)

αf (xt+1)at+1n
α−1
t+1

[1− f (xt+1)]
]

︸                                                             ︷︷                                                             ︸
Expected marginal bene�t

=
wt(1 + τt)

αf (xt)atn
α−1
t︸           ︷︷           ︸

Marginal cost

. (42)

Note that under η = 1, the above expression collapses to the labor demand function in the static problem given in

equation (15). However, under η ∈ (0,1) the marginal bene�t from selling an extra unit in period t consists both of the

contemporaneous marginal increase in revenue (pt) as well as the (expected) marginal increases in future revenue that

come from retained customer relationships.

5.4 Government

In the baseline version of our model, government consumption is isomorphic to private consumption. Given a sequence

of government spending {Gt}∞t=0, the government’s customer relationships evolve according to:

yGt = Gt + ρ

yGt − (1− η)yGt−1q(xt)

 , (43)

or alternatively

yGt = [1+γ(xt)]Gt − (1− η)γ(xt)yGt−1. (44)
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�e government levies a lump-sum tax Tt on households to run balanced budgets every period, given a sequence of

payroll tax rates {τt}∞t=0:

Tt = pty
G
t −wtntτt . (45)

In the baseline version of our model, we assume exogenous autoregressive paths for government spending and the

payroll tax rates:

Gt = (1− ρG)g + ρGGt−1 + εGt , ∀t ≥ 0 (46)

τt = (1− ρτ )τ + ρττt−1 + ετt , ∀t ≥ 0, (47)

where {εG}t ∼iid (0,σ2
G) and {ετ }t ∼iid (0,σ2

τ ) are exogenous government spending and payroll taxation shocks, re-

spectively.

5.5 Market clearing

�e equilibrium of the system is described by optimality conditions (39), (40), (42), the equations of motion for customer

relationships in (36), (41) and (44) as well as market clearing conditions in the goods market:

yt = y
c
t + y

G
t , ∀t ≥ 0 (48)

in the labor market:

lt = nt , ∀t ≥ 0, (49)

and the market for the non-produced good:

mt = m̄, ∀t ≥ 0. (50)

With the market clearing in asset market (Bt = 0) omi�ed by Walras Law, they give ten equations in eleven endogenous

variables {yt , yct , yGt , lt ,nt , ct ,mt ,xt ,pt ,wt ,Ft,t+1}∞t=0. Just like in the static model, this indeterminacy is intrinsic in any

model with search-and-matching frictions. �e next subsection outlines our strategy for closing the model.

5.6 Closing the model: pricing rule

Recall that in the previous section we introduced broad classes of �exible and frictional equilibria, which di�er in the

way the model is closed. We are going to follow a similar approach in our dynamic model. As an example of a �exible

equilibrium, one could consider our equilibrium conditions, augmented by a sequence of prices {p̃t}∞t=0 that would

ensure that resulting equilibrium tightness is at the same level that would be chosen by a social planner.27 Hence,

closing our model with the pricing equation pt = p̃t ,∀t ≥ 0 gives an example of a �exible equilibrium.

As an example of a frictional equilibrium, one could close the model with a pricing equation that describes persistent

adjustment to the price p̃t :

pt = p
ε
t−1p̃

1−ε
t , ∀t ≥ 0 (51)

where ε ∈ (0,1] pins down the degree of price rigidity. Given the evidence in Subsection 3.5 that equilibria featuring
27Appendix G.2 provides the solution to the social planner’s problem in the dynamic model.
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Table 1: Parameter Calibrations (United States, annual frequency)

Parameter Description Value Source/Target

Household parameters

β Time discount factor 0.96 Annual real rate of 4 per cent

σ Relative risk aversion 1.00 Che�y (2006)

ψ Inverse Frisch elasticity of labor supply 0.50 Standard

ν Disutility of supplying labor 2.13 Target l = 1/3

Firm parameters

α Returns to labor 0.60 Standard

ε Price rigidity 0.70 Standard

Goods market parameters

η Rate of destruction of customer relationships 0.40 Ma�ersion (2001)

ρ Goods cost per visit 0.41 Target q(x) = 0.77

δ Elasticity parameter of the matching function 3.62 Target
[

f (x)
η+f (x)(1−η)

] 1
α
= 0.91

Fiscal policy parameters

g Steady state government spending 0.07 Target g/(c+ g) = 0.18

τ Steady state �rms’ payroll tax rate 0.20 —

Exogenous processes parameters

ρχ = ρa = ρG = ρτ Persistence of exogenous processes 0.90 Standard

price rigidity are a be�er description of the US economy at business cycle frequencies, we assume a degree of price

rigidity instead of fully �exible prices.

5.7 Calibration

We calibrate the model on US data at annual frequencies. Most of the calibration is standard. We set β = 0.96 (to

produce a real interest rate of 4 per cent in steady state), σ = 1.00 (log utility of consumption, based on mean estimates

in Che�y, 2006), ψ = 0.50 (Frisch elasticity of labor supply equal to 2) and α = 0.60 (labor share of income equal to 0.6).

�e labor disutility parameter ν = 2.33 is set to target a steady-state employment rate of 1/3 (l = 1/3). �e degree of

price rigidity is calibrated at ε = 0.70. We set η = 0.40, which yields the rate of destruction of customer relationships

equal to 40 per cent per year (based on US customer a�rition evidence in Ma�ersion, 2001).

�e cost per visit ρ and elasticity of marching function δ are non-standard parameters. We calibrate them by

targeting the steady-state rate of current labor utilization
[

f (x)
η+f (x)(1−η)

] 1
α

(estimated at 0.91 as the long-run average

of labor utilization rate, reported by the Institute for Supply Management)28 and the steady-steady probability of a

successful shopping visit q(x) (estimated at 0.77 as one minus the average stock-out rate, reported by Taylor and Fawce�

(2001) and Jing and Lewis (2011).

Steady state of government spending parameter g is set to match the spending-to-GDP ratio equal to 18% in steady

state. �e steady-state payroll tax rate τ is calibrated to be equal to 0.20. Finally, all autoregressive parameters are set

28From the equation of motion of �rms’ sales in (41) it follows that in steady state y = f (x)
η+f (x)(1−η)an

α = a

[ f (x)
η+f (x)(1−η)

] 1
α
n


α

, so that[
f (x)

η+f (x)(1−η)

] 1
α is the steady-state labor utilization rate.
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equal at 0.9, so that ρχ = ρa = ρG = ρτ = 0.9. Table 1 summarizes the calibration.

5.8 Conditional state-dependent �scal multipliers

To quantitatively assess the degree of state-dependence of �scal multipliers and its variation with the source of business

cycle �uctuations, we compute spending and tax cut multipliers in recessionary and expansionary episodes, condition-

ing on whether a particular episode was generated by a demand or supply shock. We consider a fully non-linear solution

to our model under perfect foresight.

We �rst compute the impulse response of GDP to a one-time preference/technology shock, {GDP shockj }Hj=0, where

shock ∈ {εχ, εa}; we then compute the impulse response of GDP subject to the same shock, combined with either

a spending shock {εG > 0} or a tax cut shock {−ετ < 0}, to obtain time series that embed the interaction between

the fundamental shock driving the business cycle and the shock related to the expansion in government spending,

{GDP shock+εGj }Hj=0, or reduction in taxes, {GDP shock−ετj }Hj=0. We construct the conditional government spending multi-

plier as follows:

ϕG(shock) =

∑H
j=0

[
GDP shock+ε

G

j −GDP shockj

]
∑H
j=0

[
Gε

G

j − g
] , (52)

where
{
Gε

G

j

}H
j=0

is the impulse response of government spending to the spending shock {εG > 0} and H is the horizon

of the impulse response, so that
∑H
j=0

[
Gε

G

j − g
]

denotes a cumulative increase in government spending compared to its

steady-state value.

Similarly, we construct horizon-H conditional tax cut multipliers out of cu�ing the rate of tax τt as:

ϕτ (shock) =

[
GDP shock−ε

τ

H −GDP shockH

]
/GDP

ετ
(53)

where GDP is steady-state level of GDP.

We calibrate εG = 0.01GDP to consider a one-period spending shock equal to 1 per cent of steady-state GDP;

further, we set ετ = 0.01, so that we consider a 1 percentage point cut in the rate of the payroll tax.

To investigate the link between state dependence and the horizon of the response, we distinguish between the

impact multipliers (H = 0), and cumulative 2-year (H = 2) and 4-year (H = 4) multipliers, following the convention in

the empirical literature that considers a two- and four-year horizons (Ramey and Zubairy, 2018).

Figure 6 shows our constructed conditional government spending and payroll tax cut multipliers. Panel (a) plots the

impact of the government spending multiplier, which is equal to around 0.15 when GDP is at the steady-state value.

A strong demand-driven recession that takes GDP 4 per cent below the steady state, raises the spending multiplier to

0.40. On the other hand, a demand-driven expansion that raises output 4 per cent above the steady state, decreases

the multiplier to -0.2. Under supply-driven �uctuations, the cyclicality of spending multipliers is reversed. In a supply-

driven recession, where GDP drops 4 per cent below the steady state, the spending multiplier drops to around -0.05,

and in a 4 per cent supply-driven expansion the multiplier increases to around 0.30. From Panels (b) and (c), the above

properties are preserved for cumulative spending multipliers, although the degree of state dependence is weaker. �is

is because price rigidity is crucial for state dependence in our model, and over the �ve-year horizon a higher fraction

of �rms gets to adjust prices.
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Panel (d) of Figure 6 shows that the impact multiplier out of payroll tax cuts is close to 0.25 in steady state, but almost

doubles in size in a 4 per cent demand-driven expansion, and increases to 0.30 in a 2 per cent supply-side recession.

However, it drops to almost 0.15 in a 4 per cent demand-side recession and a 4 per cent supply-side expansion. As before,

Panel (e) and (f) show that the two- and four-year horizon multipliers out of payroll tax cuts preserve the properties of

their impact counterparts, although state dependence is signi�cantly muted.

5.9 Implications for the empirical debate on �scal state dependence

Results in Figure 6 o�er an interpretation to the recent empirical debate on the degree of �scal state dependence. In

particular, studies such Auerbach and Gorodnichenko (2012, 2013) and Fazzari et al. (2014) point to much larger spend-

ing multipliers in recessions compared to expansions, whereas Ramey and Zubairy (2018) construct a longer historical

dataset and estimate the degree of state dependence to be much more modest. All of the aforementioned studies dis-

tinguish between recessionary and expansionary episodes with unconditional thresholds, such as unemployment, GDP

growth, or the output gap. However, as shown in Panels (a)-(c) of Figure 6, a given level of GDP could be consistent

with both low and high levels of the government spending multiplier, depending on the type of shock that caused that

level of GDP in the �rst place. As a result, econometric techniques that distinguish between recessions and expansions

with unconditional thresholds can estimate spending multipliers to be either countercyclical or procyclical, depending

on whether the estimation sample covers periods with predominantly demand-driven �uctuations or supply-driven

�uctuations.

In the next section, we develop and estimate an econometric model that allows us to evaluate conditional state-

dependent �scal multipliers, where one explicitly accounts for the source of economic �uctuations.

6 Econometric evidence

�is section uses the theoretical insights to develop an econometric model, and perform reduced-form estimation of

conditional state-dependent �scal multipliers, controlling for either the demand- or supply-driven nature of a given

recessionary or expansionary state. We �nd strong empirical support to the predictions of our theory: the estimated

spending multipliers in demand-side recessions are substantially higher than those in supply-side recessions, partic-

ularly at shorter horizons. In accordance with the theory, we �nd tax cut multipliers to be signi�cantly higher in

supply-side recessions compared to the demand-side ones. Our econometric evidence supports the need to control for

the source of �uctuations when evaluating the variation of �scal multipliers over the business cycle.

6.1 Conditional state-dependent �scal multipliers

Our theory establishes that �scal multipliers are state-dependent and cyclicality is determined by the source of economic

�uctuations. Conditional on demand-driven �uctuations, demand-side multipliers are countercyclical and supply-side

multipliers are procyclical. Conditional on supply-driven �uctuations, the exact opposite hold.

We estimate two econometric models using the local projection methodology in Jordà (2005) and evaluate spending

and tax cut multipliers in recessionary and expansionary episodes, conditional on those being demand- or supply-driven

in nature. Our approach identi�es demand- and supply-driven �uctuations using observed co-movement between cycli-
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cal components of economic activity and in�ation. In accordance with the insights of a wide range of models, a demand-

side recession is characterized by a joint fall in economic activity and in�ation while a supply-driven recession is char-

acterized by a fall in economic activity and a rise in in�ation. �is study is the �rst to estimate state-dependent �scal

multipliers controlling for the source of �uctuations.29

6.1.1 Conditional state-dependent spending multipliers

We extend the one-step IV procedure from Ramey and Zubairy (2018) to account for the source of economic �uctuations.

Instead of distinguishing between expansions and recessions using an unconditional unemployment threshold Ū , we

split recessionary states, where Ut ≥ Ū , into those where in�ation is below its trend value, πt < π̄t , corresponding to

demand-side recessions, and those where in�ation is above trend, πt ≥ π̄t , corresponding to supply-side recessions.

Alternatively, we could split expansionary states, Ut < Ū , into those where in�ation is below its trend value, πt < π̄t ,

corresponding to supply-side expansions, and those where in�ation is above trend, πt ≥ π̄t , corresponding to demand-

side expansions; we perform this exercise in Appendix I.

Our baseline speci�cation to estimate cumulative spending multipliers at horizon H is:

t+H∑
s=t

( GDP
GDP ∗

)
s
=1{Ut−1 < Ū }

αEH + βEH

t+H∑
s=t

( G
GDP ∗

)
s
+γEHzt−1

+

1{Ut−1 ≥ Ū ;πt−1 < π̄t−1}

αDRH + βDRH

t+H∑
s=t

( G
GDP ∗

)
s
+γDRH zt−1

+

1{Ut−1 ≥ Ū ;πt−1 ≥ π̄t−1}

αSRH + βSRH

t+H∑
s=t

( G
GDP ∗

)
s
+γSRH zt−1

+ εt+H , (54)

where
∑t+H
s=t

(
GDP
GDP ∗

)
s

and
∑t+H
s=t

(
G

GDP ∗

)
s

are, respectively, cumulative real GDP and real government expenditures, both

normalized by trend real GDP (GDP ∗), 30 zt−1 is a vector of controls, 31 and 1{.} is the indicator variable. �e above

equation is estimated by 2SLS, where the instrument set includes exogenous government spending shocks, such as

narrative military spending news shocks from Ramey and Zubairy (2018) or VAR-based shocks from Blanchard and

Pero�i (2002) , interacted with indicator variables for the states considered.

An important advantage of this approach is that our estimates for βEH ,β
DR
H , and βSRH directly give us values for

horizon-H cumulative spending multipliers in, respectively, expansions (E), demand-side recessions (DR), and supply-

side recessions (SR). Our theory predicts that spending multipliers in demand-side recessions are higher that those in

supply-side recessions, so that βDRH > βSRH , and we test the prediction using our econometric model.

29Ramey and Zubairy (2018) and Ziegenbein (2017) distinguish between recessions and expansions with an unconditional unemployment
threshold whereas Auerbach and Gorodnichenko (2013) employ smooth state transitions based on the unconditional rate of economic growth.

30Following Ramey and Zubairy (2018), this normalization is to ensure cumulative GDP and government spending are measured in the same
units, which avoids the need to covert estimates in logs to levels. We follow Gordon and Krenn (2010), and measureGDP ∗ as 6th order polynomial
trend of real GDP.

31�e precise set of variables used as controls is outlined in description to the relevant regression tables.
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6.1.2 Conditional state-dependent tax cut multipliers

In a similar fashion, we use local projections to estimate conditional state dependence for tax cut multipliers. We

extend the approach in Eskandari (2019) that distinguishes between recessionary and expansionary episodes using an

unconditional unemployment threshold by further di�erentiating between demand-side and supply-side recessions. As

with conditional state-dependent spending multipliers, one also can split expansionary states,Ut < Ū , into those where

in�ation is below its trend value, πt < π̄t , corresponding to supply-side expansions, and those where in�ation is above

trend, πt ≥ π̄t , corresponding to demand-side expansions; we perform this exercise in Appendix I.

Our baseline speci�cation to estimate tax cut multipliers at horizon H is given by:

lnGDPt+H − lnGDPt−1 =1{Ut−1 < Ū }
[
αEH + βEHτt +γ

E
Hzt−1

]
+

1{Ut−1 ≥ Ū ;πt−1 < π̄t−1}
[
αDRH + βDRH τt +γ

DR
H zt−1

]
+

1{Ut−1 ≥ Ū ;πt−1 ≥ π̄t−1}
[
αSRH + βSRH τt +γ

SR
H zt−1

]
+ εt+H , (55)

where τt is an exogenous shock to the average tax rate in the economy, and the rest of the notation carries over from

the spending multiplier regressions. Given a time series for exogenous tax rate shocks, such as narrative tax shocks

from Romer and Romer (2010), the above speci�cation is estimated by OLS.

�e estimates for βEH ,β
DR
H , and βSRH directly provide values for horizon-H tax cut multipliers in, respectively, ex-

pansions (E), demand-side recessions (DR), and supply-side recessions (SR). Our theory predicts that tax cut multipliers

in demand-side recessions are lower than those in supply-side recessions, so that βDRH < βSRH , and we test the prediction

using our econometric model.

6.2 Data

We estimate the model using quarterly US data. We use the series for real GDP (GDP ), civilian unemployment (U ), and

government consumption and �xed capital formation (G) data that extend back to 1889 by Ramey and Zubairy (2018).

Trend GDP (GDP ∗) is measured as sixth-order polynomial exponential trend of real GDP, following Gordon and Krenn

(2010). We measure quarterly in�ation (πt) as year-on-year change in (log) GDP de�ator, and trend in�ation (π̄t) is

obtained by HP-�ltering the raw in�ation series with a smoothing parameter λ = 1600 for quarterly data. �e baseline

unemployment threshold is set at Ū = 6.5%, consistent with Ramey and Zubairy (2018).

Our baseline measure of the government spending shock is the narrative military spending news shocks in Ramey

and Zubairy (2018), and for tax rate shocks, we use the narrative measure in Romer and Romer (2010). Appendix I

shows that results hold using VAR-based spending and tax shocks constructed following Blanchard and Pero�i (2002).

For spending multipliers, the sample period is 1909:Q1-2015:Q4; for tax cut multipliers, we use the shorter time

sample 1947:Q1-2007:Q4, with the shorter sample driven by the available time series of tax shocks in Romer and Romer

(2010).32

32In principle, the narrative military spending news shocks series from Ramey and Zubairy (2018) goes back to 1989:Q1, but we exclude the
�rst twenty years of their sample due to excessive volatility of in�ation in that time period, as the la�er complicates our strategy of separating
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Figure 7: Demand- and supply-side recessions and �scal shocks

(a) Demand- and supply-side recessions (b) Fiscal shocks and sources of recessions

Notes: Panel (a) shows the unemployment rate in the US between 1909-2015, as well as demand-side recessions, identi�ed by
the indicator variable 1{Ut ≥ Ū ;πt < π̄t}, and supply-side recessions, identi�ed by the indicator variable 1{Ut ≥ Ū ;πt ≥
π̄t}; Panel (b) additionally plots time series of military spending news shocks from Ramey and Zubairy (2018) and narrative
tax rate shocks from Romer and Romer (2010).

6.3 Demand-side and supply-side recessions: a closer look

Panel (a) in Figure 7 shows historical periods of demand-side recessions characterized by a negative co-movement

between unemployment and the cyclical component of in�ation (solid shaded area), and supply-side recession char-

acterized by positive comovement between these variables (striped shaded area) for the sample period 1909-2015. �e

majority of the US Great Depression is identi�ed as a demand-side recession; the oil shocks of the 1970s start o� as a

supply-side recession, evolving into a demand-side recession. In the case of the late 1970s/early 1980s recession, this

could be due to Volcker disin�ation that immediately followed the second wave of oil shocks. �e Great Recession, on

the other hand, originates as a demand-side recession, evolving into a supply-side recession. One explanation is that

initial negative e�ect on households wealth and income evolved into a supply-side constraint as �rms were unable to

access capital due to the distorted �nancial system.

Our identi�cation strategy relies on having enough spending and taxation shocks in each of the three states of

the world considered in the baseline speci�cation. Panel (b) in Figure 7 plots the time series for military spending

news shocks from Ramey and Zubairy (2018) and narrative tax rate shocks from Romer and Romer (2010) against our

de�nition of states. �e �gure shows that spending and tax rate shocks are spread fairly evenly across expansions,

demand- and supply-side recessions. Formally, 28% of quarters identi�ed as an expansion, 16% of quarters identi�ed as

a demand-side recession and 16% of quarters identi�ed as a supply-side recession contain a non-zero military spending

news shock. Similarly, 14% of quarters identi�ed as an expansion, 31% of quarters identi�ed as a demand-side recession

and 32% of quarters identi�ed as a supply-side recession contain a non-zero narrative tax shock.

out episodes with in�ation above and below trend; however, our baseline results are robust to considering the full sample and are available upon
request.
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6.4 Empirical results

6.4.1 Conditional state-dependent spending multipliers

Table 2 shows baseline estimation results for spending multipliers. Column (1) shows that the 2-year cumulative spend-

ing multiplier is equal to 0.70 without any conditioning on the source of �uctuations. Column (2) replicates the exercise

in Ramey and Zubairy (2018), by distinguishing between recessions and expansions based on an unconditional unem-

ployment threshold. �e 2-year cumulative multiplier is equal to 0.68 in expansions, which is larger than the estimated

recession multiplier equal to 0.54, although the di�erence is not statistically signi�cant. �ese estimates blend demand-

and supply-driven episodes, while our theory shows that the source of �uctuations is crucial to establish an estimate for

the spending multiplier. To test our theoretical prediction, column (3) separately estimates 2-year cumulative spending

multipliers in demand- and supply-driven recessions. Consistent with our theoretical �ndings, the spending multiplier

in demand-driven recessions is equal to 0.86, which is larger than the multiplier in supply-driven recessions, which

equals 0.32.

Columns (4)-(6) repeat the exercise for 4-year cumulative multipliers. As before, conditioning on recessions and

expansions delivers spending multipliers that are slightly higher in expansions (0.76) than in recessions (0.65), although

the di�erence is not statistically signi�cant. Instead, controlling for whether recessions are generated by demand-

or supply-side shocks corroborates our theory: spending multipliers are higher in demand-side recessions (0.71) than

in supply-side recessions (0.63), although the di�erence is smaller than in the case of 2-year multipliers. �e �nding

that conditional state dependence becomes weaker at longer horizons is consistent with our theory, as veri�ed in the

quantitative dynamic model. At longer time horizons, prices adjust to shocks and tightness plays a smaller role in

business cycle adjustment, bringing the multiplier closer to its value under �exible prices, determined by the elasticities

of labor demand and labor supply.

To investigate the relationship between the degree of conditional state dependence and the horizon of cumulation,

Figure 8 repeats the exercise for horizons raging from 4 to 20 quarters. In Panel (a), we do not condition on the source of

�uctuations and instead distinguish between recessions and expansions; consistently with Ramey and Zubairy (2018),

very limited state dependence is detected, with formal statistical tests showing no signi�cant di�erences at any horizon.

However, when we condition on the source of �uctuations in Panel (b), we �nd that, consistent with our theory, spending

multipliers in demand-side recessions are longer than those in supply-side recessions at any horizon. Moreover, the

degree of such conditional state dependence is strongest at shorter horizons: 4 quarters a�er a spending shock, the

cumulative spending multiplier is close to one in demand-driven recessions, but close to zero in supply-side recessions.

On the other hand, and again consistent with our theory, multipliers in demand- and supply-side recessions become

very similar a�er 12 quarters. We formally test the restriction βDRH = βSRH , which implies that the source of �uctuations

does not ma�er as in Ramey and Zubairy (2018), and can reject it at the 10% level at 6- and 7-quarter horizons, and at

32% level for all horizons between 4 and 11 quarters.

6.4.2 Conditional state-dependent tax cut multipliers

Table 3 shows baseline estimation results for tax cut multipliers. Column (1) shows that 2-year tax cut multiplier is 1.50

without any conditioning on the state of the economy, and not signi�cantly di�erent from zero. �e lack of signi�cance

could be explained by the fact that tax cuts a�ect GDP through expansions in capacity, a very gradual process that
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is di�cult to detect within 2 years. Column (3) conditions the estimates on recessions, and it shows that the tax cut

multiplier is equal to 1.81 in expansions and 0.98 in recessions, although again neither are signi�cantly di�erent from

zero. As before, the recessionary states blend demand- and supply-driven episodes, and our theory predicts that tax

cut multipliers are larger in supply-side recessions. Results in column (3), derived by controlling for the source of

�uctuations, support our theoretical prediction: in demand-driven recessions, the tax cut multiplier is 1.49 and not

signi�cantly di�erent from zero, whereas in supply-side recessions it is 4.29, and statistically signi�cant at 10% level.

Columns (4)-(6) repeat the tax-cut estimation exercise for the 4-year horizon. �e unconditional tax cut multiplier

in column (4) is 1.71 and statistically signi�cant at 5% level. �e fact that the multiplier is signi�cant at 4-year horizon,

and not at 2-year horizon, is consistent with the fact that capacity expansion is considered to be a gradual process.

Column (5) reports that the tax cut multiplier is equal to 2.37, and signi�cant at 5 per cent level, in expansions, but

lower and equal to 1.24 and insigni�cant in recessions. Column (6) shows estimates that control for demand- and

supply-side recessions, showing that in supply-side recessions the multiplier is higher at 1.80, and signi�cant at 10 per

cent, whereas it is negative at -1.98 and highly insigni�cant in demand-side recessions. �e la�er �nding provides

further support to our theory.

Figure 9 investigates the relationship between conditional state dependence of tax cut multipliers and the horizon

considered. In Panel (a), we do not condition on the source of �uctuations and simply distinguish between recessions

and expansions: as one can see, very limited state dependence is detected in this case. However, once we condition on

the source of �uctuations in Panel (b), the tax cut multiplier in supply-side recessions is consistently higher than the

multiplier in demand-side recessions, as our theory predicts, except for 4- and 5-quarter horizons. Unlike the spending

multiplier, conditional state dependence of tax cut multipliers is not at its maximum at shorter horizons and instead

is close to uniform a�er approximately 8 quarters. We formally test the restriction βDRH = βSRH , which implies that the

source of �uctuations does not ma�er, and can reject it at the 10% level at 11- and 13-quarter horizons, and at 32% level

for all horizons between 8 and 16 quarters, as well as at the 20-quarter horizon.

6.4.3 Robustness checks

In Appendix I, we perform further robustness checks, brie�y outlined here. In particular, in Appendix I.1, we show that

once one further distinguishes between demand- and supply-side expansions, our theory receives further empirical

support: spending multipliers are higher in supply-side expansions, whereas multipliers out of tax cuts are larger in

demand-driven economic upturns. In Appendix I.2, we show that our results are robust to using VAR-based �scal

shocks, following Blanchard and Pero�i (2002). Finally, in Appendix I.3 we provide further results where instead of

measuring economic activity with the level of unemployment, we are using detrended real GDP, which is a measure

that is more consistent with our theory.
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Table 2: Conditional state-dependent spending multipliers (Ū = 6.5%; US military spending news shocks)

US data: 1909:Q1-2015:Q4 2-year horizon 4-year horizon

State (1) (2) (3) (4) (5) (6)

βH : Linear 0.70*** 0.75***

(0.06) (0.06)

βEH : 1{Ut < Ū } 0.68*** 0.68*** 0.76*** 0.76***

(0.10) (0.09) (0.13) (0.12)

βRH : 1{Ut ≥ Ū } 0.54*** 0.65***

(0.13) (0.08)

βDRH : 1{Ut ≥ Ū ;πt < π̄t} 0.86*** 0.72***

(0.33) (0.12)

βSRH : 1{Ut ≥ Ū ;πt ≥ π̄t} 0.32*** 0.63***

(0.11) (0.09)

βEH = βRH (p-value) 0.37 0.44

βDRH = βSRH (p-value) 0.14 0.54

T 416 416 416 408 408 408

Notes: standard errors, robust to autocorrelation and heteroskedasticity, are reported in parentheses, with ***(**,*) denoting

statistical signi�cance at 1%(5%, 10%) level; all regressions include a set of controls, consisting of four lags of real GDP, real

government spending andmilitary spending news shocks, all normalized by trend real GDP as well as a constant (coe�cients

on controls are allowed to be state-speci�c). ’Linear’ denotes a regression where we do not allow for the spending multiplier to

vary across states; otherwise multipliers are estimated separately in states of the world described by the respective indicator

variables (Ū = 6.5% is the unemployment threshold, π̄t is trend in�ation obtained by HP-�ltering year-on-year quarterly

GDP de�ator in�ation).
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Figure 8: Government Spending Multipliers across Horizons (US military spending news shocks, 1909-2015)

(a) Cumulative government spending multipliers in recessions and expansions across horizons

(b) Cumulative government spending multipliers in demand-side and supply-side recessions across horizons

Notes: Panel (a) shows cumulative government spending multipliers estimated in recessionary 1{Ut ≥ Ū } and expansionary
1{Ut < Ū } episodes as well as linear benchmarks for di�erent cumulation horizons 4 ≤H ≤ 20;
Panel (b) shows cumulative government spending multipliers estimated in demand-side recessionary episodes 1{Ut ≥
Ū ;πt < π̄t} and supply-side recessionary episodes 1{Ut ≥ Ū ;πt ≥ π̄t} as well as unconditional recessions 1{Ut ≥ Ū }
for di�erent horizons 4 ≤H ≤ 20; we set Ū = 6.5% in all estimations.
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Table 3: Conditional state-dependent tax cut multipliers (Ū = 6.5%; US Romer-Romer narrative tax shocks)

US data: 1947:Q1-2007:Q4 2-year horizon 4-year horizon

State (1) (2) (3) (4) (5) (6)

βH : Linear 1.50 1.71**

(1.14) (0.82)

βEH : 1{Ut < Ū } 1.81 1.81 2.37** 2.37**

(1.17) (1.12) (0.99) (0.99)

βRH : 1{Ut ≥ Ū } 0.98 1.24

(1.07) (0.87)

βDRH : 1{Ut ≥ Ū ;πt < π̄t} 1.49 -1.98

(1.04) (2.75)

βSRH : 1{Ut ≥ Ū ;πt ≥ π̄t} 4.29* 1.80*

(2.18) (1.00)

βEH = βRH (p-value) 0.48 0.39

βDRH = βSRH (p-value) 0.25 0.20

T 240 240 240 240 240 240

Notes: standard errors, robust to autocorrelation and heteroskedasticity, are reported in parentheses, with ***(**,*) denoting

statistical signi�cance at 1%(5%, 10%) level; all regressions include a set of controls, consisting of four lags of (log) real GDP

as well as a constant (coe�cients on controls are allowed to be state-speci�c). ’Linear’ denotes a regression where we do not

allow for the tax cut multiplier to vary across states; otherwise multipliers are estimated separately in states of the world

described by the respective indicator variables (Ū = 6.5% is the unemployment threshold, π̄t is trend in�ation obtained by

HP-�ltering year-on-year quarterly GDP de�ator in�ation).
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Figure 9: Tax Cut Multipliers across Horizons (US Romer-Romer narrative tax shocks, 1947-2007)

(a) Tax cut multipliers in recessions and expansions across horizons

(b) Tax cut multipliers in demand-side and supply-side recessions across horizons

Notes: Panel (a) shows tax cut multipliers estimated in recessionary 1{Ut ≥ Ū } and expansionary 1{Ut < Ū } episodes as
well as linear benchmarks for di�erent horizons 4 ≤H ≤ 20;
Panel (b) shows tax cut multipliers estimated in demand-side recessionary episodes 1{Ut ≥ Ū ;πt < π̄t} and supply-side
recessionary episodes 1{Ut ≥ Ū ;πt ≥ π̄t} as well as unconditional recessions 1{Ut ≥ Ū }, for di�erent horizons 4 ≤H ≤ 20;
we set Ū = 6.5% in all estimations.
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7 Conclusion

�is paper develops a general theory of state-dependent �scal multipliers for a broad range of spending and taxation

policies. �e framework accounts for empirically relevant goods market frictions by incorporating idle productive

capacity and unsatis�ed households’ demand into an otherwise standard general equilibrium setup. Our key novel

�nding is that cyclicality of �scal multipliers is pinned down by the source of economic �uctuations, and we provide

model-free econometric evidence that strongly supports our theoretical predictions.

Crucially, we establish that multipliers associated with �scal instruments which stimulate aggregate demand, such

as government spending and consumption tax cuts, are countercyclical under demand-driven �uctuations and procyclical

under supply-driven �uctuations. On the other hand, multipliers associated with interventions that stimulate aggre-

gate supply, such as reductions in taxes on �rms’ payroll, sales and households’ labor income, are countercyclical under

supply-driven �uctuations and procyclical under demand-driven �uctuations. In addition, our theoretical results estab-

lish a relevant role for �scal austerity, implemented by a reduction in government consumption in severe supply-driven

recessions and demand-driven booms, provided elasticities of labor supply and labor demand are su�ciently low.

Further, we develop and estimate a novel econometric speci�cation that allows us to perform model-free evaluation

of both spending and taxation multipliers in recessionary and expansionary episodes, conditional on those being either

demand- or supply-driven in nature. Our empirical results detect substantial state dependence, conditional on the source

of �uctuations, which is in line with the predictions of our theory. Such �ndings o�er a resolution to the debate on

state dependence of �scal policy, on both empirical and theoretical grounds, and they provide guidance for the conduct

of �scal policy in the di�erent phases of the business cycle.

Our analysis opens fruitful avenues for future research. First, in our dynamic framework, current changes in �scal

policy determine the future path of goods market tightness and thus constrain the e�ectiveness of policy in the future.

Our framework can therefore be extended to study the intertemporal trade-o�s and the path dependence of �scal policy.

Second, by extending the model to include heterogeneity in the goods markets, one can study how composition of

spending and taxation policies may generate spillover e�ects of �scal policy across sectors and the socially optimal

distribution of such policies. We plan to investigate these issues in future research.
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APPENDIX

A Proofs of results in main text

LEMMA 1. �e consumption function c(p,x) is the optimal consumption choice in the representative household’s problem

evaluated under non-produced goods market clearing(m = m̄) and is given by:

c(p,x) =
χ

p[1 +γ(x)]
,

where ∂c
∂p < 0, ∂c∂x < 0 and ∂c

∂χ > 0.

Proof. �e Lagrangian of the representative household’s problem is given by:

L =
[
χ
c1−σ

1− σ
+ ζ(m)− l

1+ψ

1+ψ
+λ(wl +Π+ m̄− T − p[1 +γ(x)]c −m)

]
. (56)

First-order conditions with respect to consumption of the produced and non-produced good, as well as the labor supply

are given by:

dL
dc

= χc−σ −λp[1 +γ(x)] = 0, (57)

dL
dm

= ζ′(m)−λ = 0, (58)

dL
dl

= −lψ +λ = 0. (59)

Combining the �rst-order conditions for consumption of the produced and the non-produced good, and evaluating it

under m = m̄ and our baseline assumption of ζ′(m̄) = 1 delivers the following consumption function:

c(p,x)σ =
χ

p[1 +γ(x)]
. (60)

Further, in the main text we assume σ = 1:

c(p,x) =
χ

p[1 +γ(x)]
. (61)

It then follows that ∂c
∂p = − χ

p[1+γ(x)]
1
p < 0, ∂c

∂x = −
χ

p[1+γ(x)]
1

[1+γ(x)] < 0, ∂c
∂χ = 1

p[1+γ(x)] > 0.

LEMMA 2. �e labor supply function l(w) is the optimal labor supply choice in the representative household’s problem

evaluated at m = m̄, and is given by:

l(w) = w
1
ψ ,

where ∂l
∂w > 0.

Proof. Combing the �rst-order conditions for consumption of the non-produced good (58) and labor supply (59), and
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evaluating it under m = m̄ and our baseline assumption of ζ′(m̄) = 1 delivers the following labor supply function

l(w) = w
1
ψ .

It then follows that ∂l
∂w = 1

ψw
1
ψ−1 > 0.

LEMMA 3. �e labor demand function n(p,x,w) is the solution to the representative �rm’s pro�t maximisation problem

and is given by:

n(p,x,w) =
[
αpf (x)a
w(1 + τ)

] 1
1−α

,

where ∂n∂p > 0, ∂n∂x > 0, ∂n∂w < 0, ∂n∂a > 0 and ∂n
∂τ < 0.

Proof. �e �rst-order condition of the representative �rm’s pro�t maximization problem is given by:

∂Π
∂n

= αpf (x)anα−1 −w(1 + τ) = 0. (62)

Solving for n from the above �rst-order condition gives the following labor demand function:

n(p,x,w) =
[
αpf (x)a
w(1 + τ)

] 1
1−α

.

It then follows that ∂n∂p = 1
1−α

[
αpf (x)a
w(1+τ)

] 1
1−α−1 αf (x)a

w(1+τ) > 0, ∂n
∂x =

1
1−α

[
αpf (x)a
w(1+τ)

] 1
1−α−1 αpf ′(x)a

w(1+τ) > 0, ∂n
∂w = − 1

1−α

[
αpf (x)a
w(1+τ)

] 1
1−α−1 αpf (x)a

w(1+τ)
1
w <

0, ∂n
∂a =

1
1−α

[
αpf (x)a
w(1+τ)

] 1
1−α−1 αpf (x)

w(1+τ) > 0, ∂n∂τ = − 1
1−α

[
αpf (x)a
w(1+τ)

] 1
1−α−1 αpf (x)a

w(1+τ)
1

(1+τ) < 0.

LEMMA 4. In a competitive equilibrium, the following are the comparative statics of tightness (x), sales (y) and the price

(p):

dx
dχ

= 0,
dy

dχ
> 0,

dp

dχ
> 0;

dx
da

= 0,
dy

da
> 0,

dp

da
< 0

Proof. Combining the labor supply function l(w) in Lemma 2 and the labor demand function n(p,x,w) in Lemma 3 with

the labor market clearing condition delivers the following expression for equilibrium employment:

l = n = (αpf (x)a)
1

1−α+ψ (1 + τ)−
1

1−α+ψ . (63)
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Inserting equilibrium employment level into goods market clearing condition:

f (x)
1 +γ(x)

a
[
(αpf (x)a)

1
1−α+ψ (1 + τ)−

1
1−α+ψ

]α
= c(p,x) +G, (64)

f (x)
1 +γ(x)

a
[
(αpf (x)a)

1
1−α+ψ (1 + τ)−

1
1−α+ψ

]α
=

χ
p[1 +γ(x)]

+G, (65)

pf (x)aα
α

1−α+ψ (pf (x)a)
α

1−α+ψ (1 + τ)−
α

1−α+ψ = χ+ p[1 +γ(x)]G (66)

α
α

1−α+ψ (pf (x)a)
1+ψ

1−α+ψ (1 + τ)−
α

1−α+ψ = χ+ p[1 +γ(x)]G. (67)

By de�nition of the competitive equilibrium, x = x∗, and so dx
dχ = dx

da = 0. �e la�er implies the following comparative

statics for p (for simplicity, evaluated at G = τ = 0):

α
α

1−α+ψ (f (x)a)
1+ψ

1−α+ψ
1+ψ

1−α +ψ
p

α
1−α+ψ

dp

dχ
= 1 (68)

dp

dχ
= α−

α
1−α+ψ (f (x)a)−

1+ψ
1−α+ψ

1−α +ψ
1+ψ

p−
α

1−α+ψ =
1−α +ψ
1+ψ

p

χ
> 0. (69)

(70)

α
α

1−α+ψ (f (x))
1+ψ

1−α+ψ
1+ψ

1−α +ψ
(pa)

α
1−α+ψ (p+ a

dp

da
) = 0 (71)

dp

da
= −

p

a
< 0. (72)

Finally, the above implies the following comparative statics for sales y = [1 + γ(x)](c(p,x) +G) = χ/p +G[1 + γ(x)]

(also evaluated at G = τ = 0):

py = χ+ p[1 +γ(x)]G (73)

dp

dχ
y + p

dy

dχ
= 1 (74)

dy

dχ
=
1
p

(
1−

dp

dχ
y

)
=
1
p

α
1+ψ

> 0. (75)

dp

da
y + p

dy

da
= 0 (76)

dy

da
= −

dp

da

y

p
> 0. (77)

LEMMA 5. In a �xprice equilibrium, the following are the comparative statics of tightness (x), sales (y) and the price (p):

dx
dχ

> 0,
dy

dχ
> 0,

dp

dχ
= 0;

dx
da

< 0,
dy

da
= 0,

dp

da
= 0

Proof. Condition (67) remains unchanged in a �xprice equilibrium. However, now the price is a parameter, so that
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dp
dχ = dp

da = 0. �e la�er implies the following comparative statics for x (for simplicity, evaluated at G = τ = 0):

α
α

1−α+ψ (pa)
1+ψ

1−α+ψ
1+ψ

1−α +ψ
f (x)

α
1−α+ψ f ′(x)

dx
dχ

= 1 (78)

dx
dχ

= α−
α

1−α+ψ (f (x)a)−
1+ψ

1−α+ψ
1−α +ψ
1+ψ

f (x)−
α

1−α+ψ
1

f ′(x)
> 0. (79)

(80)

α
α

1−α+ψ (p)
1+ψ

1−α+ψ
1+ψ

1−α +ψ
(f (x)a)

α
1−α+ψ (f (x) + af ′(x)

dx
da

) = 0

dx
da

= −
f (x)
a

1
f ′(x)

< 0. (81)

�e above implies the following comparative statics for sales y = [1 + γ(x)](c(p,x) + G) = χ/p + G[1 + γ(x)] (also

evaluated at G = τ = 0):

py = χ+ p[1 +γ(x)]G (82)

p
dy

dχ
= 1 (83)

dy

dχ
=
1
p
> 0. (84)

p
dy

da
= 0 (85)

dy

da
= 0. (86)

PROPOSITION 1. In a competitive equilibrium, the demand-side and the supply-side �scal multipliers are equal and

given by:

ϕ∗ ≡ α
1+ψ

=
1− 1

|εd |

1+ 1
εs
,

where α ∈ (0,1] and ψ > 0 are, respectively, returns to labor and inverse Frisch elasticity, whereas |εd | = 1
1−α and εs = 1

ψ

are (absolute) elasticities of labor demand and labor supply. Hence ϕ∗ ∈ (0,1] and it is pinned down by elasticities of labor

demand and labor supply.
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Proof. First di�erentiate (67) with respect to G (evaluated at G = τ = 0):

α
α

1−α+ψ
1+ψ

1−α +ψ
(pf (x)a)

1+ψ
1−α+ψ−1

[
dp

dG
f (x)a+ pf ′(x)

dx
dG

a

]
= p[1 +γ(x)], (87)

α
α

1−α+ψ
1+ψ

1−α +ψ
(pf (x)a)

1+ψ
1−α+ψ

[
1
p

dp

dG
+
f ′(x)
f (x)

dx
dG

]
= p[1 +γ(x)], (88)[

1
p

dp

dG
+
f ′(x)
f (x)

dx
dG

]
=

p[1 +γ(x)]
1+ψ

1−α+ψ α
α

1−α+ψ (pf (x)a)
1+ψ

1−α+ψ︸                  ︷︷                  ︸
=χ(by (67) under G = τ = 0)

, (89)

[
1
p

dp

dG
+
f ′(x)
f (x)

dx
dG

]
=
p[1 +γ(x)]

1+ψ
1−α+ψχ

(90)

[
1
p

dp

dG
+
f ′(x)
f (x)

dx
dG

]
=
1−α +ψ
1+ψ

1
c(p,x)

. (91)

From de�nition of demand-side �scal multiplier:

ϕd =
d{c+G}
dG

=
dc
dG

+1 =
∂c
∂p

dp

dG
+
∂c
∂x

dx
dG

+1 (92)

In a competitive equilibrium, x = x∗, so that dx
dG = 0, which combined with (80) and (81) implies the following:

ϕd =
∂c
∂p

dp

dG
+1 = − χ

p[1 +γ(x)]
1
p

dp

dG
+1 = −c(p,x)1

p
p
1−α +ψ
1+ψ

1
c(p,x)

+ 1 (93)

= −
1−α +ψ
1+ψ

+1 (94)

=
α

1+ψ
≡ ϕ∗. (95)

Similarly, di�erentiate (67) with respect to τ (evaluated at G = τ = 0):

α
α

1−α+ψ

[
1+ψ

1−α +ψ
(pf (x)a)

1+ψ
1−α+ψ−1

(
dp

dτ
f (x)a+ pf ′(x)

dx
dτ
a

)
− α
1−α +ψ

(−1)(pf (x)a)
1+ψ

1−α+ψ

]
= 0 (96)[

1
p

dp

dτ
+
f ′(x)
f (x)

dx
dτ

]
=

α
1+ψ

. (97)

From de�nition of supply-side �scal multiplier:

ϕs =
d{c+G}/{c+G}

d[−τ]
= −1

c
dc
dτ

= −1
c

[
∂c
∂p

dp

dτ
+
∂c
∂x
dx
dτ

]
. (98)

In a competitive equilibrium, x = x∗, so that dxdτ = 0, which combined with (86) and (87) implies the following:

ϕs = −1
c
∂c
∂p

dp

dτ
= −1

c

[
− χ
p[1 +γ(x)]

1
p

]
dp

dτ
=
1
c
c
1
p
p

α
1+ψ

(99)

=
α

1+ψ
= ϕd = ϕ∗. (100)
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LEMMA 6. De�ne the �xed capacity �scal multiplier θ(x) to be the demand-side �scal multiplier in a �xprice equilibrium

under �xed labor supply, so that

θ(x) ≡ d{c+G}
dG

|ψ→∞

then θ(x) has the following properties:

θ(x) =


(−∞,0), if x ∈ (x∗,xm)

0, if x = x∗

(0,1), if x ∈ (0,x∗)

θ′(x) < 0, ∀x ∈ (0,xm),

where xm is given by f (xm) = ρxm.

Proof. Under ψ→∞, (80) can be wri�en as:

lim
ψ→∞

[
1
p

dp

dG
+
f ′(x)
f (x)

dx
dG

]
= lim
ψ→∞

1−α +ψ
1+ψ

1
c(p,x)

. (101)

lim
ψ→∞

[
1
p

dp

dG
+
f ′(x)
f (x)

dx
dG

]
= lim
ψ→∞

1
c(p,x)

=
1

limψ→∞ c(p,x)
. (102)

From de�nition of θ(x):

θ(x) ≡ d{c+G}
dG

|ψ→∞ = lim
ψ→∞

dc
dG

+1 = lim
ψ→∞

[
∂c
∂p

dp

dG
+
∂c
∂x

dx
dG

]
+1 (103)

In a �xprice equilibrium p = p0 is a parameter, so that dp
dG = 0, which combined with (103) implies the following:

θ(x) = lim
ψ→∞

∂c
∂x

dx
dG

+1 = lim
ψ→∞

∂c
∂x

lim
ψ→∞

dx
dG

+1 (104)

= − lim
ψ→∞

χ
p[1 +γ(x)]

γ ′(x)
[1 +γ(x)]

f (x)
f ′(x)

1
limψ→∞ c(p,x)

+ 1 (105)

= 1−
γ ′(x)

[1 +γ(x)]
f (x)
f ′(x)

limψ→∞ c(p,x)

limψ→∞ c(p,x)
(106)

= 1−
γ ′(x)

[1 +γ(x)]
f (x)
f ′(x)

. (107)
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Recall that γ(x) ≡ ρx
f (x)−ρx , so that γ ′(x) = ρ(f (x)−ρx)−(f ′(x)−ρ)ρx

(f (x)−ρx)2 = ρ(f (x)−f ′(x)x)
(f (x)−ρx)2 , and θ(x) may be rewri�en as:

θ(x) = 1−
ρ(f (x)−f ′(x)x)
(f (x)−ρx)2

f (x)
f (x)−ρ(x)

f (x)
f ′(x)

= 1−
ρ(f (x)− f ′(x)x)
(f (x)− ρx)f (x)

f (x)
f ′(x)

(108)

= 1−
ρ(f (x)− f ′(x)x)
f ′(x)(f (x)− ρx)

=
f ′(x)f (x)− ρf (x)
f ′(x)f (x)− f ′(x)ρx

=
1− ρ

f ′(x)

1− ρx
f (x)

. (109)

We can now show that θ(x) possesses several convenient properties. Firstly, θ′(x) < 0, ∀x ∈ (0,xm), where xm is

given by f (xm) = ρxm. In order to show this, notice that q(x) = f (x)
x and f ′(x) = q(x)1+δ, which allows us to rewrite

θ(x) as follows:

θ(x) =
1− ρ

q(x)1+δ

1− ρ
q(x)

=
q(x)1+δ − ρ

q(x)1+δ − ρq(x)δ
, (110)

and θ′(x) is now given by:

θ′(x) =
(1 + δ)q(x)δq′(x)[q(x)1+δ − ρq(x)δ]− [(1 + δ)q(x)δq′(x)− δρq(x)δ−1q′(x)](q(x)1+δ − ρ)

(q(x)1+δ − ρ)2
. (111)

Given that q(x) > 0,q′(x) < 0, (q(x)1+δ − ρ)2 > 0, ∀x ∈ (0,∞), a su�cient condition for θ′(x) < 0 is:

(1 + δ)q(x)δ[q(x)1+δ − ρq(x)δ]− [(1 + δ)q(x)δ − δρq(x)δ−1](q(x)1+δ − ρ) > 0 (112)

−ρq(x)2δ + ρ(1 + δ)q(x)δ − δρ2q(x)δ−1 > 0 (113)

ρq(x)δ−1[q(x)− q(x)δ+1] + δ[q(x)− ρ] > 0. (114)

Finally, q(0) = 1 and q(xm) = ρ, and since q′(x) < 0,∀x ∈ (0,∞) it follows that q(x) ∈ (ρ,1), ∀x ∈ (0,xm); it is clear

that for all q(x) ∈ (ρ,1) the su�cient condition above is satis�ed. Hence, θ′(x) < 0, ∀x ∈ (0,xm).

Secondly, it follows directly from (109) that θ(x∗) = 0, since f ′(x∗) = ρ. At the extremes:

θ(0) =
q(0)1+δ − ρ

q(0)1+δ − ρq(0)δ
=

11+δ − ρ
11+δ − ρ1δ

= 1, (115)

lim
x→x−m

θ(x) = lim
h→0

q(xm − h)1+δ − ρ
q(xm − h)1+δ − ρq(xm − h)δ

(116)

=
ρ1+δ − ρ
ρ1+δ − ρρδ

=
ρ(ρδ − 1)

0
= −∞. (117)

Since θ(0) = 1,θ(x∗) = 0 and limx→x−m θ(x) = −∞, and θ′(x) < 0,∀x ∈ (0,xm) it follows that θ(x) ∈ (0,1),∀x ∈ (0,x∗)

and θ(x) ∈ (−∞,0),∀x ∈ (x∗,xm).

54



PROPOSITION 2. In a �xprice equilibrium, the demand-side �scal multiplier ϕd(x) is given by

ϕd(x) = ϕ∗︸︷︷︸
State-invariant component

+ θ(x)× (1−ϕ∗)︸           ︷︷           ︸
State-dependent component

,

where ϕ∗ = α
1+ψ is the competitive equilibrium multiplier. Hence, ϕd(x) ∈ (−∞,1) and dϕd (x)

dx < 0,∀x ∈ (0,xm).

Proof. From (80) we know that:[
1
p

dp

dG
+
f ′(x)
f (x)

dx
dG

]
=
1−α +ψ
1+ψ

1
c(p,x)

= (1−ϕ∗) 1
c(p,x)

. (118)

Further, in a �xprice equilibrium p = p0 is a parameter, so that dp
dG = 0 and it follows that:

dx
dG

= (1−ϕ∗)
f (x)
f ′(x)

1
c(p,x)

. (119)

From the de�nition of the demand-side �scal multiplier:

ϕd(x) =
d{c+G}
dG

=
dc
dG

+1 =
∂c
∂x

dx
dG

+1 = − χ
p[1 +γ(x)]

γ ′(x)
[1 +γ(x)]

(1−ϕ∗)
f (x)
f ′(x)

1
c(p,x)

+ 1, (120)

= 1− (1−ϕ∗)
γ ′(x)

[1 +γ(x)]
f (x)
f ′(x)︸             ︷︷             ︸

1−θ(x)

c(p,x)
c(p,x)

= 1− (1−ϕ∗)(1−θ(x)), (121)

= ϕ∗ +θ(x)× (1−ϕ∗). (122)

Since dϕd (x)
dx = θ′(x)(1 −ϕ∗) and θ′(x) < 0,∀x ∈ (0,xm) it follows that dϕ

d (x)
dx < 0,∀x ∈ (0,xm). Further, ϕd(0) = ϕ∗ +

θ(0)× (1−ϕ∗) = 1 and limx→x−mϕ
d(x) = ϕ∗+limx→x−m θ(x)× (1−ϕ

∗) = −∞, so that ϕd(x) ∈ (−∞,1),∀x ∈ (0,xm).

COROLLARY 1. �ere always exists tightness x̂ ∈ (x∗,xm) such that ϕd(x̂) = 0 and ϕd(x) < 0,∀x ∈ (x̂,xm), and it is

given by:

x̂ = θ−1
(
−

ϕ∗

1−ϕ∗

)
,

where dx̂
dϕ∗ > 0.

Proof. Suppose there exists x̂ ∈ (0,xm), such that ϕd(x̂) = 0; then it should satisfy the following condition:

ϕd(x̂) = ϕ∗ + (1−ϕ∗)×θ(x̂) = 0, (123)

θ(x̂) = −
ϕ∗

1−ϕ∗
. (124)

We know that θ(x) lies between (−∞,1) and is di�erentiable and strictly decreasing on (0,xm); hence the inverse

function θ−1(.) exists on (−∞,1) and returns values in (0,xm). Moreover, since − ϕ∗

1−ϕ∗ ∈ (−∞,1),∀ϕ∗ ∈ (0,1), then

55



x̂ ∈ (0,xm) always exists and is given by:

x̂ = θ−1
(
−

ϕ∗

1−ϕ∗

)
. (125)

Since ϕd(x∗) = ϕ∗ ∈ (0,1) and dϕd (x)
dx < 0,∀x ∈ (0,xm) it must be that x̂ ∈ (x∗,xm); further, since dϕd (x)

dx < 0,∀x ∈ (0,xm)

and ϕd(x̂) = 0, it follows that ϕd(x) < 0,∀x ∈ (x̂,xm). It is also true that:

θ′(x̂)
dx̂
dϕ∗

=
d
dϕ∗

(
−

ϕ∗

1−ϕ∗

)
= − 1

(1−ϕ∗)2
, (126)

dx̂
dϕ∗

= − 1
θ′(x̂)

1
(1−ϕ∗)2

> 0. (127)

PROPOSITION 3. In a �xprice equilibrium, the supply-side �scal multiplier ϕs(x) is given by

ϕs(x) = ϕ∗︸︷︷︸
State-invariant component

− θ(x)×ϕ∗︸    ︷︷    ︸
State-dependent component

,

where ϕ∗ = α
1+ψ is the competitive equilibrium multiplier. Hence, ϕd(x) ∈ (0,+∞) and dϕd (x)

dx > 0,∀x ∈ (0,xm).

Proof. From (97) we know that: [
1
p

dp

dτ
+
f ′(x)
f (x)

dx
dτ

]
=

α
1+ψ

= ϕ∗. (128)

In a �xprice equilibrium, p = p0 is a parameter, so that dpdτ = 0, and it follows that:

dx
dτ

= ϕ∗
f (x)
f ′(x)

. (129)

From the de�nition of the supply-side multiplier:

ϕs(x) =
d{c+G}/{c+G}

d[−τ]
= −1

c
dc
dτ

= −1
c
∂c
∂x
dx
dτ

=
1
c

χ
p[1 +γ(x)]

γ ′(x)
[1 +γ(x)]

f (x)
f ′(x)︸             ︷︷             ︸

1−θ(x)

ϕ∗ (130)

=
c
c
(1−θ(x))ϕ∗ = ϕ∗ −θ(x)×ϕ∗. (131)

Since dϕs(x)
dx = −θ′(x)ϕ∗ and θ′(x) < 0,∀x ∈ (0,xm) it follows that dϕ

s(x)
dx > 0,∀x ∈ (0,xm). Further, ϕs(0) = ϕ∗ −θ(0)×

ϕ∗ = 0 and limx→x−mϕ
s(x) = ϕ∗ − limx→x−m θ(x)×ϕ

∗ =∞, so that ϕs(x) ∈ (0,∞),∀x ∈ (0,xm).
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COROLLARY 5. In a �xprice equilibrium, the demand-side and supply-side �scal multipliers are related as

ϕd(x)︸︷︷︸
Demand-side multiplier

= θ(x)︸︷︷︸
Fixed capacity multiplier

+ ϕs(x)︸︷︷︸
Supply-side multiplier

,

so that the demand-side multiplier is higher in slack equilibria, lower in tight equilibria and exactly equal to the supply-side

multiplier in an e�cient �xprice equilibrium.

Proof. From the expression for the demand-side �scal multiplier is a �xprice equilibrium in Proposition 2:

ϕd(x) = ϕ∗ +θ(x)(1−ϕ∗) = θ(x) +ϕ∗ −θ(x)ϕ∗︸        ︷︷        ︸
ϕs(x)

, (132)

ϕd(x) = θ(x) +ϕs(x). (133)

COROLLARY 6. Suppose that elasticities of labor demand and labor supply are su�ciently low so that ϕ∗ < 0.5; then

there always exists tightness x̃ ∈ [x̂,xm) such that:

−ϕd(x) > ϕs(x) > ϕd(x), ∀x ∈ (x̃,xm).

Furthermore, x̂ is given by:

x̃ = θ−1
(
−

2ϕ∗

1− 2ϕ∗

)
, ϕ∗ < 0.5

and hence dx̃
dϕ∗ > 0.

Proof. It is apparent that the austerity threshold for tightness cannot be below x̂, as in that caseϕd(x) > 0 > −ϕd(x),∀x ∈

(0, x̂). However, suppose there exists x̃ ∈ (x̂,xm) such that −ϕd(x̃) = ϕs(x̃) > ϕd(x̃). �en it must satisfy the following:

−ϕ∗ −θ(x̃)(1−ϕ∗) = ϕ∗ −θ(x̃)ϕ∗, (134)

θ(x̃) = −
2ϕ∗

1− 2ϕ∗
. (135)

As established earlier, θ(x) is di�erentiable and strictly decreasing on (0,xm), taking values in (−∞,1). �erefore,

the inverse function θ−1(.) exists on the domain (−∞,1). Hence, as long as ϕ < 0.5, − 2ϕ∗

1−2ϕ∗ ∈ (−∞,1), the austerity

threshold x̃ exists and is given by:

x̃ = θ−1
(
−

2ϕ∗

1− 2ϕ∗

)
, ϕ∗ < 0.5. (136)

Further, if ϕ∗ < 0.5 , d[−ϕ
d (x)−ϕs(x)]
dx = −θ′(x)(1− 2ϕ∗) > 0, so that −ϕd(x) > ϕs(x) > ϕd(x),∀x ∈ (x̃,xm). It also follows
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that:

θ′(x̃)
dx̃
dϕ∗

=
d
dϕ∗

[
−

2ϕ∗

1− 2ϕ∗

]
, (137)

dx̃
dϕ∗

= − 1
θ′(x̃)

2
(1− 2ϕ∗)2

> 0. (138)

B Fiscal multipliers: (more) general cases

In this section we show that the results derived earlier hold in much more general se�ings. In particular, we introduce

the class of �exible equilibria, which is a superset of the competitive equilibria. We then show that in any �exible

equilibrium that has tightness �xed over the business cycle, both demand-side and supply-side multipliers are equal

and acyclical, just like in the competitive equilibrium. On the other hand, we show that the cyclicality results established

under �xprice equilibria extend to the more general class of frictional equilibria, where part of the adjustment happens

via tightness.

B.1 Flexible equilibria multipliers

In the previous section we started o� be considering a competitive equilibrium, where tightness was �xed at the e�cient

level x∗ and all adjustment happened via prices and wages. However, this is not the only way to pin down tightness.

Below we consider two common alternatives found in search-and-matching literature (Nash bargaining, �xed markup

pricing), before introducing a much more general Tightness Determination Mapping (TDM).

B.1.1 Nash bargaining

One alternative, very common in the search-and-matching literature, is to consider Nash bargaining over the price

between consumers and �rms in order to get an extra equilibrium condition needed to close the model. In our case, the

surplus to consumers from buying an additional unit of the produced good at price p̃ a�er a match is made is given by:

B(p̃) = χ
c
− p̃, (139)

whereas the �rms’ surplus from selling an extra unit at price p̃ is

S(p̃) = p̃ − pf (x). (140)

Assuming the consumers’ bargaining power is given by β ∈ (0,1), the solution to Nash bargaining is given by:

(1− β)S(p) = βB(p). (141)
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Combining the above with agents’ optimality conditions obtained earlier, one gets:

1− β
β

=
γ(xL)

1− f (xL)
,

dxL

dβ
< 0. (142)

As one can see, the condition above pins down tightness at x = xL, and we can even get the equivalent of the Hosios

(1990) condition for the bargaining power β∗ that delivers the socially e�cient allocation, β∗ = 1
1+ γ(x∗)

1−f (x∗)
.

B.1.2 Fixed markup pricing

An alternative way to pin down tightness is to assume that the equilibrium price p is set as a �xed markup over the

marginal cost, so that:

p = µ×mc, (143)

where µ ≥ 1 is a markup parameter and mc is the marginal cost. From �rms’ optimisation problem one gets that the

e�ective selling price pf (x) is set equal to the marginal cost:

pf (x) =mc. (144)

Combining the above two equations one gets the following condition for pinning down the level of tightness:

f (xL) =
1
µ
,

dxL

dµ
< 0. (145)

As before, the equivalent of the Hosios (1990) condition here is the markup µ∗ that delivers the socially e�cient alloca-

tion, n amely µ∗ = 1
f (x∗)

.

B.1.3 Generalization: Tightness Determination Mapping

In fact, the above approaches to pinning down tightness can be generalized by introducing the notion of a Tightness

Determination Mapping (TDM):

DEFINITION 5. A Tightness Determination Mapping (TDM)M is given by:

M :
{
ΩM ,ΩS ,ΩT

}
→ xL, (146)

where ΩM = {ρ,γ,ψ,α} is the set of model structural parameters, ΩS = {χ,a,G,τ} is the set of shock parameters, ΩT is

the set of parameters speci�c to the TDM and xL is the resulting tightness. Further, a TDMM is said to be shock invariant

if and only if
dM

(
ΩM ,ΩS ,ΩT

)
ds̃

= 0, ∀s̃ ∈ΩS . (147)

so that changes in shock parameters do not a�ect the determination of tightness.
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It is easy to see that the TDM used in the competitive equilibrium is simply xL = x∗. Also, Nash bargaining is a

particular TDM with ΩT = {β}, which pins down tightness according to 1−β
β = γ(xL)

1−f (xL) ; similarly, �xed markup pricing

is a TDM with ΩT = {µ}, which pins down tightness according to f (xL) = 1
µ . Note that all of the above are also shock

invariant TDMs, as none of the shock parameters enter the conditions that pin down the level of tightness.

We can now de�ne a class of �exible equilibria that is a superset of the competitive equilibrium considered before:

DEFINITION6. A flexible equilibrium is a vector (pL,wL,M), and associated allocations, such that the agents’ optimality

conditions and the market clearing conditions are satis�ed with tightness pinned down at a level xL =M
(
ΩM ,ΩS ,ΩT

)
.

Clearly, the competitive equilibrium considered earlier is just a �exible equilibrium with xL = x∗ as the TDM. In

fact, it can be shown that all of the comparative statics results established for the competitive equilibrium in Lemma 4

hold in the exact same way for any �exible equilibrium with a shock invariant TDM:

LEMMA 7. In any �exible equilibrium generated by a shock-invariant TDM, the following are the comparative statics of

tightness (x), sales (y) and the price (p):

dx
dχ

= 0,
dy

dχ
> 0,

dp

dχ
> 0;

dx
da

= 0,
dy

da
> 0,

dp

da
< 0 (148)

Proof. Note that in this more generalized se�ing, condition (67) still holds:

α
α

1−α+ψ (pf (x)a)
1+ψ

1−α+ψ (1 + τ)−
α

1−α+ψ = χ+ p[1 +γ(x)]G. (149)

In a �exible equilibrium, x = xL = M(ΩM ,ΩS ,ΩT ); further, since the TDM M is shock-invariant it follows that
dxL

dχ = dxL

da = 0. �e la�er implies the following comparative statics for p (for simplicity, evaluated at G = τ = 0):

α
α

1−α+ψ (f (x)a)
1+ψ

1−α+ψ
1+ψ

1−α +ψ
p

α
1−α+ψ

dp

dχ
= 1 (150)

dp

dχ
= α−

α
1−α+ψ (f (x)a)−

1+ψ
1−α+ψ

1−α +ψ
1+ψ

p−
α

1−α+ψ =
1−α +ψ
1+ψ

p

χ
> 0. (151)

(152)

α
α

1−α+ψ (f (x))
1+ψ

1−α+ψ
1+ψ

1−α +ψ
(pa)

α
1−α+ψ (p+ a

dp

da
) = 0

dp

da
= −

p

a
< 0. (153)

Finally, the above implies the following comparative statics for sales y = [1 + γ(x)](c(p,x) +G) = χ/p +G[1 + γ(x)]
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(also evaluated at G = τ = 0):

py = χ+ p[1 +γ(x)]G (154)

dp

dχ
y + p

dy

dχ
= 1 (155)

dy

dχ
=
1
p

(
1−

dp

dχ
y

)
=
1
p

α
1+ψ

> 0. (156)

dp

da
y + p

dy

da
= 0 (157)

dy

da
= −

dp

da

y

p
> 0. (158)

Of our particular interest, however, is the fact that all the results that we established for demand-side and supply-

side �scal multipliers under the competitive equilibrium remain true for any �exible equilibrium with a shock invariant

TDM:

PROPOSITION 4. In any �exible equilibrium generated by a shock-invariant TDM, the demand-side �scal multiplier and

the supply-side �scal multiplier are equal and given by:

ϕ∗ ≡ α
1+ψ

=
1− 1

|εd |

1+ 1
εs
, (159)

where α ∈ (0,1] and ψ > 0 are, respectively, returns to labor and inverse Frisch elasticity, whereas |εd | = 1
1−α and εs = 1

ψ

are (absolute) elasticities of labor demand and labor supply. Hence ϕ∗ ∈ (0,1] and it is pinned down by elasticities of labor

demand and labor supply.

Proof. Note that in this more generalized se�ing, condition (92) still holds, so that:[
1
p

dp

dG
+
f ′(x)
f (x)

dx
dG

]
=
1−α +ψ
1+ψ

1
c(p,x)

. (160)

Further, the de�nition of demand-side �scal multiplier also remains unchanged:

ϕd =
d{c+G}
dG

=
dc
dG

+1 =
∂c
∂p

dp

dG
+
∂c
∂x

dx
dG

+1 (161)

In a �exible equilibrium, x = xL =M(ΩM ,ΩS ,ΩT ); further, since the TDMM is shock-invariant it follows that dx
L

dG = 0,
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which combined with (166) implies the following:

ϕd =
∂c
∂p

dp

dG
+1 = − χ

p[1 +γ(x)]
1
p

dp

dG
+1 = −c(p,x)1

p
p
1−α +ψ
1+ψ

1
c(p,x)

+ 1 (162)

= −
1−α +ψ
1+ψ

+1 (163)

=
α

1+ψ
≡ ϕ∗. (164)

Similarly, condition (86) also holds in this more generalised se�ing[
1
p

dp

dτ
+
f ′(x)
f (x)

dx
dτ

]
=

α
1+ψ

. (165)

And the de�nition of supply-side �scal multiplier also stays the same:

ϕs =
d{c+G}/{c+G}

d[−τ]
= −1

c
dc
dτ

= −1
c

[
∂c
∂p

dp

dτ
+
∂c
∂x
dx
dτ

]
. (166)

In a �exible equilibrium, x = xL =M(ΩM ,ΩS ,ΩT ); further, since the TDMM is shock-invariant it follows that dx
L

dτ = 0,

which combined with (133) and (134) implies the following:

ϕs = −1
c
∂c
∂p

dp

dτ
= −1

c

[
− χ
p[1 +γ(x)]

1
p

]
dp

dτ
=
1
c
c
1
p
p

α
1+ψ

(167)

=
α

1+ψ
= ϕd = ϕ∗. (168)

In other words, any equilibrium where tightness remains �xed over the business cycle will have demand-side and

supply-side �scal multipliers both �xed at ϕ∗ and acyclical.

B.2 Frictional equilibria multipliers

As an alternative to the competitive equilibrium, last section considered a �xprice equilibrium, where all adjustment

is happening via tightness and wages. Here we start o� by considering a slightly more general rigid price equilibrium,

that allows for an arbitrary degree of price rigidity and nests �xprice equilibrium as a special case. Subsequently, we

introduce a much more general notion of a Frictional Mapping (FM).

B.2.1 Rigid price equilibrium

A rigid price equilibrium is formally introduced as:

DEFINITION 7. A rigid price equilibrium is a vector (p0,x,w,ε,M), and associated allocations, such that the agents’
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optimality conditions and the market clearing conditions are satis�ed with price given by:

p = (p0)
ε(pL)1−ε, ε ∈ (0,1] (169)

where ε is the degree of price rigidity and p0 is a parameter and pL is the price from the �exible equilibrium (pL,wL,M).

Clearly, the �xprice equilibrium is just a special case under ε = 1. In fact, a non-�xprice rigid price equilibrium

(p0,x,w,ε,M) whereM is a shock invariant TDM shares a lot in common with the corresponding �xprice equilibrium.

Particularly, the comparative statics to demand-side and supply-side shocks are given by:

LEMMA 8. In a non-�xprice (ε ∈ (0,1)) rigid price equilibrium (p0,x,w,ε,M) whereM is a shock invariant TDM, the

following are the comparative statics of tightness (x), sales (y) and the price (p):

dx
dχ

> 0,
dy

dχ
> 0,

dp

dχ
> 0;

dx
da

< 0,
dy

da
> 0,

dp

da
< 0 (170)

Proof. Special case of Lemma 9 under T (pL; {p0, ε}) = (p0)ε(pL)1−ε.

As one can see, the only di�erence compared to a �xprice equilibrium is that the price co-moves with tightness and

supply-side shocks have an e�ect on the level of sales.

Of a greater interest to us, however, are the properties of �scal multipliers under rigid price equilibria. �e following

proposition establishes the demand-side multiplier is a rigid price equilibrium:

PROPOSITION 5. In a rigid price equilibrium (p0,x,w,ε,M), whereM is a shock invariant TDM, the demand-side �scal

multiplier ϕd(x) is given by

ϕd(x) = ϕ∗ +θ(x)×
[
(1−ϕ∗){1− (1− ε)g(x,xL)}

]
(171)

where ϕ∗ = α
1+ψ is the �exible equilibrium multiplier and the function g(x,xL) is given by:

g(x,xL) =
f (x)− ρx
f (xL)− ρxL

. (172)

Hence, ϕd(x) ∈ (−∞,1] and dϕd (x)
dx |x=xL < 0.

Proof. Special case of Proposition 7 under T (pL; {p0, ε}) = (p0)ε(pL)1−ε.

Note that for ε = 1 the expression above collapses back to the �xprice equilibrium demand-side multiplier from

Proposition 2. We can also see that the rigid price equilibrium demand-side multiplier above maintains a lot of the

properties of its �xprice equilibrium counterpart. In particular, it also collapses back to ϕ∗ if the equilibrium tightness

happens to coincide with the socially e�cient one (x = x∗), it also lies between −∞ and one, so that consumption always

gets crowded out; it is also guaranteed to fall in tightness, although only in the neighbourhood of the corresponding

�exible equilibrium allocation. �e role played by ε here is in determining the relative magnitude of the state-dependent

component. �e upper panel of Figure 7 (drawn for simplicity under xL = x∗) shows that as the degree of price rigidity
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ε falls, the multiplier becomes �a�er around x∗ at the level equal to ϕ∗ suggesting that the degree of state-dependence

falls as well.

Similarly, one can derive the supply-side multiplier under rigid price equilibrium:

PROPOSITION 6. In a rigid price equilibrium (p0,x,w,ε,M), whereM is a shock invariant TDM, the supply-side �scal

multiplier ϕs(x) is given by

ϕs(x) = ϕ∗ −θ(x)× εϕ∗, (173)

where ϕ∗ = α
1+ψ is the long-run equilibrium multiplier. Hence, ϕd(x) ∈ (0,+∞) and dϕd (x)

dx > 0,∀x ∈ (0,xm).

Proof. Special case of Proposition 8 under T (pL; {p0, ε}) = (p0)ε(pL)1−ε.

Again, under ε = 1 the expression above collapses back to the �xprice equilibrium supply-side multiplier. One can

see that the expression above shares every single property with the �xprice equilibrium counterpart, the only di�erence

being the magnitude of state-dependence, which increases in the degree of price rigidity ε, as shown in the bo�om panel

of Figure 7 (again, for simplicity drawn for xL = x∗).

B.2.2 Generalization: Frictional Mapping

One can in fact show that the properties of �scal multipliers that we have established for the rigid price equilibrium hold

more generally, and not for the particular parametric form of frictions that we have considered so far. We generalize

our �ndings by introducing the notion of a Frictional Mapping:

DEFINITION 8. For a given �exible equilibrium (pL,wL,M), a Frictional Mapping (FM) T is given by:

T :
{
pL,ΩF

}
→ pF , (174)

where ΩF is the set of parameters speci�c to the FM and pF is the resulting price. Moreover, the Frictional Mapping

T (pL;ΩF) is said to be contractionary if and only if

d lnpF

d lnpL
=
dT (pL;ΩF)

dpL
pL

pF
∈ [0,1). (175)

Having de�ned a Frictional Mapping (FM), one can now de�ne a frictional equilibrium:

DEFINITION 9. A frictional equilibrium is a vector (pF ,xF ,wF ,T ,M), and associated allocations, such that the agents’

optimality conditions and the market clearing conditions are satis�ed with price given by:

pF = T (pL) (176)

where T is the Frictional Mapping and pL is the price from the �exible equilibrium (pL,wL,M).
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Figure 10: Fiscal multipliers in a rigid price equilibrium

(a) Demand-side �scal multiplier ϕd(x)

(b) Supply-side �scal multiplier ϕs(x)

Notes: Panels (a) and (b) show demand-side and supply-side �scal multipliers in a rigid price equilibrium of a calibrated
version of our model (α = 0.3,δ = 2,ρ = 0.1,ψ = 0.2,xL = x∗). Panel (a) shows demand-side �scal multipliers for di�erent
values of the price rigidity parameter ε – one case see that ϕd(x) strictly falls in tightness for all considered values of ε,
but the degree of state-dependence rises in the degree of price rigidity; in Panel (b) we can see that the supply-side �scal
multiplier strictly rises in tightness for all values of ε considered, but again the degree if state-dependence falls as we allow
for more price �exibility.
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Rigid price equilibrium is a special case of a frictional equilibrium for T (z) = (p0)ε(z)1−ε, ΩF = {p0, ε}, ε ∈ (0,1].

Further, the above frictional mapping associated with a rigid price equilibrium is indeed contractionary, since

dT (z;ΩF)
dz

z

pF
= (1− ε) ∈ [0,1), (177)

as ε ∈ (0,1].

We can now derive and discuss properties of demand-side and supply-side multipliers in a generic frictional equi-

librium. Firstly, note that the comparative statics to demand-side and supply-side shocks established in a rigid price

equilibrium extend to a generic frictional equilibrium generated by a contractionary frictional mapping:

LEMMA 9. In a non-�xprice
(
dT (pL;ΩF )

dpL
pL

pF , 0
)
frictional equilibrium (pF ,xF ,wF ,T ,M) where T is a contractionary FM

andM is a shock invariant TDM, the following are the comparative statics of tightness (x), sales (y) and the price (p):

dx
dχ

> 0,
dy

dχ
> 0,

dp

dχ
> 0;

dx
da

< 0,
dy

da
> 0,

dp

da
< 0 (178)

Proof. Note that condition (67) still holds in this more generalized se�ing:

α
α

1−α+ψ (pf (x)a)
1+ψ

1−α+ψ (1 + τ)−
α

1−α+ψ = χ+ p[1 +γ(x)]G. (179)

Di�erentiate both sides with respect to χ (evaluated at G = τ = 0):

α
α

1−α+ψ
1+ψ

1−α +ψ
[pf (x)a]

1+ψ
1−α+ψ

[
1
p

dp

dχ
+
f ′(x)
f (x)

dx
dχ

]
= 1, (180)

dx
dχ

=
f (x)
f ′(x)

[
α−

α
1−α+ψ

1−α +ψ
1+ψ

[pf (x)a]−
1+ψ

1−α+ψ − 1
p

dp

dχ

]
, (181)

dx
dχ

=
f (x)
f ′(x)

[
1−α +ψ
1+ψ

1
χ
− 1
p

dp

dχ

]
. (182)

Since p = T (pL), it follows that dp
dχ = dT (pL)

dpL
dpL

dχ ; further, from Lemma 7 we know that dpL

dχ = 1−α+ψ
1+ψ

pL

χ and it follows

that:

dp

dχ
=

dT (pL)
dpL

pL

p︸       ︷︷       ︸
∈(0,1) as T contractionary FM

1−α +ψ
1+ψ

p

χ
> 0. (183)

(184)

dx
dχ

=
f (x)
f ′(x)


1−α +ψ
1+ψ

1
χ

(
1−

dT (pL)
dpL

pL

p

)
︸              ︷︷              ︸

∈(0,1) as T contractionary FM


> 0
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Given that py = χ, it follows that dy
dχ = 1

p

[
1− dp

dχ
χ
p

]
and hence:

dy

dχ
=
1
p


1−

dT (pL)
dpL

pL

p

1−α +ψ
1+ψ︸                    ︷︷                    ︸

∈(0,1) as T contractionary FM


> 0. (185)

Similarly, di�erentiate both sides of (179) with respect to a (evaluated at G = τ = 0):

α
α

1−α+ψ
1+ψ

1−α +ψ
[pf (x)a]

1+ψ
1−α+ψ

[
1
p

dp

da
+
f ′(x)
f (x)

dx
da

+
1
a

]
= 0, (186)

dx
da

= −
f (x)
f ′(x)

[
1
a
+
1
p

dp

da

]
= 0. (187)

Since p = T (pL), it follows that dpda =
dT (pL)
dpL

dpL

da ; further, from Lemma 7 we know that dp
L

da = −p
L

a and it follows that:

dp

da
= −

dT (pL)
dpL

pL

p︸       ︷︷       ︸
∈(0,1) as T contractionary FM

p

a
< 0. (188)

(189)

dx
da

= −
f (x)
f ′(x)


1
a

(
1−

dT (pL)
dpL

pL

p

)
︸              ︷︷              ︸

∈(0,1) as T contractionary FM


< 0

Given that py = χ, it follows that:

dy

da
= −

dp

da

y

p
> 0. (190)

Moreover, one can also solve for the demand-side �scal multiplier under a generic frictional equilibrium and see

that under certain properties it also falls in tightness:

PROPOSITION 7. In a frictional equilibrium (pF ,xF ,wF ,T ,M), where T is a contractionary FM and M is a shock

invariant TDM, the demand-side �scal multiplier ϕd(x) is given by

ϕd(x) = ϕ∗ +θ(x)×
[
(1−ϕ∗)

{
1−
T ′(pL)pL

T (pL)
g(x,xL)

}]
(191)
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where ϕ∗ = α
1+ψ is the �exible equilibrium multiplier and the function g(x,xL) is given by:

g(x,xL) =
f (x)− ρx
f (xL)− ρxL

. (192)

Hence, ϕd(x) ∈ (−∞,1) and dϕd (x)
dx |x=xL < 0.

Proof. Note that (91) still holds in this more general se�ing:[
1
p

dp

dG
+
f ′(x)
f (x)

dx
dG

]
=
1−α +ψ
1+ψ

1
c(p,x)

= (1−ϕ∗) 1
c(p,x)

. (193)

From the de�nition of the demand-side �scal multiplier:

ϕd(x) =
d{c+G}
dG

=
dc
dG

+1 =
∂c
∂p

dp

dG
+
∂c
∂x

dx
dG

+1 = (194)

= −c(p,x)
[
1
p

dp

dpL
dpL

dG

]
− c(p,x)

γ ′(x)
1 +γ(x)

f (x)
f ′(x)︸           ︷︷           ︸

1−θ(x)

[
(1−ϕ∗) 1

c(p,x)
− 1
p

dp

dpL
dpL

dG

]
. (195)

From Proposition 4 we know that dp
L

dG = pL(1−ϕ∗) 1
c(pL,xL) , hence:

ϕd(x) = −c(p,x)
dp

dpL
pL

p
(1−ϕ∗)c(pL,xL)− c(p,x)(1−θ(x))

[
(1−ϕ∗) 1

c(p,x)
−
dp

dpL
pL

p
(1−ϕ∗) 1

c(pL,xL)

]
, (196)

= 1− (1−ϕ∗)(1−θ(x))−θ(x)(1−ϕ∗)
dp

dpL
pL

p

c(p,x)
c(pL,xL)

(197)

= ϕ∗ +θ(x)(1−ϕ∗)
[
1−

dp

dpL
pL

p

c(p,x)
c(pL,xL)

]
(198)

= ϕ∗ +θ(x)(1−ϕ∗)
[
1−

dp

dpL
pL

p

pL[1 +γ(xL)]
p[1 +γ(x)]

]
(199)

= ϕ∗ +θ(x)(1−ϕ∗)

1− dp

dpL
pL

p

pLf (xL)
f (xL)−ρxL

pf (x)
f (x)−ρx

 (200)

= ϕ∗ +θ(x)(1−ϕ∗)
[
1−

dp

dpL
pL

p

f (x)− ρx
f (xL)− ρxL

]
(201)

= ϕ∗ +θ(x)(1−ϕ∗)
[
1−
T ′(pL)pL

T (pL)
g(x,xL)

]
, (202)

where g(x,xL) = f (x)−ρx
f (xL)−ρxL . Further, notice that:

dϕd(x)
dx

|x=xL = θ′(xL)(1−ϕ∗)
[
1−
T ′(pL)pL

T (pL)

]
−θ(xL)(1−ϕ∗)

T ′(pL)pL

T (pL)
f ′(xL)− ρ
f (xL)− ρxL

< 0,∀xL ∈ (0,xm) (203)

since θ′(xL) < 0,θ(xL)(f ′(xL) − ρ) > 0,∀x ∈ (0,x,). Also, it follows that ϕd(0) = ϕ∗ + θ(0)(1 − ϕ∗)[1 − 0] = 1, and
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limx→x−mϕ
d(x) = ϕ∗ + limx→x−m(1−ϕ

∗)[1− T
′(pL)pL

T (pL) ] = −∞, so that ϕd(x) ∈ (−∞,1),∀x ∈ (0,xm).

Similarly, one can also solve for the supply-side �scal multiplier in a generic frictional equilibrium and establish its

properties:

PROPOSITION 8. In a frictional equilibrium (pF ,xF ,wF ,T ,M), where T is a contractionary FM andM is a shock-

invariant TDM, the supply-side �scal multiplier ϕs(x) is given by

ϕs(x) = ϕ∗ −θ(x)×
(
1−
T ′(pL)pL

T (pL)

)
ϕ∗, (204)

where ϕ∗ = α
1+ψ is the �exible equilibrium multiplier. Hence, ϕd(x) ∈ (0,+∞) and dϕd (x)

dx > 0,∀x ∈ (0,xm).

Proof. Note that (97) still holds in this more general se�ing:[
1
p

dp

dτ
+
f ′(x)
f (x)

dx
dτ

]
= ϕ∗. (205)

From the de�nition of the supply-side �scal multiplier:

ϕs(x) =
d{c+G}/{c+G}

d[−τ]
= − 1

c(p,x)
dc
dτ

= − 1
c(p,x)

[
∂c
∂p

dp

dτ
+
∂c
∂x
dx
dτ

]
(206)

=
1

c(p,x)

[
c(p,x)

1
p

dp

dτ
+ c(p,x)

γ ′(x)
1 +γ(x)

f (x)
f ′(x)

(
ϕ∗ − 1

p

dp

dτ

)]
(207)

= (1−θ(x))ϕ∗ + 1
p

dT (pL)
dpL

dpL

dτ
θ(x). (208)

From Lemma 4 we know that dp
L

dτ = pLϕ∗:

ϕs(x) = ϕ∗ −θ(x)
(
1−
T ′(pL)pL

T (pL)

)
ϕ∗. (209)

Further, dϕ
s(x)
dx = −θ(x)

(
1− T

′(pL)pL

T (pL)

)
ϕ∗ > 0,∀x ∈ (0,xm) since θ′(x) < 0,∀x ∈ (0,xm). Also, ϕs(0) = ϕ∗ T

′(pL)pL

T (pL) ∈ [0,1),

and limx→x−mϕ
s(x) = ϕ∗ − limx→xm θ(x)

(
1− T

′(pL)pL

T (pL)

)
= +∞, so that ϕs(x) ∈ (0,+∞),∀x ∈ (0,xm).

B.3 Cyclicality of �scal multipliers

Firstly , note that our result of equal and acyclical demand-side and supply-side multipliers in a competitive equilibrium

extends more generally to any �exible equilibrium generated by a shock-invariant TDM:

COROLLARY 10. In any �exible equilibrium generated by policy-invariant TDM both demand-side and supply-side

multipliers are acyclical.

Proof. Trivial consequence of Proposition 4: in any �exible equilibrium generated by a shock-invariant TDM, both

multipliers are equal to ϕ∗ = α
1+ψ and do not change as either preference χ or technology a varies.
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In the words, any equilibrium that sees tightness �xed over the business cycle, will see both multipliers �xed at ϕ∗

and hence acyclical.

Further, our state-dependence result for the demand-side multiplier in a �xprice equilibrium still holds in any fric-

tional equilibrium as long as the elasticity between frictional and �exible price is in [0,1) and the �exible equilibrium

around which the friction is de�ned is generated by a shock-inariant TDM:

COROLLARY 11. In any frictional equilibrium generated by a contractionary frictional mapping and a shock-invariant

TDM, in the local neighbourhood of the �exible equilibrium allocation, the demand-side multiplier is countercyclical under

demand-driven �uctuations, and procyclical under supply-driven �uctuations.

Proof. From Lemma 9 we know that in any frictional equilibrium generated by a contractionary frictional mapping

and a shock-invariant TDM, dx
dχ > 0, dxda < 0; further, from Proposition 7 we know that in a frictional equilibrium

generated by a contractionary frictional mapping and a shock-invariant TDM dϕd (x)
dx |x=xL < 0. Hence, dϕ

d (x)
dχ |x=xL =

dϕd (x)
dx |x=xL

dx
dχ |x=xL < 0 and dϕd (x)

da |x=xL =
dϕd (x)
dx |x=xL

dx
da |x=xL > 0.

Similarly for the supply-side multiplier:

COROLLARY 12. In any frictional equilibrium generated by a contractionary frictional mapping and a shock-invariant

TDM, the supply-side multiplier is procyclical under demand-driven �uctuations, and countercyclical under supply-driven

�uctuations.

Proof. From Lemma 9 we know that in any frictional equilibrium generated by a contractionary frictional mapping and

a shock-invariant TDM, dxdχ > 0, dxda < 0; further, from Proposition 8 we know that in a frictional equilibrium generated

by a contractionary frictional mapping and a shock-invariant TDM dϕs(x)
dx > 0. Hence, dϕs(x)

dχ = dϕs(x)
dx

dx
dχ > 0 and

dϕs(x)
da = dϕs(x)

dx
dx
da < 0.

C Alternative �scal instruments

C.1 Government employment

Let the government employ a fraction h ∈ [0,1) of the households’ labor supply, so that government labor demand

is given by nG = hl and the government collects additional lump-sum taxes to �nance public sector wages, so that

T = p[1 +γ(x)]G −wnτ −wnG. �en labor market clearing condition becomes:

n(w;p,x,τ) +nG = l(w) (210)

n(w;p,x,τ) = (1− h)l(w) (211)
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Without loss of generality, assume τ = 0, and substitute our solutions for n and l:

[αpf (x)a]
1

1−αw−
1

1−α = (1− h)w
1
ψ (212)

[αpf (x)a]
1

1−α (1− h)−1 = w
1−α+ψ
ψ(1−α) (213)

w = [αpf (x)a]
ψ

1−α+ψ (1− h)−
ψ(1−α)
1−α+ψ (214)

n = (1− h)l(w) = (1− h)w
1
ψ = [αpf (x)a]

1
1−α+ψ (1− h)

ψ
1−α+ψ . (215)

Substituting the solution for n above into the goods market clearing condition:

f (x)anα

1+γ(x)
= c(p,x) +G (216)

pf (x)anα = χ+ p[1 +γ(x)]G (217)

pf (x)a[αpf (x)a]
α

1−α+ψ (1− h)
αψ

1−α+ψ (218)

α
α

1−α+ψ [apf (x)]
1+ψ

1−α+ψ (1− h)
αψ

1−α+ψ = χ+ p[1 +γ(x)]G (219)

Di�erentiating with respect to h (for simplicity, where G = h = 0):

1+ψ
1−α +ψ

[apf (x)]
1+ψ

1−α+ψ−1
(
a
dp

dh
f (x) + apf ′(x)

dx
dh

)
(1− h)

αψ
1−α+ψ = [apf (x)]

1+ψ
1−α+ψ

αψ

1−α +ψ
(1− h)

αψ
1−α+ψ−1 (220)

1+ψ
1−α +ψ

[apf (x)]
1+ψ

1−α+ψ

(
1
p

dp

dh
+
f ′(x)
f (x)

dx
dh

)
= [apf (x)]

1+ψ
1−α+ψ

αψ

1−α +ψ
(221)

1
p

dp

dh
+
f ′(x)
f (x)

dx
dh

=
αψ

1+ψ
. (222)

De�ne the government employment multiplier:

ϕh(x) ≡ d{c+G}/{c+G}
dh

=
1
c
c
h
. (223)

In a competitive equilibrium x = x∗ so that:

ϕh =
1
c

[
− χ
p[1 +γ(x)]

1
p

dp

dh

]
= −1

p
p
αψ

1+ψ
=

αψ

1+ψ
. (224)

�erefore, just like the multipliers studied in the main text, the government employment multiplier is acyclical in the

competitive equilibrium and is pinned down exclusively by the relative elasticities of labor demand and labor supply.

In a �xprice equilibrium, p = p0 so that:

ϕh(x) = −
γ ′(x)

1 +γ(x)
dx
dh

= −
γ ′(x)

1 +γ(x)
f (x)
f ′(x)︸           ︷︷           ︸

1−θ(x)

αψ

1+ψ
= (θ(x)− 1)

αψ

1+ψ
. (225)
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Note that dϕ
h(x)
dx = θ′(x) αψ1+ψ < 0,∀x ∈ (0,xm); therefore, in a �xprice equilibrium, the government employment multi-

plier strictly falls in tightness and has the same cyclicality properties as the government consumption spending multi-

plier considered in the main text.

C.2 Distortionary taxes on consumption, labor income and �rms’ sales

We introduce taxes on households’ consumption and labor income, so that the budget constraint of the representative

households is given by:

p(1 + τc)[1 +γ(x)] +m ≤ w(1− τ l)l + m̄+Π− T , (226)

where τc is the consumption tax rate, τ l is the labor income tax rate. �e consumption function and the labor supply

function become:

c(p,x) =
χ

p(1 + τc)[1 +γ(x)]
, l(w) = [w(1− τ l)]

1
ψ . (227)

Further, we introduce taxes on �rms’ payroll, so that �rms’ pro�ts are given by:

Π = p(1− τs)f (x)anα −wn(1 + τ), (228)

where τs is the rate of tax on �rms’ sales. �e labor demand function resulting from pro�t maximisation is then given

by:

n(w;p,x,τ,τs) =
[
αp(1− τs)f (x)a

w(1 + τ)

] 1
1−α

. (229)

Combining the labor demand function with labor market clearing condition delivers the following equilibrium employ-

ment:

n = [αpf (x)a]
1

1−α+ψ (1− τs)
1

1−α+ψ (1 + τ)−
1

1−α+ψ (1− τ l)
1

1−α+ψ . (230)

Using the goods market clearing condition:

f (x)anα

1+γ(x)
= c(p,x) +G (231)

pf (x)anα =
χ

1+ τc
+ p[1 +γ(x)]G (232)

α
α

1α+ψ [pf (x)a]
1+ψ

1−α+ψ (1− τs)
α

1−α+ψ (1− τ)−
α

1−α+ψ (1− τ l)
α

1−α+ψ =
χ

1+ τc
+ p[1 +γ(x)]G. (233)
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C.2.1 Consumption tax cut multiplier

Di�erentiate with respect to τc (at τ = τc = τ l = τs = G = 0):

α
α

1−α+ψ

[
1+ψ

1−α +ψ
(pf (x)a)

1+ψ
1−α+ψ−1

{
dp

dτc
f (x)a+ pf ′(x)

dx
dτc

}]
= − χ

(1 + τc)2
(234)

α
α

1−α+ψ [pf (x)a]
1+ψ

1−α+ψ︸                  ︷︷                  ︸
χ

{
1
p

dp

dτc
+
f ′(x)
f (x)

dx
dτc

}
= −χ

1−α +ψ
1+ψ

(235)

1
p

dp

dτc
+
f ′(x)
f (x)

dx
dτc

= ϕ∗ − 1. (236)

De�ne the consumption tax cut multiplier:

ϕτ
c
(x) ≡ d{c+G}/{c+G}

d[−τc]
= −1

c
dc
dτc

. (237)

In a competitive equilibrium x = x∗, so that:

ϕτ
c
= −1

c

[
−c1
p

dp

dτc
+
∂c
∂τc

]
= −1

c

[
−c1
p
p(ϕ∗ − 1)− c

]
= ϕ∗, (238)

so that in a competitive equilibrium the consumption tax cut multiplier is acyclical and pinned down exclusively by

elasticities of labor supply and labor demand.

In a �xprice equilibrium p = p0, so that:

ϕτ
c
(x) = −1

c

[
−c

γ ′(x)
1 +γ(x)

dx
dτc

+
∂c
∂τc

]
= −1

c


−c

γ ′(x)
1 +γ(x)

f (x)
f ′(x)︸           ︷︷           ︸

1−θ(x)

(ϕ∗ − 1)− c


= ϕ∗ +θ(x)(1−ϕ∗) = ϕd)(x), (239)

so that in a �xprice equilibrium the consumption tax cut multiplier is identical to the government consumption spend-

ing multiplier, and thus shares all of the properties of the la�er.

C.2.2 Labor income tax cut multiplier

Di�erentiate the goods market clearing condition with respect to τ l (at τ = τc = τ l = τs = G = 0):

α
α

1−α+ψ

[
1+ψ

1−α +ψ
(pf (x)a)

1+ψ
1−α+ψ−1

{
dp

dτ l
f (x)a+ pf ′(x)

dx

dτ l
a

}
− α
1−α +ψ

(pf (x)a)
1+ψ

1−α+ψ

]
= 0 (240)

1
p

dp

dτ l
+
f ′(x)
f (x)

dx

dτ l
=

α
1+ψ

= ϕ∗. (241)
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De�ne the labor income tax cut multiplier:

ϕτ
l
(x) ≡ d{c+G}/{c+G}

d[−τ l]
= −1

c
dc

dτ l
. (242)

In a competitive equilibrium x = x∗, so that:

ϕτ
l
= −1

c
∂c
∂p

dp

dτ l
= −1

c
[−c1

p
]pϕ∗ = ϕ∗, (243)

so that in a competitive equilibrium the labor income tax cut multiplier is acyclical and pinned down exclusively by the

elasticities of labor demand and labor supply.

In a �xprice equilibrium p = p0, so that:

ϕτ
l
(x) = −1

c
∂c
∂x

dx

dτ l
= −1

c
[−c

γ ′(x)
1 +γ(x)

f (x)
f ′(x)︸           ︷︷           ︸

1−θ(x)

]ϕ∗ = ϕ∗ −θ(x)ϕ∗ = ϕs(x), (244)

so that in a �xprice equilibrium the labor income tax cut multiplier is identical to the payroll tax cut multiplier considered

in the main text, and shares all of its properties.

C.2.3 Firms’ sales tax cut multiplier

Di�erentiate the goods market clearing condition with respect to τs (at τ = τc = τ l = τs = G = 0):

α
α

1−α+ψ

[
1+ψ

1−α +ψ
(pf (x)a)

1+ψ
1−α+ψ−1

{
dp

dτs
f (x)a+ pf ′(x)

dx
dτs

a

}
− α
1−α +ψ

(pf (x)a)
1+ψ

1−α+ψ

]
= 0 (245)

1
p

dp

dτs
+
f ′(x)
f (x)

dx
dτs

=
α

1+ψ
= ϕ∗. (246)

De�ne the sales tax cut multiplier:

ϕτ
s
(x) ≡ d{c+G}/{c+G}

d[−τs]
= −1

c
dc
dτs

. (247)

In a competitive equilibrium x = x∗, so that:

ϕτ
s
= −1

c
∂c
∂p

dp

dτs
= −1

c
[−c1

p
]pϕ∗ = ϕ∗, (248)

so that in a competitive equilibrium the sales tax cut multiplier is acyclical and pinned down exclusively by the elastic-

ities of labor demand and labor supply.
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In a �xprice equilibrium p = p0, so that:

ϕτ
s
(x) = −1

c
∂c
∂x

dx
dτs

= −1
c
[−c

γ ′(x)
1 +γ(x)

f (x)
f ′(x)︸           ︷︷           ︸

1−θ(x)

]ϕ∗ = ϕ∗ −θ(x)ϕ∗ = ϕs(x), (249)

so that in a �xprice equilibrium the sales tax cut multiplier is identical to the payroll tax cut multiplier considered in

the main text, and shares all of its properties.

D Comparative statics

D.1 Competitive equilibrium

Panel (a) of Figure 11 shows comparative statics following a positive demand-side shock, parameterized as a permanent

increase in χ. �e aggregate demand curve shi�s out, exercising upward pressure on goods market tightness. In order

to retain tightness at the socially e�cient level, the price must increase to lower private consumption to o�set the rise

in aggregate demand. Higher price increases labor demand, which expands capacity until the goods market reaches the

e�cient level of tightness (x∗). �e new equilibrium features tightness at the e�cient level, with higher price and sales

compared to the original equilibrium.

Panel (b) of Figure 11 shows comparative statics following a positive supply shock, parameterized as a permanent

increase in a. In response to the shock, aggregate supply curve shi�s out, pu�ing downward pressure on goods market

tightness. In order to retain tightness at the socially e�cient level, the price decreases in order to increase private

consumption, until there are no more pressures on tightness to deviate from x∗. Eventually, tightness remains at the

socially e�cient level, sales increase and price falls.

D.2 Fixprice equilibrium

Panel (a) of Figure 12 shows comparative statics following a positive demand-side shock, parameterized as a permanent

increase in χ. �e aggregate demand curve shi�s out, creating excess demand that under the �xed price is cleared out

by rising tightness increase the cost of search and decreasing private consumption; higher tightness also encourages

more labor demand as the e�ective price from the �rms’ perspective increases. �e la�er e�ect causes an outward shi�

of the aggregate supply curve, but tightness remains above the initial level, similarly to sales. By construction, the price

remains unchanged.

Panel (b) of Figure 12 shows comparative statics for a positive supply-side shock, parameterized as a permanent

increase in a. �e aggregate supply curve shi�s out, pu�ing downward pressure on tightness via excess supply, and

under the �xed price tightness falls to clear the market by lowering the cost of search for households and increasing

private consumption. In equilibrium, tightness fall and sales remain unchanged.33 By construction, the price also
33Note that sales remain the same due to two countervailing forces: on the one hand, productivity increases, expanding capacity and leading

to more sales, ceteris paribus; on the other hand, tightness falls, lowering f (x), which decreases sales, ceteris paribus. In the special case of log
utility of consumption and a �xprice equilibrium these two e�ects exactly o�set each other. However, once one considers equilibria with rigid,
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Figure 11: Comparative statics in a competitive equilibrium

(a) Positive demand-side shock (increase in χ)

(b) Positive supply-side shock (increase in a)

Notes: Panel (a) shows comparative statics in a competitive equilibrium, following a positive demand-side shock, parame-
terised as an increase in the preference parameter χ; following the shock, price increases to clear excess demand created by
the shock and keep tightness at x∗, and equilibrium labor and sales also increase.
Panel (b) shows comparative statics in a competitive equilibrium, following a positive supply-side shock, parameterised as
an increase in the technology parameter a; following the shock, price falls to clear excess supply caused by the shock and
keep tightness at x∗, equilibrium labor remains unchanged and sales increase, as every unit of labor is now more productive,
leading to higher capacity and higher sales, due to unchanged level of tightness.
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remains unchanged.

E Results under general CRRA utility of consumption

E.1 Comparative statics

Goods market clearing under general CRRA utility is given by:

f (x)anα

1+γ(x)
=

χ
1
σ

(p[1 +γ(x)])
1
σ

+G. (250)

Combining with the equilibrium labor expression:

α
α

1−α+ψ (pf (x)a)
1+ψ

1−α+ψ (1 + τ)−
α

1−α+ψ = χ
1
σ (p[1 +γ(x)])1−

1
σ + p[1 +γ(x)]G. (251)

E.1.1 Competitive equilibrium

In a competitive equilibrium x = x∗, so that dx
dχ = 0; di�erentiate (251) (at G = τ = 0) with respect to χ to �nd the

comparative statics to a demand shock in a competitive equilibrium:

α
α

1−α+ψ
1+ψ

1−α +ψ
[pf (x)a]

1+ψ
1−α+ψ−1 dp

dχ
f (x)a =

1
σ
χ

1
σ −1(p[1 +γ(x)])1−

1
σ +

(
1− 1

σ

)
χ

1
σ (p[1 +γ(x)])−

1
σ
dp

dχ
[1 +γ(x)]

(252)

dp

dχ
=

[
α

1−α +ψ
+
1
σ

]−1
p

σχ
> 0. (253)

dc
dχ

=
d
dχ

[
χ

1
χ p−

1
σ [1 +γ(x)]−

1
σ

]
=

1
σ
χ

1
σ −1p−

1
σ [1 +γ(x)]−

1
σ − 1

σ
χ

1
σ p−

1
σ −1

dp

dχ
[1 +γ(x)]−

1
σ (254)

dc
dχ

=
c
σχ

 1σ
(
α

1+ψ

)−1
+
(
1− 1

σ

)−1 > 0. (255)

dy

dχ
=
d
dχ

(c[1 +γ(x)]) = [1 +γ(x)]
dc
dχ

> 0. (256)

but not fully �xed prices, as we do in Appendix B, the �rst e�ect dominates and sales rise following a positive technology shock.
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Figure 12: Comparative statics in a �xprice equilibrium

(a) Positive demand-side shock (increase in χ)

(b) Positive supply-side shock (increase in a)

Notes: Panel (a) shows comparative statics in a �xprice equilibrium that initially coincides with the socially e�cient allo-
cation, and is hit by a positive demand-side shock, parameterised as an increase in the preference parameter χ; following
the shock, goods market tightness increases to clear excess demand created by the shock, and equilibrium labor and sales
also increase.
Panel (b) shows comparative statics in a �xprice equilibrium that initially coincides with the socially e�cient allocation, and
is hit by a positive supply-side shock, parameterised as an increase in the technology parameter a; following the shock, goods
market tightness falls to clear excess supply caused by the shock, whereas equilibrium labor and sales remain unchanged,
since the e�ects of lower tightness and higher level of technology exactly o�set each other.
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Similarly, di�erentiate (251) (at G = τ = 0) with respect to a to �nd the comparative statics to a supply shock in a

competitive equilibrium:

1+ψ
1−α +ψ

α
α

1−α+ψ [pf (x)a]
1+ψ

1−α+ψ−1
[
dp

da
f (x)a+ pf (x)

]
=

(
1− 1

σ

)
χ

1
σ (p[1 +γ(x)])−

1
σ
dp

da
[1 +γ(x)] (257)

dp

da
= −

p

a

σ (1 +ψ)
1 +ψ + (σ − 1)α

< 0. (258)

dc
da

=
d
da

[
χ

1
χ p−

1
σ [1 +γ(x)]−

1
σ

]
= − 1

σ
χ

1
σ p−

1
σ −1

dp

da
[1 +γ(x)]−

1
σ (259)

dc
da

=
c
a

1
σ

1
σ +

(
1− 1

σ

)
α

1+ψ

> 0. (260)

dy

da
=
d
da

(c[1 +γ(x)]) = [1 +γ(x)]
dc
da

> 0. (261)
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E.1.2 Fixprice equilibrium

In a �xprice equilibrium p = p0 is a parameter, so that dp
dχ = 0; di�erentiate (251) (at G = τ = 0) with respect to χ to

�nd the comparative statics to a demand shock in a �xprice equilibrium:

α
α

1−α+ψ
1+ψ

1−α +ψ
[pf (x)a]

1+ψ
1−α+ψ−1pf ′(x)

dx
dχ
a =

1
σ
χ

1
σ −1(p[1 +γ(x)])1−

1
σ +

(
1− 1

σ

)
χ

1
σ (p[1 +γ(x)])−

1
σ pγ ′(x)

dx
dχ

(262)[
1+ψ

1−α +ψ
−
(
1− 1

σ

) γ ′(x)
1 +γ(x)

f (x)
f ′(x)

]
f ′(x)
f (x)

dx
dχ

=
1
σχ

(263)

dx
dχ

=
1
σχ

[
1+ψ + (σ − 1)α
σ (1−α +ψ)

+
(
1− 1

σ

)
θσ=1(x)

]−1
f (x)
f ′(x)

(264)

dx
dχ
|x=x∗ =

1
σχ

[
1+ψ + (σ − 1)α
σ (1−α +ψ)

]−1
f (x∗)
f ′(x∗)

> 0. (265)

dc
dχ

=
d
dχ

[
χ

1
χ p−

1
σ [1 +γ(x)]−

1
σ

]
=

1
σ
χ

1
σ −1p−

1
σ [1 +γ(x)]−

1
σ − 1

σ
χ

1
σ p−

1
σ [1 +γ(x)]−

1
σ −1γ ′(x)

dx
dχ

(266)

dc
dχ

=
c
σχ

[ 1
σ
[ϕdσ=1(x)]

−1 +
(
1− 1

σ

)]−1
. (267)

dc
dχ
|x=x∗ =

c
σχ

σα
1+ψ + (σ − 1)α

> 0. (268)

dy

dχ
=
d
dχ

(c[1 +γ(x)]) =
dc
dx

[1 +γ(x)] + cγ ′(x)
dx
dχ

(269)

dy

dχ
|x=x∗ =

dc
dx
|x=x∗[1 +γ(x∗)] + cγ ′(x∗)

dx
dχ
|x=x∗ > 0. (270)
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Similarly, di�erentiate (251) (at G = τ = 0) with respect to a to �nd the comparative statics to a supply shock in a

�xprice equilibrium:

α
α

1−α+ψ
1+ψ

1−α +ψ
[pf (x)a]

1+ψ
1−α+ψ−1

[
pf ′(x)

dx
dx
a+ pf (x)

]
=

(
1− 1

σ

)
χ

1
σ (p[1 +γ(x)])−

1
σ pγ ′(x)

dx
da

(271)

dx
da

= −1
a

1+ψ
1−α +ψ

f (x)
f ′(x)

[
1+ψ + (σ − 1)α
σ (1−α +ψ)

+
(
1− 1

σ
θσ=1(x)

)]−1
(272)

dx
da
|x=x∗ = −

1
a

1+ψ
1−α +ψ

f (x∗)
f ′(x∗)

[
1+ψ + (σ − 1)α
σ (1−α +ψ)

]−1
< 0. (273)

dc
da

=
d
da

[
χ

1
χ p−

1
σ [1 +γ(x)]−

1
σ

]
= − 1

σ
χ

1
σ p−

1
σ [1 +γ(x)]−

1
σ −1γ ′(x)

dx
da

(274)

dc
da

=
c
a

1+ψ
α

1
σϕ

s
σ=1(x)

1
σ +

(
1− 1

σ

)
ϕdσ=1(x)

(275)

dc
da
|x=x∗ =

c
a

[
1+ (σ − 1) α

1+ψ

]−1
> 0. (276)

dy

da
=
dc
da

[1 +γ(x)] + cγ ′(x)
dx
da

(277)

dy

da
= (1− σ )dc

da
[1 +γ(x)] (278)

dy

da
|x=x∗ = (1− σ )dc

dax=x∗
[1 +γ(x∗)]. (279)

E.2 Demand-side �scal multiplier

Di�erentiate (251) with respect to G (at G = τ = 0):

α
α

1−α+ψ
1+ψ

1−α +ψ

(
dp

dG
f (x)a+

f ′(x)
f (x)

dx
dG

pa

)
(pf (x)a)

1+ψ
1−α+ψ−1 = (280)

χ
1
σ (p[1 +γ(x)])−

1
σ (1− 1

σ
)
(
[1 +γ(x)]

dp

dG
+ pγ ′(x)

dx
dG

)
+ p[1 +γ(x)]. (281)

In a competitive equilibrium x = x∗, so that dx
dG = 0; the demand-side multiplier is thus given by:

(ϕdσ )
∗ = 1+

∂c
∂p

dp

dG
=

1+ψ
1−α+ψ − 1

1+ψ
1−α+1 − (1−

1
σ )

=
α

1+ψ
1
σ + (1− 1

σ )
α

1+ψ

=

 1σ ×
(
α

1+ψ

)−1
+
(
1− 1

σ

)
× 1−1

−1 . (282)

(283)
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or just a weighted harmonic average between α
1+ψ and one, with weights given by

(
1
σ ,1−

1
σ

)
. Hence, in a competitive

equilibrium the demand-side multiplier remains acyclical under a general CRRA utility of consumption.

In a �xprice equilibrium p = p0, so that dp
dG = 0; the demand-side multiplier is thus given by:

ϕdσ (x) = 1+
∂c
∂x

dx
dG

=

1+ψ
1−α+ψ −

γ ′(x)
1+γ(x)

f (x)
f ′(x)

1+ψ
1−α+ψ −

(
1− 1

σ

)
γ ′(x)
1+γ(x)

f (x)
f ′(x)

=
ϕdσ=1(x)

1
σ +

(
1− 1

σ

)
ϕdσ=1(x)

=
[ 1
σ
×
{
ϕdσ=1(x)

}−1
+
(
1− 1

σ

)
× 1−1

]−1
(284)

or just a weighted harmonic average between ϕdσ=1(x), which is the demand-side multiplier under σ = 1 considered in

the main text, and one, with weights given by
(
1
σ ,1−

1
σ

)
. Hence, ϕdσ (0) = 1 and dϕdσ (x)

dx =
1
σ

dϕdσ=1(x)
dx

[ 1σ +(1− 1
σ )ϕdσ=1(x)]

2 < 0, ∀x ∈

(0,xm), so that dϕ
d
σ (x)
dχ |x=x∗ =

dϕdσ (x)
dx |x=x∗

dx
dχ |x=x∗ < 0 and dϕdσ (x)

da |x=x∗ =
dϕdσ (x)
dx |x=x∗

dx
da |x=x∗ > 0, establishing that the cycli-

cality properties of the demand-side multiplier found in the main text are preserved under a general CRRA utility of

consumption in the local neighborhood of the e�cient allocation.

E.3 Supply-side �scal multiplier

Di�erentiate (251) with respect to τ (at G = τ = 0):[
1+ψ

1−α +ψ
f ′(x)
f (x)

−
(
1− 1

σ

) γ ′(x)
1 +γ(x)

]
dx
dτ

+
[

1+ψ
1−α +ψ

1
p
−
(
1− 1

σ

) 1
p

]
dp

dτ
=

α
1−α +ψ

. (285)

In a competitive equilibrium x = x∗, so that dxdτ = 0; the supply-side multiplier is thus given by:

(ϕsσ )
∗ = −1

c
∂c
∂p

dp

dτ
=

1
σ

α
1−α+ψ

1+ψ
1−α+ψ −

(
1− 1

σ

) = 1
σ

α
1+ψ

1
σ +

(
1− 1

σ

)
α

1+ψ

=
1
σ
(ϕd)∗, (286)

so that in a competitive equilibrium the supply-side multiplier remains acyclical under a general CRRA utility of con-

sumption.

In a �xprice equilibrium p = p0, so that dpdτ = 0; the supply-side multiplier is thus given by:

ϕsσ (x) = −
1
c
∂c
∂x
dx
dτ

=
1
σ

α
1−α+ψ

γ ′(x)
1+γ(x)

f (x)
f ′(x)

1+ψ
1−α+ψ −

(
1− 1

σ

)
γ ′(x)
1+γ(x)

f (x)
f ′(x)

=
1
σϕ

s
σ=1(x)

1
σ +

(
1− 1

σ

)
ϕdσ=1(x)

, (287)

where ϕsσ=1(x) is the supply-side multiplier under σ = 1 considered in the main text. Hence, ϕsσ (0) = 0 and dϕsσ (x)
dx =

−
1
σ

α
1+ψθ

′(x)

[ 1σ +(1− 1
σ )ϕdσ=1(x)]

2 > 0, ∀x ∈ (0,xm), so that dϕ
s
σ (x)
dχ |x=x∗ =

dϕsσ (x)
dx |x=x∗

dx
dχ |x=x∗ > 0 and dϕsσ (x)

da |x=x∗ =
dϕsσ (x)
dx |x=x∗

dx
da |x=x∗ <

0, establishing that the cyclicality properties of the supply-side multiplier found in the main text are preserved under a

general CRRA utility of consumption in the local neighborhood of the e�cient allocation.
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F Results under utility cost per visit

F.1 Household optimization

In this version of the model, the setup is remains unchanged compared to the baseline case in main text, except house-

holds now face a utility cost ι > 0 per visit; given that every visit is successful with probability q(x), the total number of

visits required to purchase c units of the produced good is v = c/q(x), and the total utility cost of search is ι×v = ι×c/q(x).

Households’ optimization problem is now given by:

max
c,m,l

[
χ
c1−σ

1− σ
+ ζ(m)− l

1+ψ

1+ψ
− ι c
q(x)

]
s.t. (288)

pc+m ≤ wl + m̄+Π− T . (289)

As before, here we normalize m̄ so that ζ′(m̄) = 1, and focus on the special case of log utility of consumption (σ = 1).

�e solution to the above problem delivers a labor supply function identical to the one in the baseline model; however,

the consumption function now takes a di�erent form:

c(p,x) =
χ

p+ ς(x)
, (290)

where ς(x) ≡ ιx
f (x) =

ι
q(x) > 0, ς′(x) > 0,∀x ∈ (0,+∞) summarizes the total cost of search, which is now additive

to the price, and strictly increases in tightness on the whole domain. It thus follows that ∂c
∂p = − χ

[p+ς(x)]2 < 0 and
∂c
∂x = −

χς′(x)
[p+ς(x)]2 < 0.

�e �rms’ problem remains unchanged, hence labor market equilibrium remains una�ected; goods market clearing

can now be wri�en as:

f (x)anα = c(p,x) +G (291)

f (x)a [αpf (x)a]
α

1−α+ψ (1 + τ)−
α

1−α+ψ =
χ

p+ ς(x)
+G (292)

α
α

1−α+ψ [pf (x)a]
1+ψ

1−α+ψ [p+ ς(x)] = pχ+ pG[p+ ς(x)]. (293)

Given the evidence that �xprice equilibrium is more empirically relevant at business cycle frequencies, we will continue

our analysis in this section under the assumption of �xprice equilibrium, so that p = p0 is a parameter.
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F.2 Comparative statics

Di�erentiate (293) with respect to χ (at G = τ = 0) in order to �nd comparative statics a�er a demand shock:

α
α

1−α+ψ

[
1+ψ

1−α +ψ
(pf (x)a)

1+ψ
1−α+ψ−1pf ′(x)

dx
dχ
a[p+ ς(x)] + (pf (x)a)

1+ψ
1−α+ψ ς′(x)

dx
dχ

]
= p (294)

dx
dχ

=
1
χ

[
1+ψ

1−α +ψ
f ′(x)
f (x)

+
ς′(x)
p+ ς(x)

]−1
> 0. (295)

dc
dχ

=
1

p+ ς(x)
− χς′(x)
[p+ ς(x)]2

dx
dχ

(296)

dc
dχ

=

1+ψ
1−α+ψ[ 1+ψ

1−α+ψ + ς′(x)
p+ς(x)

]
[p+ ς(x)]

> 0. (297)

Similarly, di�erentiate (293) with respect to a (at G = τ = 0) in order to �nd comparative statics a�er a supply shock:

α
α

1−α+ψ

[
1+ψ

1−α +ψ
(pf (x)a)

1+ψ
1−α+ψ−1(pf ′(x)

dx
da
a+ pf (x))[p+ ς(x)] + (pf (x)a)

1+ψ
1−α+ψ ς′(x)

dx
da

]
= 0 (298)

dx
da

= −
1+ψ

1−α +ψ
1
a

[
1+ψ

1−α +ψ
f ′(x)
f (x)

+
ς′(x)
p+ ς(x)

]−1
< 0. (299)

dc
da

= − χς′(x)
[p+ ς(x)]2

dx
da

(300)

dc
da

=

χς′(x)
[p+ς(x)]2

1+ψ
1−α+ψ

1
a

1+ψ
1−α+ψ

f ′(x)
f (x) +

ς′(x)
p+ς(x)

> 0. (301)

F.3 Demand-side �scal multiplier

Di�erentiating (293) with respect to G (at G = τ = 0) delivers the following:

dx
dG

=
1
c

[
1+ψ

1−α +ψ
f ′(x)
f (x)

ς′(x)
p+ ς(x)

]−1
. (302)

From the de�nition of the demand-side �scal multiplier:

ϕd(x) = 1+
∂c
∂x

dx
dG

(303)

=
[
1+

1−α +ψ
1+ψ

ς′(x)
p+ ς(x)

f (x)
f ′(x)

]−1
. (304)
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A�er some algebra it can be shown that:

dϕd(x)
dx

=
ι1−α+ψ1+ψ q(x)δq′(x)(δ[p+ ς(x)] + p(1− q(x)δ))

[[p+ ς(x)]q(x)1+δ + 1−α+ψ
1+ψ ι(1− q(x)δ)]2

< 0, (305)

since ς(x) > 0,q(x) ∈ (0,1),q′(x) < 0,∀x ∈ (0,+∞) and δ > 0. Hence, ϕ
d (x)
dχ = dϕd (x)

dx
dx
dχ < 0 and dϕd (x)

da = dϕd (x)
dx

dx
da > 0,

so the cyclicality properties of the demand-side �scal multiplier found in the main text are preserved.

F.4 Supply-side �scal multiplier

Di�erentiating (293) with respect to τ (at G = τ = 0) delivers the following:

dx
dτ

=
α

1−α +ψ

[
1+ψ

1−α +ψ
f ′(x)
f (x)

+
ς′(x)
p+ ς(x)

]−1
. (306)

From the de�nition of the supply-side �scal multiplier:

ϕs(x) = −1
c
∂c
∂x
dx
dτ

(307)

=
α

1+ψ
ς′(x)f (x)

[
1+

1−α +ψ
1+ψ

ς′(x)
p+ ς(x)

f (x)
f ′(x)

]−1
. (308)

A�er some algebra it can be shown that:

ϕs(x)
dx

= −
ι α
1+ψq(x)

δq′(x)(δ(p+ ς(x)) + p(1− q(x)δ))

[[p+ ς(x)]q(x)1+δ + 1−α+ψ
1+ψ ι(1− q(x)δ)]2

> 0, (309)

since ς(x) > 0,q(x) ∈ (0,1),q′(x) < 0,∀x ∈ (0,+∞) and δ > 0. Hence, ϕ
s(x)
dχ = dϕs(x)

dx
dx
dχ > 0 and dϕs(x)

da = dϕs(x)
dx

dx
da < 0, so

the cyclicality properties of the supply-side �scal multiplier found in the main text are preserved.

G Social planner’s allocation

G.1 Static model

�e social planner’s problem is given by:

max
c,l,v,m

[
χ
c1−σ

1− σ
+ ζ(m)− l

1+ψ

1+ψ

]
s.t. (310)

c+G+ ρv =
[
(alα)−δ + v−δ

]− 1
δ , m = m̄. (311)
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Inserting m = m̄, the associated Lagrangian becomes:

L =
[
χ
c1−σ

1− σ
+ ζ(m̄)− l

1+ψ

1+ψ

]
+λ

([
(alα)−δ + v−δ

]− 1
δ − (c+G+ ρv)

)
(312)

�e �rst-oder conditions are:

∂L
∂c

= χc−δ −λ = 0 (313)

∂L
∂v

= λ
(
−1
δ

[
(alα)−δ + v−δ

]− 1
δ−1 (−δ)v−δ−1 − ρ

)
= 0 (314)

∂L
∂v

= −lψ +λ
(
−1
δ

[
(alα)−δ + v−δ

]− 1
δ−1 (−δ)αalα−1

)
= 0 (315)

Note that x ≡ v
alα and f ′(x) = (1 + xδ)−

1
δ−1, the social planner’s allocation {c∗, l∗,v∗,m∗,x∗} is given by:

f ′(x∗) = ρ (316)

x∗ =
v∗

a(l∗)α
(317)

χ(c∗)−σ =

[
(a(l∗)α)−δ + (v∗)−δ

]− 1
δ−1αa(l∗)α−1

(l∗)ψ
(318)

c∗ +G+ ρv∗ =
[
(a(l∗)α)−δ + (v∗)−δ

]− 1
δ (319)

m∗ = m̄. (320)

G.2 Dynamic model

�e social planner’s problem is given by:

max
{ct+s ,lt+s ,mt+s ,vt+s ,yt+s}∞s=0

Et

∞∑
s=0

βs
χt+s c1−σt+s

1− σ
+ ζ(mt+s)− ν

l
1+ψ
t+s
1+ψ

 s.t. (321)

yt = (1− η)yt−1 +
[
v−δt + (atl

α
t − (1− η)yt−1)−δ

]− 1
δ , ∀t ≥ 0 (322)

yt = ct +Gt + ρvt , mt = m̄, ∀t ≥ 0. (323)

�e associated Lagrangian is given by:

Lt = Et

∞∑
s=0

βs[χt+s
c1−σt+s
1− σ

+ ζ(m̄)−
l
1+ψ
t+s
1+ψ

+λt+s

(
yt+s − (1− η)yt+s−1 −

[
v−δt+s + (at+sl

α
t+s − (1− η)yt+s−1)−δ

]− 1
δ

)
+µt+s(yt+s − ct+s −Gt+s − ρvt+s)]. (324)
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�e �rst order conditions are given by:

λt +
νl
ψ
t[

x−δt +1
]− 1

δ−1αatl
α−1
t

= 0, ∀t ≥ 0 (325)

λt[1 + x
δ
t ]
− 1
δ−1 + ρχtc

−σ
t = 0, ∀t ≥ 0 (326)

λt +χtc
−σ
t + β(1− η)Et

[
λt+1

(
(x−δt+1 +1)−

1
δ−1 − 1

)]
= 0, ∀t ≥ 0 (327)

which together with the de�nition of tightness xt =
vt

at l
α
t −(1−η)yt−1

and the feasibility constraints describe the social

planner’s allocation.

H Dynamic model: further results and steady state

H.1 Alternative �scal instruments in the dynamic model

In this subsection we consider two additional �scal instruments in the context of the our dynamic model: distortionary

taxation on consumption (τct ) and households’ labor income (τ lt ). Compared to the baseline model in the main text, the

representative household’s per-period budget constraint becomes:

pt(1 + τ
c
t )y

c
t +mt +Et

[
Ft,t+1Bt+1

]
≤ wt(1− τ lt )lt + m̄t +Bt +Πt − Tt , ∀t ≥ 0, (328)

and the �rst order conditions for the choice of consumption and labor supply become:

χtc
−σ
t + β(1− η)Et

[
χt+1c

−σ
t+1

[1 +γ(xt)]
[1 +γ(xt+1)]

γ(xt+1)
]
= pt(1 + τ

c
t )[1 +γ(xt)], (329)

lt = [wt(1− τ lt )/ν]
1
ψ . (330)

We further assume that the two additional tax rates follow exogenous autoregressive processes:

τ it = (1− ρτ )τ i + ρττ it−1 + ε
τ i
t , ∀t ≥ 0, τ it ∈ {τ lt , τct }, (331)

and the lump sum tax raised by the government is now given by:

Tt = pty
G
t −wtntτt −wtntτ lt − ptyct τct . (332)

Steady state consumption and labor income taxes (τc = 0.05, τ l = 0.28) follow calibrations in Trabandt and Uhlig (2011)

and Zane�i (2012). �e rest of the model remains unchanged.

We compute horizon-speci�c conditional state-dependent multipliers out of cuts in taxes on consumption and labor
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income, following the methodology used for multipliers out of payroll taxes, as detailed in the main text. Figure 13 shows

the results for impact, 2-year and 4-year horizon multipliers. As one can see, multipliers out of cuts in consumption

taxes exhibit cyclicality properties that are similar to those of government consumption multipliers, as detailed in the

main text; in particular, compared to the steady state, consumption tax cut multipliers rise in demand-side recessions

and supply side recessions, but fall in demand-side expansions and supply-side recession, with the magnitude of state

dependence falling at further horizons.

As for multipliers out of cuts in taxes on labor income, those have cyclicality properties identical to those of payroll

tax cut multipliers. Indeed, compared to steady state, labor income tax cut multipliers are high in supply-side recession

and demand-side expansions, whereas they are low in demand-side recessions and supply-side expansions. As before,

the magnitude of state-dependence falls with the horizon considered.

H.2 Decentralized equilibrium: steady state

c−σ =
p(1 + τc)[1 +γ(x)]
1 + β(1− η)γ(x)

(333)

yc =
[1+γ(x)]c

1+ (1− η)γ(x)
(334)

lψ = w(1− τ l)/ν (335)

y =
f (x)lα

1− (1− η)(1− f (x))
(336)

p =
w(1 + τ)
αf (x)lα−1

[1− (1− η)β(1− f (x))] (337)

yG =
[1+γ(x)]g

1+ (1− η)γ(x)
(338)

y = yc + yG (339)

x =
v

lα − (1− η)y
(340)

m = m̄ (341)

γ(x) =
ρx

f (x)− ρx
(342)

f (x) = (1 + x−δ)−
1
δ . (343)
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H.3 Social planner’s allocation: steady state

c−σ =
νl1+ψ−α

ρ

[
1+ xδ

1+ x−δ

]− 1
δ−1

(344)

y =
1
η

[
v−δ + (lα − (1− η)y)−δ

]− 1
δ (345)

1
ρ
[1 + xδ]−

1
δ−1 = 1+ β(1− η)[(1 + x−δ)−

1
δ−1 − 1] (346)

y = c+ g + ρv (347)

x =
v

lα − (1− η)y
(348)

m = m̄. (349)

I Econometric evidence: additional results and robustness checks

I.1 Demand-side and supply-side expansions

In Table 4 we repeat estimation of conditional state-dependent spending multipliers, but extend our baseline exercise

by further spli�ing expansionary states, where Ut < Ū , into those where in�ation is above trend, πt ≥ π̄t , corre-

sponding to demand-side expansions, and those where in�ation is below trend, πt < π̄t , corresponding to supply-side

expansions. Consistently with our theory, we �nd the 2-year horizon cumulative spending multiplier in supply-side

expansions (0.77) to be higher than in demand-side expansions (0.64); however, the 4-year horizon spending multiplier

is very imprecisely estimated in supply-side expansions, making it hard to test our predictions. In Figure 14 we report

conditional state-dependent spending multipliers at horizons ranging from 4 to 20 quarters; Panel (b) con�rms our ear-

lier �nding: our prediction of higher multipliers in supply-side expansions �nds con�rmation only at shorter horizons,

up to 8 quarters.

In Table 5 we lower the unemployment threshold down to Ū = 4.5%, so that our expansionary states, where

Ut < Ū now pick up more severe overheating episodes, potentially making our identi�cation sharper and helping test

our theoretical predictions regarding spending multipliers in demand- and supply-side expansions. Once again, we �nd

strong con�rmation of our theory at the 2-year horizon: in supply-side expansions the multiplier is at 1.12, as opposed

to 0.85 in demand-side expansions; at the 4-year horizon we still �nd supply-side expansion multipliers to be higher,

although the demand-side expansion multiplier is very imprecisely estimated. Figure 15 con�rms that most robust

con�rmation of our theory for expansions is indeed found at shorter horizons, up to 8 quarters.

Table 6 extends our analysis of conditional state-dependent tax cut multipliers to demand- and supply-side expan-

sions. Our theory predicts that tax cut multipliers should be higher in demand-side recessions, and we �nd empirical

support for this at the 4-year horizon, but not at the 2-year horizon; moreover Figure 16 shows that our prediction for

expansions holds at longer horizons, above 10 quarters, but not at shorter ones. One reason behind this could be income

e�ects associated with tax cuts that our model does not capture very well.
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I.2 Blanchard and Perotti (2002) shocks

In Tables 7 and 8 as well as Figures 17 and 18 we repeat the conditional state-dependent spending multiplier estimation

using VAR-based spending shocks following Blanchard and Pero�i (2002), for both demand- and supply-side recessions

and expansions. Overall, when we set Ū = 6.5%, we �nd con�rmation to our theory for both expansions and recessions

at shorter horizons, up to 5-quarters, whereas the results at longer horizons are less precise and deliver mixed evidence;

when we set Ū = 4.5%, the results are consistent with our theoretical predictions across all horizons, but still most

quantitatively signi�cant at shorter horizons, up to 8 quarters. �erefore, our theoretical predictions for spending mul-

tiplier �nd most robust econometric con�rmation at shorter cumulation horizons, regardless of whether one performs

estimation with military spending news shocks or Blanchard-Pero�i (2002) shocks; this horizon-dependence is in fact

consistent with our dynamic simulations: at longer horizons more �rms set prices optimally, less adjustment happens

via tightness, state-dependence of multipliers is weaker and hence harder to detect econometrically.

I.3 Economic activity threshold based on detrended real GDP

Our baseline analysis uses unemployment as the measure of economic activity, which is done to be consistent with

Ramey and Zubairy (2018). However, our theoretical model does not feature (involuntary) unemployment, and a mea-

sure of activity most consistent with our model is the cyclical component of real GDP. In this subsection we describe

the results of performing estimation with an activity threshold based on detrended real GDP. 34

In Table 9 we show results for 2- and 4-year horizon cumulative spending multipliers, where we de�ne a recession as

an episode where real GDP drops more than 3% below trend. Our classi�cation of demand- and supply-driven recessions

and expansions based on cyclical component of in�ation remains unchanged. Consistently with our theory, we �nd that

spending multipliers in demand-driven recessions are larger than spending multipliers in supply-driven recessions: 0.55

vs. 0.11 at the 2-year horizon, and 0.60 vs. 0.48 at the 4-year horizon. In panel (c) of Figure 19 we show that the pa�ern

of higher multipliers in demand-driven recessions holds consistently across horizons, with the e�ect most pronounced

at earlier horizons, again in line with our theory.

In Table 10 we change the threshold, so that only episodes where real GDP is more than 3% above trend counts as

an expansion (and anything else counts as a recession). In this way we can focus on the most substantial episodes of

overheating and have more power to test our theoretical predictions for expansions. Consistently with our theory we

�nd that spending multipliers are higher in supply-driven expansions relative to demand-driven expansions: 0.68 vs

0.38 at the 2-year horizon and 0.69 vs 0.40 at the 4-year horizon. In panel (b) of 20 we show that the pa�ern of higher

multipliers in supply-driven expansions holds consistently across horizons, with the e�ect most pronounced at earlier

horizons, again in line with our theory.

In Table 11 we again de�ne a recession as an episode where real GDP drops for than 3% below trend, but this time

estimate our speci�cation for tax shocks. Further, panels (b) and (c) of Figure 21 exhibit estimation results for a broader

set of horizons. At horizons beyond 8 quarters we �nd results consistent with our theory: tax cut multipliers are larger

in demand-side expansions and supply-side recessions.
34We use the same polynomial trend as in Gordon and Krenn (2010)
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Table 4: Conditional state-dependent spending multipliers (Ū = 6.5%; US military spending news shocks)

U
S

da
ta

:1
90

9-
20

15
2y

ho
riz

on
4y

ho
riz

on

St
at

e
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)

β
H

:
Li

ne
ar

0.
70

**
*

0.
75

**
*

(0
.0
6)

(0
.0
6)

β
E H
:

1{
U
t
<
Ū
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Figure 14: Government Spending Multipliers across Horizons (US military spending news shocks, 1909-2015)

(a) Government spending multipliers in recessions and expansions across horizons (Ū = 6.5%)

(b) Government spending multipliers in demand-side and supply-side expansions across horizons

(c) Government spending multipliers in demand-side and supply-side recessions across horizons
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Table 5: Conditional state-dependent spending multipliers (Ū = 4.5%; US military spending news shocks)
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Ū
;π
t
<
π̄
t}

0.
69

**
0.

69
**

0.
51

**
0.

51
**

(0
.3
2)

(0
.3
2)

(0
.2
3)

(0
.2
5)

β
S
R
H

:
1{
U
t
≥
Ū
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Figure 15: Government Spending Multipliers across Horizons (US military spending news shocks, 1909-2015)

(a) Government spending multipliers in recessions and expansions across horizons (Ū = 4.5%)

(b) Government spending multipliers in demand-side and supply-side expansions across horizons

(c) Government spending multipliers in demand-side and supply-side recessions across horizons
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Table 6: Conditional state-dependent tax cut multipliers (Ū = 6.5%; US Romer-Romer narrative tax shocks)
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Ū
;π
t
≥
π̄
t}

0.
27

2.
65

*

(1
.0
8)

(1
.5
0)

β
S
E
H

:
1{
U
t
<
Ū
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Figure 16: Tax Cut Multipliers across Horizons (US Romer-Romer narrative tax shocks, 1947-2007)

(a) Tax cut multipliers in recessions and expansions across horizons (Ū = 6.5%)

(b) Tax cut multipliers in demand-side and supply-side expansions across horizons

(c) Tax cut multipliers in demand-side and supply-side recessions across horizons
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Table 7: Conditional state-dependent spending multipliers (Ū = 6.5%; US Blanchard-Pero�i spending shocks)
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Figure 17: Government Spending Multipliers across Horizons (US Blanchard-Pero�i spending shocks, 1909-2015)

(a) Government spending multipliers in recessions and expansions across horizons (Ū = 6.5%)

(b) Government spending multipliers in demand-side and supply-side expansions across horizons

(c) Government spending multipliers in demand-side and supply-side recessions across horizons
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Table 8: Conditional state-dependent spending multipliers (Ū = 4.5%; US Blanchard-Pero�i spending shocks)
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Ū
}

0.
65

**
*

0.
75

**
*

(0
.1
0)

(0
.1
0)

β
D
E

H
:

1{
U
t
<
Ū
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Figure 18: Government Spending Multipliers across Horizons (US Blanchard-Pero�i spending shocks, 1909-2015)

(a) Spending multipliers in recessions and expansions across horizons (Ū = 4.5%)

(b) Spending multipliers in demand-side and supply-side expansions across horizons

(c) Spending multipliers in demand-side and supply-side recessions across horizons
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Table 9: Conditional state-dependent spending multipliers (cyclical GDP-based threshold ˆGDP t ≡ (GDPt −
GDP t)/GDP t where GDP t is trend GDP; US military spending news shocks)
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Figure 19: Government Spending Multipliers across Horizons (US military spending news shocks, 1909-2015, cyclical
GDP-based threshold ˆGDP t ≡ (GDPt −GDP t)/GDP t where GDP t is trend GDP, threshold of −3%)

(a) Spending multipliers in recessions and expansions across horizons (recession if GDP more than 3% below trend)

(b) Spending multipliers in demand-side and supply-side expansions across horizons

(c) Spending multipliers in demand-side and supply-side recessions across horizons
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Table 10: Conditional state-dependent spending multipliers (cyclical GDP-based threshold ˆGDP t ≡ (GDPt −
GDP t)/GDP t where GDP t is trend GDP; US military spending news shocks)
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Figure 20: Government Spending Multipliers across Horizons (US military spending news shocks, 1909-2015, cyclical
GDP-based threshold ˆGDP t ≡ (GDPt −GDP t)/GDP t where GDP t is trend GDP, threshold of 3%)

(a) Spending multipliers in recessions and expansions across horizons (expansion if GDP more than 3% above trend)

(b) Spending multipliers in demand-side and supply-side expansions across horizons

(c) Spending multipliers in demand-side and supply-side recessions across horizons
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Table 11: Conditional state-dependent tax cut multipliers (cyclical GDP-based threshold ˆGDP t ≡ (GDPt −
GDP t)/GDP t where GDP t is trend GDP; US Romer-Romer narrative tax shocks)
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Figure 21: Tax Cut Multipliers across Horizons (US Romer-Romer narrative tax shocks, 1947-2007, cyclical GDP-based
threshold ˆGDP t ≡ (GDPt −GDP t)/GDP t where GDP t is trend GDP, threshold of −3%)

(a) Tax cut multipliers in recessions and expansions across horizons (recession if GDP more than 3% below trend)

(b) Tax cut multipliers in demand-side and supply-side expansions across horizons

(c) Tax cut multipliers in demand-side and supply-side recessions across horizons
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