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Abstract

We assemble a firm-level dataset to study the adoption and termination of suppliers over business cycles.

We document that the aggregate number and rate of adoption of suppliers are procyclical. The rate of ter-

mination is acyclical at the aggregate level, and the cyclicality of termination encompasses large differences

across producers. To account for these new facts, we develop a model with optimizing producers that incur

separate costs for management, adoption, and termination of suppliers. These costs alter the incentives to

scale up production and to replace existing with new suppliers. Sufficiently high convexity in management

relative to adjustment costs is crucial to replicating the observed cyclicality in the adoption and termination

rates at the producer and aggregate levels. We study the welfare implications of credit injections and subsi-

dies on new inputs—the two main classes of supply-chain policies adopted in the U.S. since the COVID-19

pandemic. Credit injections generally outperform subsidies on new inputs, except when aggregate TFP is

exceptionally high.
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1. Introduction1

Production of final output in modern economies requires inputs from multiple suppliers, so the adoption,2

termination, and management of suppliers are important decisions in the production of final goods. Despite3

abundant work dedicated to the adoption and termination of suppliers in models of international trade and4

in operation management textbooks, little is known about the cyclical regularities of these margins of ad-5

justment at the producer level or their effects on the broader aggregate economy.1 Consequently, several6

fundamental questions remain unanswered: What are the patterns of adoption and termination of suppliers7

at the producer level, and how are those linked with the business cycle? Are the adoption and termination8

of suppliers similar across different producers? What forces explain the empirical regularities? What are9

the different welfare effects of the main classes of supply-chain policies adopted in the U.S.?10

We study these questions, combining different datasets and providing novel facts regarding the adoption11

and termination of suppliers at the producer and aggregate levels. To account for our new evidence, we12

develop a model of optimizing producers that manufacture output using both new and existing suppliers.13

The model shows the central roles of the costs of managing and adjusting suppliers in accounting for the14

empirical patterns. We extend the baseline model by adding credit constraints on producers to study the15

welfare impacts of the policies of credit injection and subsidies for inputs from new suppliers—implemented16

by the U.S. government since the COVID-19 pandemic. In the extended model, the inefficiencies arising17

from management and adjustment costs (due to incomplete contracting) and credit constraints generate18

under-adjustments in the number of suppliers. The two policies enhance welfare by directly relaxing credit19

constraints and promoting the adjustment of suppliers, respectively. Moreover, credit injections generally20

outperform subsidies to new inputs, except when aggregate TFP is exceptionally high. The convexity in21

the cost functions plays a critical role in replicating the empirical patterns of adoption and termination and22

determining the welfare effects of the supply-chain policies.23

Our new evidence on the adoption and termination of suppliers is obtained via merging two datasets:24

the FactSet Revere Supply Chain Relationships data—which record producer-supplier relations, including25

adoption and termination of suppliers—and CompuStat Fundamentals—which provide information on pro-26

ducers’ output, financial positions, and administrative costs. Our integrated data offer a comprehensive27

overview of producer-supplier relationships for U.S. producers between 2003 and 2020. Using this merged28

dataset, we establish three novel facts.29

Fact 1 studies the dynamics of adoption and termination of suppliers at the aggregate level over the30

business cycle. It decomposes the procyclical changes in the aggregate number of suppliers into the rates31

of adoption and termination of suppliers, establishing that the aggregate rate of adoption is procyclical32

and that the aggregate rate of termination is acyclical. This fact differs from the churning of jobs in the33

labor market. Though job creation is procyclical (as is supplier adoption), job destruction is countercyclical34

1See Feenstra, Heizer et al. (2016), and Stevenson (2018) for a summary of the literature on supply chain management.
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(unlike acyclical supplier termination).35

Fact 2 shows that the acyclical aggregate rate of termination conceals large heterogeneity in the cycli-36

cality of the termination rate across producers having different numbers of suppliers. The termination rate37

is countercyclical for producers with a large number of suppliers but procyclical for producers with a small38

number of suppliers; this is in stark contrast to the more countercyclical job destruction for larger than39

smaller establishments in the labor market. The aggregate acyclicality in the rate of termination results40

from the countervailing adjustments in the termination of suppliers across producers with different numbers41

of suppliers.42

Fact 3 uses instrumental variable regressions to study the link between the sales of producers and the43

adjustments in the total number of suppliers, the adoption of new suppliers, and the termination of exist-44

ing suppliers. It shows the distinct positive returns from more and new relationships for producers when45

adopting and terminating suppliers.46

To account for Facts 1-3, we develop a model with producers that use a continuum of intermediate inputs47

supplied by two vintages of suppliers—the existing and new ones. Producers have different idiosyncratic48

productivities, and they incur separate costs for the management, adoption, and termination of suppliers.49

Due to the decreasing returns to scale in each production line and the adjustment costs that increase the50

marginal product of new suppliers compared to existing suppliers, our model encompasses distinct returns51

from more and new relationships, consistent with Fact 3.52

Management and adjustment costs have different implications for changes in the adoption and termi-53

nation of suppliers. Management costs constrain the scale of operations through decreasing the adoption54

of new suppliers and increasing the termination of existing suppliers. Adjustment costs discourage both55

the adoption of new and the termination of existing suppliers and influence the composition of suppliers.56

Accordingly, the two separate costs lead to two distinct effects of the aggregate TFP on the adoption and57

termination of suppliers. One is the scaling effect: the higher TFP decreases the relevance of management58

costs for the profits of the producer, leading to an optimal increase in the measure of suppliers for the pro-59

duction of the final goods. This effect fosters a rise in the adoption and a decline in the termination of60

suppliers. The second is the switching effect: the higher TFP reduces the relevance of adjustment costs for61

the producer’s profits, engendering greater churning of suppliers. This effect induces a rise in both the rates62

of adoption and termination of suppliers. Scaling and switching effects jointly generate a positive correla-63

tion between the adoption of new suppliers and aggregate TFP, consistent with Facts 1 and 2. In contrast,64

the two forces exert countervailing effects on the correlation between the rate of termination and TFP.65

The model reveals that producers’ different measures of suppliers—determined by their idiosyncratic66

productivities in the model—are critical to the heterogeneous responses of the termination rates across67

producers to aggregate TFP shocks, as well as to the overall acyclical response in the aggregate rate of ter-68

mination. For an individual producer, its idiosyncratic productivity and the associated measure of suppliers69

are central to the relevance of adjustment costs for the adjustment in suppliers. The producer with high70

3



idiosyncratic productivity and a large measure of suppliers experiences low adjustment costs relative to its71

profit. This generates limited benefits from replacing existing with new suppliers when TFP increases (i.e.,72

the scaling effect dominates). The producer with low idiosyncratic productivity and a small measure of73

suppliers, however, faces high adjustment costs relative to its profit, generating large benefits from replac-74

ing existing with new suppliers when TFP increases (i.e., the switching effect dominates). Thus, consistent75

with our Fact 2, producers with a large (vs. a small) measure of suppliers display a negative (vs. a positive)76

response of the termination rate to changes in aggregate TFP—which is driven by the dominating scaling77

(vs. switching) effect.78

At the aggregate level, the cyclicality of the aggregate rates of adoption and termination depends on79

producers’ distribution of idiosyncratic productivity and the size of management and adjustment costs that80

determine the relative strength of the scaling and switching effects. We calibrate the model to U.S. data81

and show that it replicates the heterogeneous cyclicality in the adoption and termination rates across pro-82

ducers, as well as the procyclical aggregate rate of adoption and the acyclical aggregate rate of termination,83

consistent with our Facts 1 and 2.84

We show that adopting strictly convex management costs and linear adjustment costs—in contrast to the85

standard assumptions of linear management costs in the network literature (e.g., Huneeus, 2018; Lim, 2018)86

and strictly convex adjustment costs in the labor literature (e.g., Zanetti, 2008)—is critical for replicating87

the empirical patterns of the cyclicality in the termination of suppliers. In the counterfactual economy with88

linear management and strictly convex adjustment costs, producers—particularly large ones—use limited89

resources to cover the adjustment costs, and the switching effect is homogeneous across different producers.90

The scaling effect dominates and is more significant for small than for large producers. This results in a91

countercyclical aggregate rate of termination and more countercyclical rate of termination for small than92

large producers. These findings are in contrast to the cyclicality of supplier termination but consistent with93

the cyclicality of job destruction in Facts 1 and 2.94

We use an enriched version of our model with credit constraints on producers to study two main classes95

of supply-chain policies that the U.S. government implemented in the aftermath of the COVID-19 pandemic:96

(i) credit injection policy that alleviates credit constraints of producers, and (ii) subsidies for new inputs that97

promote the replacement of existing with new suppliers.298

Credit injections improve welfare by reducing the inefficiencies arising from financial frictions and99

promoting both scale of production and the replacement of existing with new suppliers. However, the wel-100

fare improvement declines with the aggregate TFP as fewer producers face credit constraints. In contrast,101

the subsidies on new inputs uniformly increase the aggregate welfare across different levels of aggregate102

TFP. This is because they reduce the inefficiency arising from the adjustment costs among all producers.103

2Section 7.1 reviews the recent U.S. policies and legislation to support the resilience of the supply chain from the outset of
the COVID-19 pandemic.
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The government should adopt the policy of credit injection that generally outperforms subsidies on new104

inputs—given the magnitudes of financial frictions and management and adjustment costs calibrated from105

the data—except when the aggregate TFP is exceptionally high. Credit injections generate the largest output106

improvement in medium-sized producers that are more financially constrained than small or large produc-107

ers. Specifically, compared to large producers, their external financing is more constrained; compared to108

small producers, they need more external financing to pay for the management costs that are strictly con-109

vex. These results hinge on our estimated convexity of management costs and linear adjustment costs. In110

a counterfactual economy with linear management costs and strictly convex adjustment costs, credit injec-111

tions always outperform subsidies on new inputs, and the smallest producers experience the highest output112

improvement.113

Our analysis is related to several areas of research. It is linked to the literature on endogenous changes in114

producer-supplier relations over the business cycle. Related work primarily focuses on the network structure115

of producer-supplier relations (Atalay, 2017; Acemoglu and Tahbaz-Salehi, 2023; Grassi, 2017; Huneeus,116

2018; Qiu et al., 2024) and the cyclical rate of relationship creation (Fernández-Villaverde et al., 2019,117

2021).3 Instead, we document new empirical facts on the vintage structure of producer-supplier relations118

and the acyclical rate of relationship separation (i.e., termination of suppliers), focusing on the critical role119

of management and adjustment costs in replicating these facts and the welfare implications of the major120

classes of U.S. government policies since the COVID-19 pandemic.121

Our study also contributes to literature that documents cyclical reallocation of productive factors such122

as labor (e.g., Burstein et al., 2020; Caballero and Hammour, 1994), intermediate inputs (e.g., Baqaee and123

Burstein, 2021; Burstein et al., 2024), and capital (Lanteri et al., 2023). Our management costs that generate124

the scaling effect are similar to fixed costs in the network literature (e.g., Huneeus, 2018; Lim, 2018). Our125

adjustment costs that generate the switching effect are similar to adjustment costs in the labor literature (e.g.,126

Caballero and Hammour, 1994; Mumtaz and Zanetti, 2015; Zanetti, 2008). We show that the degrees of127

convexity in these two costs are critical to replicate the differences in the cyclicality of the rate of termination128

across producers with different suppliers. While Caballero and Hammour (1994) document countercyclical129

destruction of jobs (i.e., “the cleansing effect”), we document that the cleansing effect is absent for the130

aggregate termination of suppliers, which is acyclical in the data. We are the first study to show the critical131

role of convexity in management and adjustment costs for replicating the cyclical adoption and termination132

of suppliers—as opposed to the creation and destruction of jobs in the labor churning literature—and for133

determining the impacts of different supply-chain policies.134

The remainder of the paper is structured as follows. Section 2 outlines the construction of the data and135

defines the empirical variables. Section 3 describes the empirical results. Section 4 develops a simple model136

3A notable exception is Baqaee et al. (2023), who quantify the causal effect of the addition and separation of suppliers on
producers’ marginal costs using Belgian data and their impacts on aggregate productivity.
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to study the empirical evidence. Section 5 presents the analytical results of the model. Section 6 discusses137

the quantitative results and compares them to the data. Section 7 provides policy analyses as applications to138

the model. Section 8 concludes.139

2. Data and variables140

We use the FactSet Revere Supply Chain Relationships data that records producer-supplier relations141

from several sources—including SEC 10-K annual filings, investor presentations, and press releases that142

producer and supplier firms report. The data comprise a record of 784,325 producer-supplier relationships143

that include the beginning and ending years of relationships for 152,119 producers and 95,932 suppliers144

collected between 2003 and 2021. We merge the FactSet Revere Relationships dataset with CompuStat145

Fundamentals to include income statements, balance sheets, and cash flows for each producer in the sample146

so that our dataset comprises producers’ financial variables (i.e., sales, profits, and administrative costs).147

Described in Appendix A are the FactSet and Compustat datasets, the merging procedure, and the derivation148

of the variables used in the analysis. Our final panel data constitutes 3,609 producers with 28,461 producer-149

year observations, covering 78,193 producer-supplier relationships.150

Using the above data, we first define our main variables of interest. We denote by variable vi,t the151

number of suppliers that are in partnerships with the producer i in year t. Our central interest is measuring152

the rates of adoption and termination of suppliers. We define the rate of adoption of each producer i in153

period t as si,N,t ≡ vi,N,t/vi,t−1, where vi,N,t is the number of new suppliers that producer i adopted in year154

t (the subscript N refers to new suppliers). Similarly, we define the rate of termination for each producer i155

in year t as si,T,t ≡ vi,T,t/vi,t−1, where vi,T,t is the number of existing suppliers that producer i terminated156

in year t (the subscript T refers to the termination of suppliers). In the data, the rate of termination is on157

average smaller, and less volatile than the rate of adoption, with means of 0.144 vs. 0.287 and standard158

deviations of 0.203 vs. 0.449. Shown in Table A.3 in Appendix A are the summary statistics of the rates of159

adoption and termination at the producer level.160

To study the economy-wide changes in the total number and churning of suppliers, we weight the growth161

rate of the number of suppliers (∆vi,t/vi,t−1), the adoption rate (si,N,t), and the termination rate (si,T,t) of162

each producer by their intermediate input expenditures to construct the aggregate indexes ∆vt/vt−1, sN,t,163

and sT,t. These indexes track the growth rate of the aggregate number of suppliers, the aggregate rate of164

adoption and the aggregate rate of termination in the economy, respectively. By construction, we have165

∆vt/vt−1 = sN,t − sT,t.166

3. Empirical results on adoption and termination of suppliers167

In this section, we establish three novel facts on producer-supplier relations. Fact 1 shows that the168

aggregate adoption of new suppliers is procyclical, while the aggregate termination of existing suppliers is169
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acyclical. Fact 2 studies the cross-sectional patterns of adoption and termination and reveals the dispersion170

in their cyclicalities across producers with different sizes. Fact 3 shows that the output of producers increases171

with the total number, the adoption, and the termination of producer-supplier relationships.172

Fact 1: Procyclical adoption and acyclical termination of suppliers173

We focus on aggregate adoption and termination rates that jointly determine the aggregate number of174

suppliers. Figure 1 decomposes the growth rate of the aggregate index of the number of suppliers (i.e.,175

∆vt/vt−1, solid green line with circles) into the following metrics: (i) the aggregate rate of adoption (i.e.,176

sN,t, solid red line with circles), and (ii) the aggregate rate of termination (i.e., sT,t, dash-dotted blue line)177

of suppliers, according to ∆vt/vt−1 = sN,t − sT,t. The strong co-movement between the changes in the178

aggregate number of suppliers (∆vt) and the aggregate rate of adoption (sN,t) shows that fluctuations in179

the aggregate number of suppliers are primarily driven by the large fluctuations in the aggregate adoption180

rate while the aggregate termination rate (sT,t) remains substantially unchanged over the sample period. In181

general, the level of the aggregate adoption rate is higher than the aggregate termination rate, generating an182

upward trend in the aggregate number of suppliers. This is consistent with the increasingly denser input-183

output networks (Acemoglu and Azar, 2020; Ghassibe, 2023).184

To study the co-movements between aggregate rates of adoption and termination and aggregate eco-185

nomic activity, Figure 1 also shows the growth rate of real output (i.e., solid black line). The aggregate rate186

of adoption closely co-moves with the growth rate of real output, evincing a strong procyclical pattern. The187

correlation between these two series is 0.69 and is significant at the 1% level. The aggregate rate of adoption188

increases from 11% in 2009 to 45% in 2011, concomitant to a period of significant economic expansion. In189

contrast, the aggregate rate of termination is largely acyclical, with a correlation of -0.26 with the growth190

rate of output, which is not significant at the 10% level.4191

We examine the separate contributions of aggregate adoption and termination rates to changes in the192

aggregate number of suppliers using the following variance decomposition:193

Cov
(
∆vt/vt−1, sN,t

)
V ar

(
∆vt/vt−1

) +
Cov

(
∆vt/vt−1,−sT,t

)
V ar

(
∆vt/vt−1

) = 1. (1)194

The derivation of equation (1) is described in Appendix A. The decomposition establishes that the195

contribution of aggregate adoption rate to changes in the aggregate number of suppliers (i.e., the first term196

in equation 1) equals 83%, and the contribution of the aggregate termination rate equals 17%. Together197

with the results shown in Figure 1, our analysis consistently reveals that the aggregate adoption rate is the198

main driver of fluctuations in the aggregate number of suppliers, but the aggregate termination rate plays a199

subsidiary role.200

4Figure A.9 in Appendix A shows that the cyclical patterns of aggregate rates of adoption and termination are very similar
under alternative methods of aggregation, particularly with constant weights over time.
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In sum, our results show that the processes of adoption and termination of suppliers are notably different201

from the creation and destruction of jobs in the labor market, as discussed in the seminal study of Caballero202

and Hammour (1994). Although the labor market features the cleansing effect of recessions that leads to a203

countercyclical job destruction that cleanses the labor market from low-productivity jobs in recessions, the204

destruction margin remains inactive in producer-supplier relationships.205

Fact 2: Heterogeneous cyclicality in the adoption and termination of suppliers among producers206

In Fact 2, we link procyclicality of aggregate adoption and acyclicality of aggregate termination (estab-207

lished in Fact 1) to differences in the cyclicalities in the adoption and termination rates across producers208

with different numbers of suppliers. Additionally, we compare these patterns to the labor market cyclicality209

of job creation and destruction across establishments with different numbers of employees.210

Figure 2 shows in panels (a) and (b) the scatter plots of the logarithm of the number of suppliers (x-axis)211

against the cyclicality of the rates of adoption and termination (y-axis) for the producers in our sample. To212

reduce noise at the producer level, we categorized all producers into 10 groups according to their average213

numbers of suppliers over the years. Each red circle on the graph represents one of these groups. For each214

group, we computed the annual group-wise adoption and termination rates, which were used to calculate215

the cyclicality of these rates on the y-axis.216

Panel (a) in Figure 2 shows that the adoption rate is procyclical across all producers, consistent with the217

procyclical aggregate rate of adoption shown in Figure 1. Moreover, the adoption rate is more procyclical for218

producers with fewer suppliers compared to those with more suppliers, as evinced by the downward-sloping219

fitted line (blue). Similarly, panel (b) in the figure shows that the termination rate is also more procyclical for220

producers with fewer suppliers than for those with more suppliers, as manifested by the downward-sloping221

fitted line (blue). However, the termination rate is procyclical only for producers with fewer suppliers that222

are likely to terminate existing suppliers during economic expansions but retain them during downturns.223

In contrast, the termination rate is countercyclical for producers with more suppliers that retain existing224

suppliers during economic expansions but terminate them during economic downturns. Interestingly, panel225

(b) also shows that the shares of producers with procyclical and countercyclical termination rates are roughly226

equal, resulting in an overall acyclical rate of termination. This result is consistent with the acyclical rate of227

termination at the aggregate level as documented in Figure 1 of Fact 1.228

For comparison, Figure 3 shows in panels (a) and (b) the scatter plots of the employment of establish-229

ments (x-axis) against the cyclicality of the job creation and destruction rates in the labor market (y-axis)230

for establishments with different numbers of employees.5 Panel (a) in Figure 3 shows that the cyclicality of231

job creation closely mirrors the cyclicality of supplier adoption in panel (a) of Figure 2: establishments uni-232

5The U.S. Bureau of Labor Statistics publishes the annual rates of job creation and destruction for ten groups of establish-
ments categorized by employee count: “1 to 4,” “5 to 9,” “10 to 19,” “20 to 99,” “100 to 499,” “500 to 999,” “1000 to 2499,”
“2500 to 4999,” “5000 to 9999,” and “10000+.”
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formly entail procyclical job creation (with small establishments displaying more pronounced procyclicality233

than big ones).234

In contrast, panel (b) in Figure 3 shows that the cyclicality of job destruction differs significantly from235

the cyclicality of supplier termination in panel (b) of Figure 2. In particular, all establishments display236

countercyclical job destruction, with smaller ones showing more pronounced countercyclicality than larger237

ones, as indicated by the upward-sloping fitted line (blue). This finding stands in stark contrast to the more238

procyclical termination rates observed for smaller producers in panel (b) of Figure 2.239

Fact 3: Returns from more and from new relationships240

Motivated by the comovements between adoption and termination rates and the aggregate output doc-241

umented in Fact 2, we use instrumental variable regressions to study the link between the real sales of242

producers and the total number of suppliers, the adoption of new suppliers, and the termination of existing243

suppliers. Our analysis aims to quantify the separate returns from more and new relationships. Specifically,244

we estimate the following panel regressions:245

d ln(salei,t) = β0 + β1d ln(vi,t) + β2xi,t + β3 ln(vi,t−1) + β4 ln(salei,t−1) + αi + γt + ϵi,t, (2)246

where xi,t ∈ {si,N,t, si,T,t, si,CH,t},247

where the dependent variable is the growth rate of the producer’s real sales (d ln(salei,t)). On the right-hand248

side of regression (2), d ln(vi,t) is the growth rate of the total number of suppliers. xi,t includes producer249

i’s adoption rate (si,N,t), termination rate (si,T,t), and the churning rate that is defined as the minimum of250

the adoption and termination rates (i.e., si,CH,t = min{si,N,t, si,T,t}). The terms αi and γt are the producer251

and year fixed-effects, respectively. We control for the total number of suppliers and sales of producer i in252

the previous year, as they may influence the sales in the current year. A positive β1 indicates the returns253

from more relationships, while a positive β2 reflects the returns from new relationships. This is because the254

adoption of new suppliers, the termination of existing suppliers, and the churning of suppliers all contribute255

to a newer portfolio of suppliers for the producer.256

A potential endogeneity issue arises because both sales and the number of suppliers (as well as the257

adoption, termination, and churning rates) are influenced by changes in producers’ productivity and other258

business conditions that are missing in our regression, thus making the OLS estimates potentially biased.259

To address this issue, we construct Bartik-type instrumental variables. These instrumental variables aim260

to capture exogenous changes in each producer’s vi,t and xi,t by leveraging variations in the number of261

suppliers at the sectoral level. Specifically, we define:262

ŝi,N,t =
∑
j

ωi,t0(i)(j) · sN,t(j) and ŝi,T,t =
∑
j

ωi,t0(i)(j) · sT,t(j), (3)263

where ωi,t0(i)(j) is the share of producer i’s suppliers in sector j at the initial period t0(i) of producer264
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i’s appearance in the sample. sN,t(j) and sT,t(j) are the sectoral rates of adoption and termination for265

sector j.6 The key idea of the instrumental variable is that neither sN,t(j) (vs. sT,t(j)) nor ωi,t0(i)(j) is266

endogenously determined by changes in producer i’s productivity and other business conditions between t0267

and t. Intuitively, ωi,t0(i)(j)sN,t(j) and ωi,t0(i)(j)sT,t(j) serve as natural predictions of producer i’s rates of268

adoption and termination of suppliers from sector j. Thus, ŝi,N,t and ŝi,T,t predict producer i’s adoption and269

termination rates, and consequently predict churning and growth rates of the number of suppliers. Table B.4270

in Appendix B shows the first-stage results, verifying that ŝi,N,t and ŝi,T,t predict the foregoing variables.271

Table 1 presents the estimation results of regression (2), where the growth rate of the number of sup-272

pliers, as well as the rates of churning, adoption, and termination, are instrumented using Bartik-type IVs,273

as specified in equation (3).7 Column (1) shows that an increase in the number of suppliers raises the sales274

of producers, as evidenced by the positive coefficients for the growth rate of the number of suppliers. This275

finding indicates a positive return from more relationships, corroborating the central tenet of the “returns276

from more varieties” in models of varieties (Hamano and Zanetti, 2017). Using the constructed instrumental277

variables, our results establish causal effects of the number of suppliers on sales, contributing to the existing278

literature focused on the correlation between the number of suppliers on sales (e.g., Lim 2018 for the U.S.,279

Bernard et al. 2019 for Japan, and Arkolakis et al. 2023 for Chile). A notable exception is Baqaee et al.280

(2023); they study the causal effect of the number of suppliers on producers’ marginal costs in Belgium,281

using an alternative instrumental variable.8282

Column (2) shows that supplier churning also enhances sales growth. Specifically, a 1% increase in283

churning rate is associated with a 1.3% rise in the growth rate of sales, which is economically significant and284

indicates a positive return from new relationships. This return from new relationships echoes the “creative285

destruction,” as documented in Baqaee et al. (2023). Columns (3)-(5) further investigate the effects of286

adopting new suppliers and terminating existing ones on sales growth. The positive coefficients for the rates287

of adoption and termination indicate that both actions raise the producer’s sales, conditional on the growth288

rate of the number of suppliers. Therefore, both adoption and termination contribute to the positive return289

from new relationships documented in column (2).9290

6Specifically, ωi,t0(i)(j) ≡ vi,t0(i)(j)/vi,t0(i), where vi,t0(i)(j) is the number of producer i’s suppliers in sector j, while
vi,t0(i) is the total number of producer i’s suppliers. We classify sectors according to one-digit NAICS industries such that
no firm is sufficiently large in order to shift the aggregate sectoral dynamics of linkages. sN,t(j) ≡ vN,t(j)/vt−1(j) and
sT,t(j) ≡ vT,t(j)/vt−1(j). vt−1(j), vN,t(j), and vT,t(j) are the total number, the adoption, and the termination of sector j
suppliers, respectively. The sectoral rates of adoption and termination of suppliers are regressed on the year and sector fixed
effects, and we use the residuals as the shocks in the sectoral rates of adoption and termination for the construction of the Bartik-
type instrumental variables. We also define sCH,t(j) ≡ min{sN,t(j), sT,t(j)} and construct ŝi,CH,t =

∑
j ωi,t0(i)(j) · sCH,t(j)

as the Bartik-type instrumental variable for the rate of churning.
7Tables B.5 in Appendix B presents the OLS regression results for regressions in Table 1. The coefficients in the OLS

regressions have similar signs as those in the 2SLS IV regressions. However, they are less significant both economically and
statistically due to the strong reverse causality between the sales and the total number of suppliers, adoption, and termination.

8Baqaee et al. (2023) use the restricted subsets of birth and death of upstream suppliers of the producer to instrument the
addition and separation of suppliers by the producer.

9Notably, we include only one of si,N,t and si,T,t in columns (3)-(4) because including two of them is colinear with d ln(vi,t)
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4. A model of adoption and termination of suppliers291

We now develop a model with optimal choices for the costly adoption, termination, and management of292

suppliers, which allows us to replicate Facts 1-3 documented in the previous section.293

4.1. Baseline environment and timing294

The economy is static, and it is populated by a continuum of final-goods producers i ∈ [0, 1]. Each295

producer i has an idiosyncratic productivity ai drawn from a log-normal distribution with zero mean and296

standard deviation σa; this is the only source of heterogeneity in the model.10 We assume that there is no297

shock to idiosyncratic productivity (i.e., ai is fixed for each producer). The final good market is perfectly298

competitive, with the price normalized to one. Each producer manufactures goods by assembling interme-299

diate inputs that existing (E) and new (N ) suppliers provide. Each vintage k ∈ {E,N} is populated by a300

continuum of suppliers. Each supplier offers intermediate inputs to different producers.301

At the beginning of the period, each producer i starts with the steady-state measure of total suppliers302

V̄ ∗
i .11 Each producer optimally sets the mix of existing and new suppliers to maximize profits. The adjust-303

ment in the measure of suppliers involves costs for termination (c−) and adoption (c+) of suppliers. Prices304

of intermediate inputs are determined by Nash bargaining between the producer and suppliers. Producer i305

manufactures the final good (Yi) using the supplied inputs from new and existing suppliers at the established306

price. Summarized in Figure H.11 in Appendix H is the model’s timeline.307

4.2. Suppliers308

Each supplier provides one unit of a distinct input to the producer.12 Suppliers of each vintage k are309

indexed by their match-specific efficiency zk. Within the new vintage, match-specific efficiency is uniformly310

distributed over the interval [0, 1] with unitary density. Within the existing vintage, match-specific efficiency311

is uniformly distributed over the interval [1− V̄ ∗
i , 1] with unitary density.13

312

as d ln(vi,t) = si,N,t − si,T,t. Also note that the coefficient of the growth rate of the total number of suppliers is negative and
less significant in column (3) than in the other columns, as the changes in the total number of suppliers are mainly driven by
the adoption of new suppliers. Controlling for the rate of adoption, the rate of termination—which is negatively associated with
the total number of suppliers—increases the producer’s sales by replacing existing suppliers with new ones, thus making the
coefficient of the total number of suppliers negative.

10In our stylized model, the heterogeneity in the number of suppliers across different producers is uniquely determined by the
producer’s idiosyncratic productivity. In the data, however, the number of suppliers of individual producers can be influenced by
several factors other than productivity (e.g., the management cost parameter (ξi), capital stock, and employment).

11For each producer i, its measure of active suppliers in the production stage is a function V ∗
i (V̄

∗
i , A) of the measure of

existing suppliers with which the producer starts (V̄ ∗
i ) and the aggregate TFP (A). The steady-state measure of suppliers, V̄ ∗

i , is
the unique fixed point for the above mapping from V̄ ∗

i to V ∗
i when the aggregate TFP is at the steady-state level A = Ā, i.e.,

V ∗
i (V̄

∗
i , Ā) = V̄ ∗

i .
12Each supplier providing exactly one unit of input generates imperfect substitution between inputs from different suppliers.
13We assume that new and existing suppliers have the same maximum match-specific efficiency, which is normalized to one.

Allowing different maximum efficiency for new and existing suppliers does not affect the results.
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4.3. Producers and the bargained input price313

Each producer i manages a continuum of production lines. Each line of production produces output314

using the input from one supplier zk according to the following production technology:315

yi,k (zk) = Aaizk, ∀ k ∈ {E,N} , ∀ zk,316

where A and ai are aggregate TFP and idiosyncratic productivity, respectively. Aggregate TFP is random317

and follows a log-normal distribution with zero mean and standard deviation σA.318

We assume that each supplier manufactures intermediate goods without cost. The total surplus TSi,k(zk)319

from the producer-supplier relationship is the output produced by the corresponding production line, yi,k (zk),320

which is split between the producer and the supplier by Nash bargaining over the price charged by the sup-321

plier (pi,k(zk)), according to the surplus-sharing condition:322

pi,k(zk) = (1− α)TSi,k(zk), ∀ i ∈ [0, 1], ∀ k ∈ {E,N} , ∀ zk, (4)323

where 1− α is the supplier’s bargaining share.324

4.4. Measures of adoption and termination325

We denote by zi,k the marginal supplier of vintage k used by producer i. Specifically, producer i adopts326

the new suppliers whose idiosyncratic productivity levels are sufficiently high to generate profits and there-327

fore adopts new suppliers with zN ∈ [zi,N , 1]. Similarly, producer i terminates existing suppliers whose328

idiosyncratic productivity levels are insufficient to generate profits and therefore terminates existing sup-329

pliers with zE ∈ [1 − V̄ ∗
i , zi,E). Measures of adopted new and terminated existing suppliers are equal to330

1− zi,N and zi,E − 1+ V̄ ∗
i , respectively. To retain consistent notation with Section 2, we denote by si,N and331

si,T the rate of adoption (of new suppliers) and the rate of termination (of existing suppliers), respectively,332

with si,N = (1− zi,N) /V̄
∗
i and si,T =

(
zi,E − 1 + V̄ ∗

i

)
/V̄ ∗

i .333

4.5. Costs of management, adoption, and termination of suppliers334

Costs of managing suppliers. Producers incur costs in managing suppliers, consistent with the span of335

control problem (Lucas Jr, 1978) and the “diminishing returns to management” (Coase, 1991). Following336

Gopinath and Neiman (2014), we assume a quadratic management cost that is a function of the total measure337

of production lines: G (zi,N , zi,E) = ξ · V 2
i /2, where Vi = 2 − zi,N − zi,E is the total measure of active338

suppliers for each producer i, or the total measure of suppliers whose idiosyncratic productivity levels are339

above the threshold for selection in each vintage.14
340

14In Appendix C, we use the indirect inference method in Gourieroux et al. (1993) and follow the identification strategy of
Arkolakis et al. (2023) to estimate the curvature of the management cost function to be 2.2 approximately, which is close to our
calibration.
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Costs of adjusting suppliers. In addition to the costs of managing suppliers, the adoption and termination341

of suppliers are also costly, and they involve unitary costs of adoption c+ and of termination c−. We defer342

the discussion on the functional form of management and adjustment costs to Section 5.2.1.343

Consistent with the seminal idea in Coase (1991) and subsequent studies, we assume that both manage-344

ment and adjustment costs are not contractable and, therefore, are paid entirely by producers—in conse-345

quence to asset specificity and appropriability problems, as studied in Caballero and Hammour (1996).15
346

Inefficiencies associated with the costs. We assume that the whole costs of managing and adjusting suppli-347

ers are labor income of hired households that contributes to consumption and welfare rather to social costs.348

In our context of producer-supplier relationships, two sources of inefficiency naturally emerge from the pro-349

ducers’ costs of managing and adjusting suppliers: first, since the producers earn a fraction of α of output350

while bearing the entire costs of managing and adjusting suppliers, the private benefits of managing and ad-351

justing suppliers perceived by the producers are lower than the social benefits. Second, since all producers’352

private costs are the labor income of hired households that contributes to consumption and welfare rather353

than social costs, the private costs of managing and adjusting suppliers are higher than the social costs. Both354

sources of inefficiency lead producers to under-adjust the total measure of suppliers and the adoption of new355

suppliers, requiring the adoption of subsidies on the producers’ management and adjustment costs to retain356

efficiency. The policy of subsidies on inputs from new suppliers that we will study in Section 7 partially357

offsets the inefficiency associated with the adjustment costs.358

4.6. Optimal choices of adoption and termination359

We now describe the optimization of each producer i that chooses the adoption and termination of sup-360

pliers to maximize profits. For a given set of marginal suppliers zi,E and zi,N , each producer i manufactures361

final output with the linear production function:16
362

Yi =

∫ 1

zi,E

yi,E(zE)dzE +

∫ 1

zi,N

yi,N(zN)dzN , (5)363

15Specifically, if a complete contract cannot be written and enforced on sharing the management and adjustment costs that are
specific assets for the producer, the quasi-rents from these specific assets are potentially appropriable, so the producer will incur
the entire costs.

16We assume separable production lines from different suppliers—particularly new versus existing suppliers—to retain the
tractability of the model and obtain transparent analytical results. If we aggregate production lines using a CES aggregator,
the degree of complementarity between suppliers rises—which increases the returns from new relationships and generates a
stronger switching effect (as described in Section 5.2)—resulting in a greater heterogeneity in the cross-sectional cyclicality of
termination.
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where the marginal suppliers zi,E and zi,N are optimally chosen to maximize the profit function:364

Πi = max
{zi,E ,zi,N}

∫ 1

zi,E

yi,E(zE)dzE +

∫ 1

zi,N

yi,N(zN)dzN︸ ︷︷ ︸
Final output

−

(∫ 1

zi,E

pi,E(zE)dzE +

∫ 1

zi,N

pi,N(zN)dzN

)
︸ ︷︷ ︸

Input costs

365

−
[
c−
(
zi,E − 1 + V̄ ∗

i

)
+ c+ (1− zi,N)

]︸ ︷︷ ︸
Adjustment costs

− ξ · (2− zi,N − zi,E)
2 /2︸ ︷︷ ︸

Management cost

, (6)366

where the final output from all production lines is diminished by input costs paid to suppliers, adjustment367

costs, and management costs. The adjustment costs comprise termination costs (c−
(
zi,E − 1 + V̄ ∗

i

)
) and368

adoption costs (c+ (1− zi,N)). The quadratic management cost encapsulates administrative costs for the369

management of suppliers.370

Combining the bargained input price in equation (4) with equation (6) yields:371

Πi = max
{zi,E ,zi,N}

α

{∫ 1

zi,E

AaizEdzE +

∫ 1

zi,N

AaizNdzN

}
−
[
c−
(
zi,E − 1 + V̄ ∗

i

)
+ c+ (1− zi,N)

]
372

− ξ · (2− zi,N − zi,E)
2 /2.373

The solution to the above maximization problem yields the optimal conditions for the marginal suppliers374

z∗i,E and z∗i,N :375

z∗i,E +
c−

αAai
=

ξV ∗
i

αAai
, (7)376

z∗i,N − c+

αAai
=

ξV ∗
i

αAai
, (8)377

where V ∗
i = 2− z∗i,N − z∗i,E is the total measure of suppliers for producer i in equilibrium.378

Equations (7) and (8) outline the distinct roles of the management and adjustment costs for the adoption379

and termination of suppliers. The management cost increases the marginal costs of using both new and380

existing suppliers and, therefore, deters expansion in the total measure of suppliers. The cost of adoption381

(c+) decreases the marginal benefit of using new suppliers, and the cost of termination (c−) increases the382

marginal benefit of retaining existing suppliers. Combining equations (7) and (8) yields:383

z∗i,N − z∗i,E =
c+ + c−

αAai
> 0. (9)384

Equation (9) shows that the adjustment costs generate the differential in marginal productivity between385

new and existing suppliers, such that new suppliers have higher marginal productivity than existing ones386

in equilibrium. As we discuss in the next section, the productivity differential is critical to the incentive387

for producers to adopt new suppliers (Lemma 2), and for the different cyclicality in the rate of termination388
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across producers with different idiosyncratic productivity (Proposition 1).389

5. Analytical results390

In this section, we show that our model based on optimizing producers, distinct management and ad-391

justment costs, and idiosyncratic productivity of producers generates the empirical results in Facts 1-3. We392

begin by presenting the returns from more and new relationships that directly result from the model and393

generate Fact 3 (Section 5.1). We then analyze the cross-sectional cyclicality of termination across produc-394

ers with different productivity to study Fact 2 (Section 5.2.1). We conclude by extending the analysis to the395

aggregate economy to study Fact 1 (Section 5.2.2).396

5.1. Returns from more relationships and new relationships (Fact 3)397

Our model directly generates returns from more relationships and from new relationships, i.e., the sales398

of producers increase with the number of suppliers, and the increase is magnified by relationships with399

new suppliers. These returns—which replicate Fact 3—are the fundamental forces behind the cyclical400

movements in the total measure, the adoption, and the termination of suppliers and, therefore, are critical401

for replicating Facts 1 and 2. We start by deriving analytical expressions for the returns from more and new402

relationships in our model. Combining equations (7) and (8), the next lemma holds.403

Lemma 1. Returns from more relationships (Fact 3). Conditional on the rate of adoption s∗i,N , the final404

output increases in the total measure of suppliers, V ∗
i .405

∂ lnY ∗
i

∂ lnV ∗
i

=
AaiV

∗
i

Y ∗
i

z∗i,E > 0.406

The proof of Lemma 1 can be found in Appendix H. This lemma shows that the elasticity of output to407

the total measure of suppliers is always positive, which is consistent with Fact 3 and the returns from more408

relationships documented in Baqaee et al. (2023).409

The model also generates the returns from new relationships, as formalized in the next lemma.410

Lemma 2. Returns from new relationships (Fact 3). When c+ > 0 or c− > 0, the semi-elasticity of final411

output (Y ∗
i ) to the adoption rate (s∗i,N ) is positive and equal to:412

∂lnY ∗
i

∂s∗i,N
=

c+ + c−

αY ∗
i /V̄

∗
i

> 0.413

The proof of Lemma 2 can be found in Appendix H. This lemma shows that the semi-elasticity of414

output to the rate of adoption is positive when the adjustment costs are positive, establishing the positive415

return from new relationships that is consistent with our empirical finding in Fact 3. Lemma 2 also reveals416

that this return from new relationships is proportional to the adjustment costs, which is a driving force417

behind the cyclical adjustments in the adoption and termination that we document in Facts 1 and 2.418
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5.2. Responses of adoption, termination, and output to changes in aggregate TFP (Facts 1-2)419

In this section, we consider the responses of adoption, termination, and output to changes in aggregate420

TFP to replicate Facts 1 and 2. We first introduce the scaling and switching effects that determine the421

response of the single producer to changes in aggregate TFP—which jointly replicate the cross-sectional422

cyclicality of termination across different producers in Fact 2, particularly when the convexity of manage-423

ment costs is sufficiently high relative to that of adjustment costs (Section 5.2.1). Then, we extend the424

analysis to the aggregate economy to study Fact 1 (Section 5.2.2).425

To study the responses of variables to changes in aggregate TFP, we denote the steady state of a general426

variable x by x̄, and the deviation of x from the steady state by dx ≡ x− x̄.427

5.2.1. Effect of aggregate TFP on the producer’s decisions428

The changes in aggregate TFP exert two distinct scaling and switching effects on the producers’ rates429

of adoption and termination of suppliers. The scaling effect embeds a positive (vs. negative) response of430

producers’ adoption of new suppliers (vs. termination of existing suppliers) to a higher aggregate TFP (i.e.,431

dlnV ∗
i /dlnA > 0) (Lemma 3 in Appendix D), since producers increase the total measure of suppliers to432

benefit from the increased aggregate productivity (and profits) relative to the unchanged management costs.433

The switching effect embeds positive responses of both producers’ adoption and termination to a higher434

aggregate TFP (i.e., ∂s∗i,N/∂lnA = ∂s∗i,T/∂lnA > 0) (Lemma 4 in Appendix D), since producers replace435

more existing suppliers with new ones to benefit from the increased aggregate productivity (and profits)436

relative to the unchanged adjustment costs.437

Using the scaling and switching effects discussed above, we examine responses of the producer’s rates438

of adoption and termination to changes in aggregate TFP.439

Response of the producer’s adoption rate to changes in aggregate TFP. The response of the adoption rate440

for the producer i (s∗i,N ) to changes in aggregate TFP (A) is a linear combination of the scaling and switching441

effects:442

ds∗i,N
d lnA

=
1

2

d lnV ∗
i

d lnA︸ ︷︷ ︸
Scaling effect on adoption> 0

+
∂s∗i,N
∂ lnA︸ ︷︷ ︸

Switching effect > 0

. (10)443

Because the switching and scaling effects are both positive on the adoption rate, the response of the adoption444

rate to a positive aggregate TFP shock is always positive for the producer.17
445

Response of the producer’s termination rate to changes in aggregate TFP. The response of the termination446

rate for producer i (s∗i,T ) to changes in aggregate TFP (A) is also a linear combination of the scaling and447

17To derive equations (10) and (11), we combine equations (7) and (8), and the definitions of s∗i,N and s∗i,T , which yields the

producer’s rates of adoption and termination: s∗i,N =
V ∗
i

2V̄ ∗
i
− c++c−

2αAaiV̄ ∗
i

and s∗i,T = 1− V ∗
i

2V̄ ∗
i
− c++c−

2αAaiV̄ ∗
i

.
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switching effects:448

ds∗i,T
d lnA

= −1

2

d lnV ∗
i

d lnA︸ ︷︷ ︸
Scaling effect on termination< 0

+
∂s∗i,T
∂ lnA︸ ︷︷ ︸

Switching effect > 0

. (11)449

The scaling effect implies a negative response of the termination rate to a positive aggregate TFP shock.450

This is because the producer achieves an increase in the scale of production by reducing the rate of ter-451

mination of existing suppliers. In contrast, the switching effect implies a positive response of the rate of452

termination—consistent with the positive impact of the switching effect on the rate of termination to enact453

the replacement of existing suppliers with new ones. Equation (11) shows that the sign of the response of454

the termination rate to changes in aggregate TFP is determined by the relative strength of the switching and455

scaling effects.456

Cross-sectional responses of the termination rate across different producers (Fact 2). To examine the coun-457

tervailing forces of the scaling and switching effects in determining the response of the termination rate of458

the producer to changes in aggregate TFP, as well as how the forces vary across different producers, we459

show in Figure 5 the impacts of the scaling (i.e., solid red curve) and switching (i.e., dashed blue curve)460

effects on the responses of termination against the producer’s idiosyncratic productivity, together with the461

combined total impact (i.e., solid black curve with circles) implied by the calibrated model.462

Consistent with equation (11), the scaling (vs. switching) effect exerts a negative (vs. positive) impact on463

the response of termination to changes in aggregate TFP. Both curves converge towards zero, showing that464

the magnitudes of both effects decline with the producer’s idiosyncratic productivity, as shown in Lemmas465

3 and 4 of Appendix D. Intuitively, facing a negative aggregate TFP shock, smaller producers—those466

that have smaller idiosyncratic productivity ai—experience larger increases in the relevance of the fixed467

management and adjustment costs in relation to their decreased profits. Therefore, they are more inclined468

to refrain from expanding and adjusting suppliers, and hence display larger scaling and switching effects.469

Moreover, the scaling effect is less sensitive to changes in idiosyncratic productivity than the switch-470

ing effect, as evinced by the steeper curve associated with the switching effect.18 As a result, the total471

impact, shown by the solid-black curve with circle markers, follows the switching effect to decline with472

idiosyncratic productivity. Termination becomes acyclical when the total impact reaches zero at the (log)473

idiosyncratic productivity of -0.01. When log idiosyncratic productivity is lower than -0.01, the switching474

effect dominates, implying that the rate of termination increases with aggregate TFP (i.e., ds∗i,T/dlnA > 0).475

In contrast, when log idiosyncratic productivity is higher than -0.01, the scaling effect dominates, implying476

that the rate of termination decreases with aggregate TFP (i.e., ds∗i,T/dlnA < 0).477

18The low sensitivity of the scaling effect to changes in idiosyncratic productivity relies on our assumption of quadratic
management cost and linear adjustment cost functions, which we discuss below in the next paragraph of this subsection on the
convexity of cost functions.
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Overall, our analysis shows that the different responses of the termination rate to aggregate TFP shocks478

across producers are driven by the heterogeneous idiosyncratic productivity ai, which is inversely related to479

the economic relevance of the adjustment costs faced by each producer, as stated in the next proposition.480

Proposition 1. Heterogeneous cyclicality in termination (Fact 2). When both ξ and c+ + c− are sufficiently481

large, the rate of termination is countercyclical for producers with high idiosyncratic productivity while482

procyclical for producers with low idiosyncratic productivity.483

The proof of Proposition 1 can be found in Appendix H. Note that the steady-state measure of suppliers484

(V̄ ∗
i ) increases with the idiosyncratic productivity. This is because the management cost is less relevant485

for the producers with higher idiosyncratic productivity, and these producers maintain a large scale of pro-486

duction with a large measure of suppliers. Therefore, Proposition 1 suggests that the rate of termination487

is countercyclical for producers with many suppliers, but procyclical for producers with a smaller measure488

of suppliers. This result is consistent with Fact 2 (Figure 2), which shows that producers with a large (vs.489

small) measure of suppliers display a countercyclical (vs. procyclical) rate of termination.490

Convexity of the cost functions. The degrees of convexity of the management and adjustment cost functions491

are important for replicating the heterogeneous responses in the rate of termination across producers with492

a different number of suppliers, as in our Fact 2. More specifically, we show that the degree of convexity493

of the management cost function must be sufficiently high relative to that of the adjustment cost function494

for the model to be consistent with Fact 2 in Figure 2, which displays a negative correlation between the495

procyclicality of termination and the size of the producer.496

Our benchmark model assumes quadratic management costs and linear adjustment costs. This differs497

from the conventional formulation in the literature, which typically assumes linear management costs for498

suppliers (e.g., Lim, 2018; Huneeus, 2018) and strictly convex adjustment costs for labor inputs (e.g., Ca-499

ballero and Hammour, 1994; Mumtaz and Zanetti, 2015; Zanetti, 2008). We show in Panel (b) of Figure500

I.12 in Appendix I that linear management costs and convex adjustment costs—the standard assumption in501

the labor literature—generate a positive correlation between the procyclicality of termination and producer502

size, which is inconsistent with our Fact 2 but consistent with that of job destruction in the labor market503

(Panel b in Figure 3).504

As equation (11) shows, the management cost—similar to the fixed overhead cost in the network505

literature—generates the negative scaling effect and makes the rate of termination countercyclical, and the506

adjustment cost—similar to the adjustment cost in the labor literature—generates the switching effect and507

makes the rate of termination procyclical. Our analysis in Appendix I shows that the scaling effect is invari-508

ant to producer size, and the switching effect significantly decreases with producer size when the convexity509

of the management cost is sufficiently high relative to that of the adjustment cost (as in our baseline model).510

Thus, the (pro)cyclicality of termination—which equals the sum of the switching effect and the negative511

scaling effect, as shown in equation (11)—decreases with producer size, as evinced in Figure 2 of Fact 2.512
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We illustrate this result quantitatively in Figure I.14 of Appendix I, where we extend our model to allow513

for flexible combinations of the degree of convexity in the management and adjustment costs (i.e., flexible514

combinations that nest linear and quadratic specifications for those costs).515

5.2.2. Effect of aggregate TFP on the aggregate rates of adoption and termination516

We now investigate the effect of aggregate TFP on the aggregate rates of adoption and termination.517

Consistent with the empirical analysis, we define the aggregate measure of suppliers (V ∗) and rates of518

adoption (s∗N ) and termination (s∗T ) as the weighted average of their counterparts at the producer level:519

V ∗ =
∑
i

V ∗
i

Ȳ ∗
i

Ȳ ∗ , s
∗
N =

∑
i

s∗i,N
Ȳ ∗
i

Ȳ ∗ , and s∗T =
∑
i

s∗i,T
Ȳ ∗
i

Ȳ ∗ ,520

respectively, where Y ∗ =
∑

i′ Y
∗
i′ is the aggregate output, and the steady-state share of output for the521

producer i, Ȳ ∗
i /Ȳ

∗, is used as the weight.522

Effect of aggregate TFP on the aggregate rate of adoption. Because equation (10) implies a positive rela-523

tionship between the rate of adoption of each producer and the aggregate TFP, the aggregate rate of adoption524

and the aggregate TFP are positively correlated, as summarized in the proposition below.525

Proposition 2. Procyclical aggregate rate of adoption (Fact 1). The aggregate rate of adoption of suppliers,526

s∗N , increases in A.527

The proof of Proposition 2 can be found in Appendix H. This proposition shows that our model repli-528

cates the procyclical aggregate rate of adoption in Fact 1.529

Effect of aggregate TFP on the aggregate rate of termination. The effect of aggregate TFP on the aggre-530

gate rate of termination is less definite and depends on several parameters. First, as shown in Proposition531

1, the effect of aggregate TFP on the producer’s rate of termination is heterogeneous across producers532

and decreases with the producer’s idiosyncratic productivity. Thus, the cyclicality of the aggregate rate of533

termination depends on the distribution of producers’ idiosyncratic productivity.534

Second, as shown in equation (11), the effect of aggregate TFP on the rate of termination of each535

individual producer is determined by the sizes of the scaling and the switching effects, which depend on536

the magnitudes of the management and adjustment costs. Hence, the management and adjustment costs are537

both crucial determinants of the cyclicality of the aggregate rate of termination.538

We will show in our quantitative analysis that the aggregate rate of termination is acyclical—consistent539

with Fact 1 (Figure 1)—for a realistic calibration of the distribution of idiosyncratic productivity of different540

producers and with the management and adjustment costs calibrated to the U.S. data. Overall, our analysis541

reveals that our parsimonious model with optimizing producers and distinct costs for the management and542

adjustment of suppliers replicates the novel empirical findings on the adoption and termination of suppliers.543
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6. Quantitative analysis544

In this section, we calibrate the model on U.S. data to explore the critical role of management and545

adjustment costs for the heterogeneity in the cyclicality of the rate of termination across producers with546

different measures of suppliers.547

6.1. Calibration548

We calibrate the standard deviation of the log idiosyncratic productivity of each producer, σa, equal549

to 0.2, which is the middle value between the estimates of 0.15 and 0.24 in Syverson (2004) and Fostera550

et al. (2015), respectively. The standard deviation of the log aggregate TFP, σA, is set to 0.024 to match the551

standard deviation of the cyclical (HP-filtered) annual log real gross output in the U.S. data for the period552

2003-2019 (2.7%). We set the bargaining share of the producer (α) equal to 0.36 to match the ratio of the553

producers’ operating surplus to intermediate input costs for the U.S. economy.554

We assume symmetric costs of adoption and termination of suppliers, i.e., c+ = c−. Given the calibrated555

bargaining share and the average idiosyncratic productivity normalized to one, we jointly calibrate the556

parameters for the adjustment and management costs, c+ (and equivalently, c−) and ξ, to match two target557

moments. First, we match the ratio of the adjustment costs to the operating costs, set equal to 0.5 in558

Caballero and Hammour (1994) on the basis that the yearly adjustment costs in production amount to one-559

half of the operating costs (i.e., intermediate input costs in our model). The average observed duration560

of relationships is about 3.5 years, implying that the expected adoption and termination occur every 3.5561

years. We calibrate c+ and c− to 0.077, so that the ratio of the total adjustment cost (c+ + c−) to the total562

operating cost over the expected duration of the relationship (i.e., 3.5×yearly operating cost) is equal to563

0.14 (i.e., 0.5/3.5). Second, we calibrate ξ equal to 0.081 to match the ratio of the management costs to the564

sum of operating surplus and intermediate input costs for the producer, which is equal to approximately 9%565

(Gopinath and Neiman, 2014). Summarized in Table 2 is the calibration of the model.566

We simulate 3,000 producers (i ∈ {1, 2, · · · , 3000}) with i.i.d. idiosyncratic productivities drawn from567

the calibrated distribution. Then, we simulate 1,000 economies (j ∈ {1, 2, · · · , 1000}) for the same 3,000568

producers, and draw new i.i.d aggregate TFP shocks in each economy. We use the same set of producers for569

different economies to examine how the heterogeneity in producers affects the cyclicality of the aggregate570

rate of termination.571

6.2. Heterogeneity in the cyclicality of the rates of adoption and termination across producers572

Our empirical analysis in Section 3 shows that the termination rate is countercyclical for larger producers573

and procyclical for smaller producers, and the adoption rate is also more pro-cyclical for smaller than larger574

producers. In this subsection, we show that the model matches this important empirical regularity.575

We divide the 3,000 simulated producers into 10 equal-interval groups according to the (log) measure of576

suppliers, with each group indexed by k. To investigate the heterogeneous responses of the termination rate577
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to changes in the business condition across different groups of producers, we conduct the following panel578

regression for each k-group of producers separately using our simulated data:579

sk,p,j = ap,k + bp,k · dlog(Yj) + ϵk,j, p ∈ {N, T}, (12)580

where sk,N,j (vs. sk,T,j) is the group-wise adoption (vs. termination) rate of the group k in economy j,581

which equals the ratio of the group-wise number of adopted new (vs. terminated existing) suppliers to the582

steady-state number of suppliers in group k. dlog(Yj) is the percentage deviation of the aggregate output583

from the steady state in economy j. The coefficients bN,k and bT,k measure the responses of the rates of584

adoption and termination to aggregate output for the group k, respectively. They are the central focus of585

our analysis, as they capture the heterogenous cyclicality of the adoption and termination rates for different586

groups of producers, respectively. We perform a similar analysis using the observed data by estimating the587

following regression:19
588

sk,p,t = ap,k + bp,k · dlog(Yt) + ϵk,t, p ∈ {N, T}. (13)589

Panels (a) and (c) in Figure 4 show the regression results for equation (13) estimated with the observed590

data. Blue dots show the point estimates of the different bN,k (vs. bT,k) coefficients (y-axis) against the591

log of the average number of suppliers Vk ≡
∑

i∈k
∑

t Vi,t/Nk,obs (x-axis), where Nk,obs is the total number592

of observations in group k. The red line is the fitted line, estimated using OLS. Panels (b) and (d) show593

the results for equation (12) estimated with the simulated data from our baseline model. In all panels, the594

correlations between the cyclicality of the adoption and termination rates (measured by bN,k and bT,k, re-595

spectively) and the size of producers (measured by Vk) are negative. This shows that the model generates596

empirically congruous heterogeneity in the cyclicality of the adoption and termination rates across the pro-597

ducers with different measures of suppliers. This result is also consistent with the theoretical findings in598

Proposition 1.20
599

Another important similarity between the observed data and the simulated model that emerges from600

Figure 4 is the nearly zero cyclicality of the termination rate on average. To test formally that the corre-601

lation between termination and output is close to zero on average, we estimate the following time-series602

regressions with the simulated and the observed data separately:603

sT,j =a+ b · log(Yj) + ϵj, (14)604

sT,t =a+ b · log(Yt) + ϵt, (15)605

19Different from the estimation from the simulated data, the observed data have multiple periods t rather than the multiple
economies j in the simulated data, and dlog(Yt) is the growth rate of the real gross output.

20The magnitudes of the coefficients bN,k and bT,k are larger in the data than in the simulated data because the log number of
suppliers has a larger range in the observed data than in the simulated data (about 2.5 vs. 0.25), which leads to larger within-group
standard deviations of the adoption and termination rates in the data than in the simulated data.
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where sT,j and sT,t are the average termination rates in economy j (for the simulated data) and period t606

(for the observed data), and Yj and Yt are the aggregate output. The estimated values for the coefficient b607

are 0.004 and 0.06 for the simulated and the observed data, respectively. Both estimates are close to zero,608

evincing that the model is consistent with the observed acyclical aggregate rate of termination in Figure 1.609

Appendix E illustrates the crucial role of the existence of both management and adjustment costs for the610

observed patterns of adoption and termination rates at both the aggregate and the cross-sectional levels.611

7. Policy analysis612

In this section, we examine the effect of recent U.S. government supply chain policies on social welfare.613

To contextualize our analysis, we begin by reviewing the recent U.S. policies and legislation to support the614

resilience of the supply chain during and after the advent of the COVID-19 pandemic. Subsequently, we615

extend our baseline model outlined in Section 4 to study the welfare implications of those policies.616

7.1. Supply-chain-related policies in the aftermath of the COVID-19 pandemic617

The resilience of the supply chain has become central to U.S. government policies and legislation in the618

aftermath of the COVID-19 pandemic.21 Several policies and legislative measures were targeted at small619

and medium-sized enterprises (SMEs), largely implemented through the federal agency the Small Business620

Administration (SBA) during the pandemic. These initiatives primarily consisted of loan policies aimed at621

alleviating the financial constraints that SMEs faced.22 For example, In December 2020, the U.S. Congress622

approved the “Economic Aid to Hard-Hit Small Businesses, Nonprofits, and Venues Act” as an amendment623

to the “Small Business Act,” in which supplier costs were—for the first time—included as eligible expenses624

for the Paycheck Protection Program (PPP) loan. The Trump administration then reopened the PPP in625

January 2021 as part of the Coronavirus Aid, Relief, and Economic Security (CARES) Act.23
626

After COVID-19, the U.S. government has continued to strengthen the diversity and resilience of the627

supply chain through various policies and acts, including the establishment of the “White House Council on628

Supply Chain Resilience.” Most of these initiatives aimed to rebuild the production and innovation capabil-629

ities of the U.S. supply chain by subsidizing the adoption and production of inputs with new technologies,630

21Bai et al. (2024) and references therein provide an overview of the severity of global supply disruptions for the U.S. economy.
22Major policies and legislation managed by the SBA during COVID-19 included the “Paycheck Protection Program” (PPP)

and the “Economic Injury Disaster Loan (EIDL) Program”, established under the “Coronavirus Aid, Relief, and Economic
Security (CARES) Act” and the “American Rescue Plan Act of 2021.” In Congressional testimony on August 2, 2022, titled
“Oversight of SBA’s COVID Economic Injury Disaster Loan Program,” Patrick Kelley, the Associate Administrator for the Office
of Capital Access at the SBA, stated “The SBA’s core lending programs are supporting this dynamic cohort of new businesses
through the tailwinds and headwinds of today’s economy. Small manufacturers, which are key to the President’s goal of tackling
supply chain bottlenecks head-on by increasing domestic production, benefit uniquely from the 504 Loan Program.”

23Other loan policies to support supply chains included the “American Rescue Plan Act” of 2021 by the Biden administration,
in which the State Small Business Credit Initiative (SSBCI) provided nearly $10 billion in funds to help small businesses access
the capital through loans and investments facing “a lack of resiliency and security in supply chains.” The White House report “Two
Years of Building Stronger Supply Chains and a More Resilient Economy” summarized the efforts of the Biden administration
in building more resilient supply chains.
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such as semiconductors, electric vehicles (EVs), batteries, and pharmaceuticals. For example, as part of631

the “Inflation Reduction Act” that was enacted to combat inflation that global supply chain disruptions632

caused, the U.S. Treasury provided tax credits to support the production and adoption of new clean-energy633

technologies.634

7.2. An extended model with credit constraints and supply chain policies635

To evaluate the economic and welfare implications of the aforementioned supply-chain-related policies,636

we extend our baseline model in Section 4 with a representative household whose utility serves as a measure637

of welfare, and include credit constraints that require loan policies to improve welfare. Besides the financial638

friction, the extended model inherits from the baseline model the other source of inefficiency associated639

with management and adjustment costs due to an incomplete contract between producers and suppliers,640

thus resulting in a higher cost-to-profit ratio for private producers than for society (Section 4.5).641

The government implements two major classes of policies to support the resilience of input-output642

relations and reduce inefficiency: (1) credit injection policy that alleviates producers’ credit constraints and643

reduces inefficiency from financial frictions, and (2) subsidies for new inputs that promote the replacement644

of existing suppliers with new ones and reduce inefficiency from adjustment costs.645

Credit constraints and policies. We extend the production sector described in Section 4 to incorporate646

financial frictions in the form of credit constraints, following Jermann and Quadrini (2012) and Lian and647

Ma (2021). At the beginning of the period, producers borrow from a competitive financial intermediary648

to cover working capital. These loans are repaid within the period after producers receive revenues. The649

working capital, denoted by wci, comprises the sum of input, management, and adjustment costs, i.e.,650

wci ≡

(∫ 1

zi,E

pi,E(zE)dzE + (1− τN)

∫ 1

zi,N

pi,N(zN)dzN

)
+
[
c−
(
zi,E − 1 + V̄ ∗

i

)
+ c+ (1− zi,N)

]
(16)651

+ ξ · (2− zi,N − zi,E)
2 /2,652

which is subject to the following constraint:653

wci ≤ θiA
ηA,iΠss

i + τL(A)max{wc∗i − θiA
ηA,iΠss

i , 0}. (17)654

The first term on the RHS of equation (17) — θiA
ηA,iΠss

i — represents the external financing obtained from655

the financial intermediary linked to the net worth of the producer, which is a function of the aggregate656

TFP, A, and the steady-state profits of the producer i, Πss
i .24 The parameter θi captures the tightness of657

24In the external financing of the credit constraint, we use the steady-state profit of the producer, which is pre-determined
and exogenous to the choices of suppliers of the producer, for two reasons: (i) Lian and Ma (2021) document that borrowing
constraints commonly rely on a specific measure of cash flows, where a firm’s total debt or interest expenses cannot exceed a
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the credit constraints, and ηA,i is the elasticity of the net worth of the producer i to the aggregate TFP.658

A positive ηA,i indicates that producers face tighter credit constraints during economic downturns. We set659

θi = 4.1+1.5ln(V ss
i ) and ηA,i = 1.6−6.1ln(V ss

i /median(V ss
i )) based on the estimates from producer-level660

panel regressions of the debt-to-profit ratio on the number of suppliers and real aggregate output.25
661

To replicate the central aspect of government programs that supply loans to SMEs proportionally to the662

severity of individual financial constraints, the second term on the RHS of equation (17)—τL(A)max{wc∗i−663

θiA
ηA,iΠss

i , 0}—captures the amount of government’s credit injection to producers at the state-contingent664

rate τL(A), which increases with the gap between the producer’s demand for loans—i.e., the working capital665

in the baseline model without credit constraints, denoted by wc∗i —and the amount of external financing666

θiA
ηA,iΠss

i . The injected credit is financed by lump-sum taxes and repaid to the government within the667

period after producers receive revenues. These funds are then rebated to the representative household as668

lump-sum subsidies. The credit injection rate is positive and uniform for financially constrained producers669

that voluntarily solicit for the credit injection, and it is zero for unconstrained producers.670

The producers solve the following optimality problem, subject to the credit constraint in equation (17):671

Πi = max
{zi,E ,zi,N}

(∫ 1

zi,E

yi,E(zE)dzE +

∫ 1

zi,N

yi,N(zN)dzN

)
︸ ︷︷ ︸

Final output

−

(∫ 1

zi,E

pi,E(zE)dzE + (1− τN)

∫ 1

zi,N

pi,N(zN)dzN

)
︸ ︷︷ ︸

Input costs

672

−
[
c−
(
zi,E − 1 + V̄ ∗

i

)
+ c+ (1− zi,N)

]︸ ︷︷ ︸
Adjustment costs

− ξ · (2− zi,N − zi,E)
2 /2︸ ︷︷ ︸

Management costs

. (18)673

In addition to the credit constraint, the optimization problem in equation (18) differs from the analogous674

problem in the benchmark model (equation 6) for the presence of government subsidies (τN ) given to pro-675

ducers for the purchases of input from new suppliers. The new formulation captures the essence of U.S.676

policies that encourage the adoption of new technologies. The subsidies on new inputs increase the total677

surplus of the production lines that have new suppliers, i.e., TSi,N(zN) = yi,N(zN) + τNpi,N(zN), and this678

surplus is split between producer and supplier according to the Nash-bargaining rule in equation (4). The679

extended model nests the baseline version without credit constraints and policies, by setting θi = +∞ and680

τL(A) = τN = 0.681

We set the credit injection rate τL(A) to have the ratio of the amount of credit injection on producers682

to the aggregate output in the model equal to 0.72% for any level of aggregate TFP, A, which matches the683

observed ratio during the COVID-19 year of 2020.26 We set the rate of input subsidies τN = 2.6%, such that684

multiple of EBITDA (i.e., earnings before interest, taxes, depreciation, and amortization) from the previous 12 months; and (ii)
in our static model, if the constraint is not pre-determined, it will be proportional to the producer’s sales, making the constraint
less responsive to economic conditions.

25See Appendix F.2 for the estimates of the panel regressions and the calibration of the parameters.
26Appendix F.2 describes how we calibrate the rates of credit injection and input subsidies to match the observed data.
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the steady-state ratio of input subsidies to aggregate output matches that of the credit injection, at 0.72%.685

Notably, our calibration ensures that both policies incur the same cost, making them directly comparable in686

the subsequent welfare analysis.687

Government, representative household, and welfare. The government finances both the credit injection and688

input subsidies using lump-sum taxes on households. Each unit of tax incurs an efficiency cost of δ = 0.1%,689

consistent with Gertler and Karadi (2011). This deadweight loss reflects the observed costs of raising funds690

via government debt. The economy consists of a representative household with the logarithmic utility691

function U(C) = log(C), where C denotes aggregate consumption. The economic resource constraint is:692

C(A) = Y (A)− δ

 1∫
0

τN

∫ 1

zi,N

pi,N(zN)dzNdi+

1∫
0

τL(A)max{wc∗i − θiA
ηA,iΠss

i , 0}di

 ,693

where the aggregate consumption equals the total output minus the efficiency costs associated with provid-694

ing input subsidies and credit injections.27
695

The credit injection policy improves welfare by alleviating the credit constraints that restrict the produc-696

ers’ scale of production and hinders the replacement of existing suppliers with new, high-productivity ones.697

Subsidies on new inputs improve welfare by promoting the replacement of existing with new suppliers and698

reducing the inefficiency from adjustment costs—which lead to under-adjustment in the adoption of new699

suppliers. In Appendix F.1, we present the optimality condition of the producers and discuss how they are700

affected by the credit constraints and the two policies.701

7.3. Simulation of the extended model702

We simulate 100 economies, each composed of 300 producers, and study three key policy questions:703

First, how do credit constraints, credit injections, and subsidies on new inputs influence welfare? Second,704

how should the government choose between the policies of credit injection and subsidies on new inputs?705

Third, how do different producers benefit from the two policies and contribute to welfare enhancement?706

Panel (a) in Figure 6 shows the welfare loss (in units of percent of steady-state consumption) of the707

extended economy with credit constraints relative to the efficient case without any frictions (y-axis) against708

the (log) aggregate TFP (x-axis) for three distinct cases: (i) without any policies (dashed black line), (ii) with709

credit injection policy (solid red line), and (iii) with subsidies on new inputs (dash-dotted blue line). We710

also plot the welfare loss without credit constraints (dashed green line) to disentangle the different welfare711

losses from credit constraints and from adjustment costs, respectively.712

27As we assumed in Section 4.5, all management and adjustment costs are paid to the household as labor income, thereby are
part of the aggregate consumption.
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The effect of credit constraints. Credit constraints generate welfare loss relative to both the efficient case713

and the case without credit constraints, as shown by the dashed black line (case i) being below both zero714

and the dashed green line. Intuitively, binding credit constraints increase the effective management and715

adjustment costs due to the higher marginal cost of financing the working capital. This restricts both the716

scale of production and the replacement of existing suppliers with new ones, thereby reducing output and717

welfare. The welfare loss linked with credit constraints diminishes with the increase of aggregate TFP, as718

indicated by the upward-sloping dashed black curve that converges to the dashed green curve for a higher719

level of aggregate TFP that relaxes the financial constraints of more producers.720

The effect of credit injections. Credit injection improves welfare by relaxing the credit constraints, thereby721

increasing both the scale of production and the replacement of existing suppliers with new ones, as evinced722

by the solid red line that is above the dashed black line. When aggregate TFP is high, the welfare loss due723

to financial constraints is low, and credit injection results in a smaller welfare improvement, as indicated by724

the solid red line converging towards the dashed black line toward the right side of the graph.725

The effect of input subsidies. Subsidies on new inputs almost uniformly improve the welfare across different726

levels of aggregate TFP, as exhibited by the dash-dotted blue line being above and parallel to the dashed727

black line. Intuitively, subsidies on new inputs increase the profits from new production lines and reduce the728

effective costs of adopting new suppliers, thereby encouraging the replacement of existing suppliers with729

new ones and reducing the welfare loss associated with the adjustment costs.730

Policy comparison. Given the same costs of financing credit injections and input subsidies in our calibra-731

tion, the relative effectiveness of the two policies depends on the level of the TFP, resulting in a state-732

dependent optimal policy. Specifically, the welfare improvement from input subsidies is generally less733

powerful than credit injection for several levels of aggregate TFP. Consequently, the government is more734

effective in increasing welfare by adopting a policy of subsidies on new inputs only when the aggregate735

TFP is exceptionally high (i.e., when the detrended log aggregate output is above 0.05, which is close to736

the level in the year 2007), such that the financial constraints are not binding for most producers and credit737

injection can hardly improve welfare, as shown by the dash-dotted blue line that is above both the solid red738

and dashed green lines towards the right side of panel (a) in Figure 6. Otherwise, the government should739

adopt the policy of credit injection to enhance welfare. The dominant role of credit injection is primarily740

because of the sizable financial frictions implied by the empirical distribution of producers’ debt-to-profit741

ratios, while adjustment costs—following the calibration of Caballero and Hammour (1994)—account for742

a limited fraction of GDP.743

The role of convex management costs and linear adjustment costs. To study the role of convex management744

costs and linear adjustment costs—which is a central theme of our analysis—panel (b) in Figure 6 presents745

the results for the welfare analysis in an economy with counterfactual linear management costs and convex746
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adjustment costs. This setup implies a cross-sectional cyclicality of terminations that is consistent with the747

pattern in the labor market (as shown in Figure 3b), but it is inconsistent with the pattern in the producer-748

supplier market (as shown in Figure 2b).749

Credit constraints result in a more significant welfare loss compared to the benchmark economy, as750

shown by the larger gap between the dashed green and black lines in panel (b) relative to panel (a). Credit751

injection that alleviates the credit constraints leads to similar welfare improvement as in the benchmark752

economy, as evinced by the similar gap between the solid red and dashed black lines in panels (a) and panel753

(b). In contrast, input subsidies lead to smaller welfare improvements than in the benchmark economy,754

which are also smaller than the welfare improvement from credit injection across all levels of aggregate755

TFP, as evinced by the dash-dotted blue line that consistently lies below the solid red line. As a result, in the756

counterfactual economy, input subsidies lead to smaller welfare improvement than that by credit injection,757

and the government should always prioritize credit injection over subsidies on new inputs, unlike in the758

benchmark case where the input subsidies should be adopted under sufficiently strong economic conditions.759

Intuitively, the strictly convex adjustment costs in the counterfactual economy imply that producers760

replace fewer existing suppliers with new ones compared to the benchmark economy, thus incurring lower761

adjustment costs. As a result, credit injections—which primarily enhance welfare by alleviating financial762

constraints and expanding the scale of production—lead to greater welfare improvement than subsidies on763

new inputs—which primarily enhance welfare by reducing the inefficiency from adjustment costs.764

The comparison between panel (a) to panel (b) in Figure 6 illustrates the critical role of our documented765

Facts 1 and 2 in disciplining the sizes and convexity of management versus adjustment costs and, in turn, in766

determining the relative effectiveness of the policies of credit injection and input subsidies.767

The heterogeneous impacts of credit injections and input subsidies. In the previous Section 6.2, we show768

that the convex management costs and the linear adjustment costs are crucial for generating the heteroge-769

neous cyclicality of adoption and termination across different producers in Figure 2 of Fact 2, which is one770

of our key empirical findings. An important issue is whether the convexity in management and adjustment771

costs makes different producers benefit differently from the policies by generating cross-sectional hetero-772

geneity in the adoption and termination. Panel (a) in Figure 7 shows the output improvement of producers773

from credit injection (solid red line, y-axis) against their (log) idiosyncratic productivities (x-axis) in the774

benchmark economy when the detrended log aggregate output is at the 2020 level of −0.044 and many775

producers face tight financial constraints. As expected, credit injections increase the output of low- and776

medium-productivity (i.e., small-and medium-sized) producers who initially were financially constrained,777

but they do not affect the output of high-productivity producers. Interestingly, medium-sized producers778

benefit more from credit injections than the smallest ones, as indicated by the upward-sloping segment of779

the line. Intuitively, although the smallest producers have small net worth, they incur much lower man-780

agement costs due to the convexity of the management cost function. Consequently, they experience less781

tightness in credit constraints compared to larger producers and, therefore, receive inferior benefits from the782
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credit injections. In contrast, in the counterfactual economy with linear management costs (panel b), output783

improvement (weakly) decreases in the productivity and size of producers, as evinced by the downward-784

slopping solid red line.785

The dash-dotted blue lines show the improvement in producers’ output resulting from subsidies on new786

inputs. For smaller producers, input subsidies result in significantly lower output improvements compared787

to credit injections. This is because financial constraints are a major friction for those producers, thus788

making credit injections more effective in enhancing welfare. Conversely, input subsidies yield positive789

output improvements for larger producers that are not financially constrained by promoting the churning of790

suppliers.791

8. Conclusion792

Our analysis establishes several novel facts concerning the adoption and termination of suppliers. At793

the aggregate level, the rate of adoption of new suppliers and the total number of suppliers are procyclical,794

while the termination of existing suppliers is acyclical. The acyclical rate of termination at the aggregate795

level arises from the different cyclicality in the rate of termination across producers with different numbers796

of suppliers. At the producer level, producer sales positively co-move with the churning of suppliers and797

the expansion in the total number of suppliers.798

To account for this new evidence, we develop a simple model of producers that optimally adjust the total799

measure and the composition of new and existing suppliers subject to distinct management and adjustment800

costs. The model shows the central and separate roles of the costs of managing, adopting, and terminating801

suppliers in altering the incentives to scale up the measure of suppliers (i.e., scaling effect) and to replace802

existing with new suppliers (i.e., switching effect) in response to aggregate TFP shocks. The scaling and803

switching effects are critical to replicate the observed procyclicality in the adoption of new suppliers and804

the total measure of suppliers. They generate the observed differences in the cyclicality of the rate of805

termination across producers that result in the acyclical rate of termination at the aggregate level.806

We extend our baseline model to include financial friction to study the welfare effects of two major807

classes of supply-chain policies—credit injection and subsidies for new suppliers—implemented in the U.S.808

in the aftermath of the COVID-19 pandemic. We find that credit injections generally outperform subsidies809

on new inputs, except when aggregate TFP is exceptionally high.810

Our study suggests several interesting avenues for future research. First, there is limited empirical811

evidence that distinguishes between management and adjustment costs, whose differences we find critical812

to the optimizing decision of producers and the resulting movements in the aggregate rates of adoption and813

termination of suppliers. Second, the analysis could be extended to consider the intertemporal dimension in814

the adoption and termination of suppliers, which will link the optimal choices of producers to the discount815

rate, asset prices, and the expected benefits of the producer-supplier relationship. Third, we find that the816

heterogeneity in the productivity of producers is important for the adoption and termination of suppliers.817
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Future work could focus on the optimal sorting between producers and suppliers with different productivity818

levels, which may enhance the cooperation between firms and improve productivity (Fernández-Villaverde819

et al., 2023). Finally, though we focus on the relationship between a single producer and several suppliers,820

the analysis could be extended to explore the linkages between producers and suppliers in the context of821

a network economy (Baqaee et al., 2023), and the endogenous changes in the structure of the network822

(Ghassibe, 2023). We plan to investigate some of these issues in future work.823
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Figure 1: Procyclical adoption and acyclical termination of suppliers

Notes: The figure shows the growth rate of the aggregate number of suppliers (i.e., solid green line with circles), the aggregate
rates of adoption (i.e., solid red line with circles) and termination (i.e., dash-dotted blue line), and the growth rate of real output
(i.e., solid black line). The aggregate index of the number of suppliers is the weighted average of the number of suppliers across
all producers, with the costs of goods sold by each producer as the weight. The real output is the BEA chain-type quantity index
of gross output of private industries. Aggregate number of suppliers is the aggregate index of the number of suppliers. Aggregate
rate of adoption (sN,t) and Aggregate rate of termination (sT,t) are the weighted averages of si,N,t and si,T,t across all producers,
respectively, with the costs of goods sold of each producer as the weight. Real output growth is demeaned. Shaded areas indicate
NBER-defined recession years. The samples whose adoption and termination rates are among the top and bottom 2.5% of the
sample or larger than one are winsorized.
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Figure 2: Cyclicality of adoption and termination of suppliers for producers with different numbers of suppliers

.2

.3

.4

.5

.6

C
o

rr
. 

b
e

tw
e

e
n

 a
d

o
p

ti
o

n
 a

n
d

 r
e

a
l 
o

u
tp

u
t 

g
ro

w
th

.5 1 1.5 2 2.5 3

Log number of suppliers of producer

(a) Cyclicality of adoption
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(b) Cyclicality of termination

Notes: The scatter plot in Panel (a) (vs. (b)) shows the (log) average number of suppliers per producer (x-axis) against the
correlation between the adoption (vs. termination) rate and the real aggregate output growth (y-axis) for different groups of
producers in our sample. Producers were divided into 10 groups according to their (log) average numbers of suppliers, and for
each group in each year, we computed the aggregate adoption (vs. termination) rate of the group. Then, for the y-axis, we
computed the correlation between the group-wise rate of adoption (vs. termination) and the economy-wise real output growth
over the years for each group (red circle). For the x-axis, we computed the average number of suppliers per producer across the
years for each group. The solid blue line is a linear fit of the cyclicality of adoption (vs. termination) on the (log) number of
suppliers. The real aggregate output is the BEA chain-type quantity index of gross output of private industries.

Figure 3: Cyclicality of job creation and destruction for establishments with different numbers of employees
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(b) Cyclicality of job destruction

Notes: The scatter plot in Panel (a) (vs. (b)) shows the number of employees of the establishment (x-axis) against the correlation
between the job creation (vs. destruction) rate and the real output growth (y-axis) for different groups of establishments in our
sample. Establishments were divided into 10 groups by the BLS according to their numbers of employees, and for each group
in each year, the BLS reports the job creation (vs. destruction) rate. Then, for the y-axis, we computed the correlation between
the rate of job creation (vs. destruction) and the economy-wise real output growth over the years for each group (red circle). The
solid blue line is a linear fit of the cyclicality of creation (vs. destruction) on the x-axis. The real output is the BEA chain-type
quantity index of gross output of private industries.
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Figure 4: Coefficient of regressing the rate of termination on sales: Data vs. baseline model
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(b) Adoption in baseline model
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(c) Termination in data
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(d) Termination in baseline model

Note: Panels (a) and (b) (vs. c and d) plot the coefficients of regressing the adoption (vs. termination) rate on real output growth
for different producer groups using the observed data (Panels a and c) and the simulated data from the baseline model (Panels b
and d), respectively. In Panel (a) and (c) (vs. Panels b and d), we divided the 2,988 (3,000) observed (simulated) producers into
10 groups according to the log number (measure) of suppliers. Within each group, we calculated the group-wise adoption and
termination rates and regress them on real output growth. For the x-axis, we computed the average number (measure) of suppliers
across years (economies) for each producer, which was then averaged across the producers within each group. In Panels (a) and
(c), the samples whose adoption and termination rates were among the top and bottom 2.5% of the sample or larger than one
were winsorized. The real output is the BEA chain-type quantity index of gross output of private industries.
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Figure 5: Impacts of scaling and switching effects on termination as functions of ai
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Notes: The figure plots the impacts of scaling (solid red curve) and the switching (dashed blue curve) effects on the response
of termination rate to changes in aggregate TFP as functions of the (log) idiosyncratic productivity of the producer, respectively.
The solid black curve with circles is the total impact of the two effects.
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Figure 6: Welfare loss under different levels of TFP
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Notes: The figure plots the welfare loss with credit constraints relative to the efficient case without any frictions (y-axis) against
the (log) aggregate TFP (x-axis) for three distinct cases: (i) without any policies (dashed black curve), (ii) with credit injection
(solid red curve), and (iii) with subsidies on new inputs (dash-dotted blue curve). The dashed green curve plots the economy with
no financial constraints and policies. Panels (a) and (b) are for the benchmark economy with convex management costs and linear
adjustment costs, and in the counterfactual economy with linear management costs and convex adjustment costs, respectively.
The welfare loss is in units of percentage of steady-state consumption.

35



Figure 7: Output improvement by policies under low TFP
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Notes: The figure plots the improvement in output—weighted by the output share of the producer in the steady state without
policies—relative to the case without policies (y-axis) against the (log) idiosyncratic productivity of the producer (x-axis) when
the detrended log aggregate output is at the 2020 level of −0.044. The solid red and dash-dotted blue curves show the output
improvement by credit injection and input subsidies, respectively. Panels (a) and (b) are for the benchmark economy with convex
management costs and linear adjustment costs and in the counterfactual economy with linear management costs and convex
adjustment costs, respectively.
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Table 1: Responses of sales to the total number and churning of suppliers

(1) (2) (3) (4) (5)
Dependent variable: Sales growth
Supplier no. growth rate 0.453*** 0.090*** -0.473* 0.377***

(0.137) (0.035) (0.282) (0.121)
Rate of churning 1.299***

(0.415)
Rate of adoption 0.648*** 0.288***

(0.233) (0.094)
Rate of termination 0.850*** 0.473*

(0.289) (0.272)
Sales of last year -0.237*** -0.226*** -0.222*** -0.226*** -0.224***

(0.031) (0.030) (0.031) (0.031) (0.031)
Supplier no. of last year 0.123*** -0.008 0.030 0.017 0.023

(0.043) (0.015) (0.039) (0.038) (0.040)
First-stage F-stat 34.9 11.8 12.8 18.1 18.7
Observations 14,828 14,828 14,828 14,828 14,828
Number of producers 1,831 1,831 1,831 1,831 1,831
Producer Fixed Effect Yes Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes Yes

Notes: Annual data for the sample period 2003 to 2020. The dependent variable is the producer’s real sales growth rate. Column
(1) uses ŝi,N,t to instrument the growth rate of the number of suppliers. Column (2) uses ŝi,N,t, ŝi,T,t, and ŝi,CH,t to instrument
the growth rate of the number of suppliers and the rate of churning. Column (3)-(5) use ŝi,N,t and ŝi,T,t to instrument the growth
rate of the number of suppliers and the rates of adoption and termination. The top and bottom 2.5% of the sample for adoption
and termination rates were winsorized. The sample was restricted to producers whose maximum number of suppliers exceeded
one over time. Standard errors were clustered at the producer level. *, **, and *** denote significance at the 10%, 5%, and 1%
levels, respectively. The first-stage F-stat is the Kleibergen-Paap (KP) statistic.
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Table 2: Calibration of the model

Parameter Value Target moment
α 0.36 The ratio of producers’ surplus to intermediate input costs.
ξ 0.081 Steady-state share of management costs (Gopinath and Neiman, 2014).
c+(c−) 0.077 Steady-state share of adjustment costs in operating costs (Caballero and Hammour, 1994).
σa 0.2 Middle estimate between Syverson (2004) and Fostera et al. (2015).
σA 0.024 The standard deviation of the HP-filtered log real gross output.

Notes: α is the bargaining share of the producer, ξ is the management cost parameter, c+ (c−) is the cost of adoption (termina-
tion), and σa and σA are the standard deviations of log(ai) and log(A), respectively.
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Appendix A. Data1

Our data combine two datasets: the FactSet Revere Supply Chain Relationships data that allows tracking2

the adoption and termination of suppliers, and the Compustat Fundamentals data that provides the financial3

statement variables and administrative costs of each producer.4

The FactSet Revere Supply Chain Relationships data consists of 784,325 producer-supplier relationship5

records between 152,119 producers and 95,932 suppliers from 2003 to 2021. Each record includes the start6

and end dates of the relationship. The database systematically collects producer-supplier relationship in-7

formation from public sources such as SEC 10-K annual filings, investor presentations, and press releases8

reported by either the producer or the supplier. Compared to the commonly used Compustat Customer Seg-9

ment database (e.g., the dataset used by Lim, 2018)—which only includes major customers who contribute10

to more than 10% of a supplier’s revenue—FactSet Revere provides a much less truncated set of suppliers.111

The broader coverage results in more accurate measures of producer-supplier relationships, the number12

of suppliers, and their adoption and termination. As a result, FactSet Revere captures many supply-chain13

linkages that would be otherwise missing if the Compustat data were used instead.14

To measure the extensive margin, we use the starting and ending years of each producer-supplier rela-15

tionship. Based on this information, we calculate the total number of suppliers of producer i in year t and16

denote it by vi,t. We also calculate the number of suppliers adopted and terminated by the producer i in year17

t and denote them by vi,N,t and vi,T,t, respectively, which we employ to construct the rates of adoption and18

termination.19

Then, we further merge the FactSet data with Compustat data using the first six digits of the producer’s20

CUSIP numbers, which uniquely identify a company. With the above merger, we obtain a sample of 3,60921

producers with 28,461 producer-year observations spanning from 2003 to 2021, covering 78,193 producer-22

supplier relationships.23

Summary statistics of the supply-chain relationship data.24

Table A.3: Summary statistics of the rates of adoption and termination

VARIABLES Mean Standard deviation Median Min Max

Rate of adoption (si,N,t) 0.287 0.449 0.053 0 2

Rate of termination (si,T,t) 0.144 0.203 0 0 0.75

Notes: Rate of adoption (si,N,t) and Rate of termination (si,T,t) are the numbers of new and existing suppliers adopted and
terminated by producer i in year t divided by its total number of suppliers in year t − 1, respectively. The top and bottom 2.5%
of the samples for each rate are winsorized.
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Figure A.8: Distributions of producer-supplier relationship durations and the number of suppliers
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Notes: Panels (a) and (b) show the distribution of the duration of producer-supplier relationships and of the producer’s number
of suppliers, respectively. The height of each bar equals the percentage of samples within the bin in all samples.

Derivation of number of suppliers and rates of adoption and termination. We describe how we derive the25

number of suppliers and the rates of adoption and termination at both the producer and the aggregate levels.26

To compute the aggregate series, we need the share of each producer’s intermediate input expenditure in27

the total intermediate input expenditure of all producers. We denote the share of producer i’s intermediate28

input expenditure in the total intermediate input expenditure as COGS sharei,t, which is computed as29

COGS sharei,t =
cogsi,t∑
i′ cogsi′,t

,30

where cogsi,t is the cost of goods sold (COGS) of producer i documented in Compustat.231

With the producers’ intermediate input shares defined above, we define the aggregate growth rate of the32

number of suppliers as33

∆vt
vt−1

≡
∑
i

(
COGS sharei,t ·

∆vi,t
vi,t−1

)
. (A.1)34

The producer-level decomposition of the growth rate of the number of suppliers is35

∆vi,t
vi,t−1

= si,N,t − si,T,t,36

1Publicly-traded companies are required to report their major customers in accordance with Financial Accounting Standards
No. 131, which is the source of Compustat Customer Segments.

2COGS in Compustat is a commonly used measure of the variable cost. According to the Compustat data manual, it “rep-
resents all expenses that are directly related to the cost of merchandise purchased or the cost of goods manufactured that are
withdrawn from finished goods inventory and sold to customers.”
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where si,N,t ≡ vi,N,t/vi,t−1 and si,T,t ≡ vi,T,t/vi,t−1 are the producer-level rates of adoption and termination,37

which are defined as the numbers of new suppliers adopted and existing suppliers terminated by producer38

i in year t divided by the producer’s total number of suppliers in year t − 1, respectively. Similar to the39

aggregation of the number of suppliers in equation (A.1), we use the weighted averages of adoption and40

termination rates as the aggregate rates of adoption and termination, i.e.,41

aggregate rate of adoption : sN,t ≡
∑
i

(
COGS sharei,t · si,N,t

)
,42

aggregate rate of termination : sT,t ≡
∑
i

(
COGS sharei,t · si,T,t

)
.43

It follows that the growth rate of the aggregate number of suppliers can be decomposed into the aggregate44

rates of adoption and termination:45

∆vt
vt−1

= sN,t − sT,t. (A.2)46

Based on equation (A.2), we compute the variation of the growth rate of the aggregate number of sup-47

pliers as48

V ar
(∆vt
vt−1

)
= Cov

(∆vt
vt−1

, sN,t − sT,t
)
= Cov

(∆vt
vt−1

, sN,t

)
+ Cov

(∆vt
vt−1

,−sT,t
)
,49

which indicates the following equation showing the percentage contributions of the aggregate rates of adop-50

tion and termination to the growth rate of the aggregate number of suppliers51

Cov
(
∆vt
vt−1

, sN,t

)
V ar

(
∆vt
vt−1

) +
Cov

(
∆vt
vt−1

,−sT,t
)

V ar
(
∆vt
vt−1

) = 1,52

where the first and second terms are the contributions of the aggregate rates of adoption and termination,53

respectively.54

Alternative ways of aggregating adoption and termination rates. To check the robustness of Figure 1 in55

Fact 1, particularly to control for the changes in the weights, we reproduce Figure 1 with the follow-56

ing three alternative ways of aggregating producer-level adoption and termination rates: (i) we weigh57

producer-level rates of growth in the number of suppliers, the adoption, and the termination using the58

time-average share of costs of goods sold of the producer that is constant over time, i.e., we replace59

COGS sharei,t = (
∑

t′ cogsi,t′)/(
∑

t′
∑

i′ cogsi′,t′) in equation (A.1) (Panel b in Figure A.9); (ii) we60

compute the unweighted aggregate number of suppliers, aggregate number of adopted new suppliers, and61

aggregate number of terminated existing suppliers in each year, and use them to compute the growth rate62

of aggregate number of suppliers, aggregate rate of adoption, and aggregate rate of termination (Panel c in63
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Figure A.9);3 (iii) we weigh producer-level rates of growth in the total number of suppliers, the adoption,64

and the termination using the time-average share of supplier numbers of the producer that is constant over65

time, i.e., we replace COGS sharei,t = (
∑

t′ vi,t′)/(
∑

t′
∑

i′ vi′,t′) in equation (A.1) (Panel d in Figure66

A.9).67

Figure A.9: Aggregate number of suppliers, rates of adoption and termination under alternative aggregation methods

(a) Weight: time-varying costs of goods sold (Baseline) (b) Weight: constant costs of goods sold

(c) Unweighted (d) Weight: constant supplier no.

Notes: The figure shows the growth rate of the aggregate number of suppliers (i.e., solid green line with circles), the aggregate
rates of adoption (i.e., solid red line with circles) and termination (i.e., dash-dotted blue line), and the growth rate of real output
(i.e., solid black line) under four alternative ways of aggregation. Real output growth is demeaned. Shaded areas indicate NBER-
defined recession years. The samples whose adoption and termination rates are among the top and bottom 2.5% of the sample or
larger than one are winsorized.

3We normalize aggregate number of suppliers, aggregate number of adopted new suppliers, and aggregate number of termi-
nated existing suppliers in each year by the total number of producers in that year to avoid higher adoption and termination rates
that are due to more producers. This is not a concern for other ways of aggregation, in which the aggregate rates are the weighted
averages of producer-level rates in each year.
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Appendix B. Positive returns from more and new relationships68

Table B.4: Responses of sales to the total number and churning of suppliers (First stages of IV regressions)
(1) (2) (3) (4) (5) (6)

Dependent variable: Supplier no. gr Supplier no. gr Adopt. rate Term. rate Supplier no. gr Churn. rate

Bartik IV adopt. rate 0.344*** 0.286*** 0.457*** 0.061** 1.664*** 0.083***
(0.056) (0.056) (0.068) (0.027) (0.089) (0.030)

Bartik IV term. rate -0.475*** -0.112 0.370*** 1.089*** 0.127***
(0.113) (0.124) (0.058) (0.131) (0.048)

Bartik IV churn rate -3.090*** 0.035
(0.141) (0.045)

Sales of last year 0.067*** 0.067*** 0.072*** -0.007 0.058*** 0.011***
(0.010) (0.010) (0.010) (0.004) (0.010) (0.002)

Supplier no. of last year -0.304*** -0.304*** -0.289*** 0.098*** -0.323*** 0.016***
(0.010) (0.010) (0.011) (0.004) (0.010) (0.002)

Observations 14,828 14,828 14,828 14,828 14,828 14,828
R-squared 0.188 0.189 0.183 0.085 0.233 0.054
Number of producers 1,831 1,831 1,831 1,831 1,831 1,831
Producer Fixed Effect Yes Yes Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes Yes Yes

Notes: Annual data for the sample period 2003 to 2020. Sales growth and Supplier number growth rate are the growth rates
of the producer’s real sales and its total number of suppliers, respectively. Rate of churning is the minimum of the adoption
and termination rates. Producer and year fixed effects are controlled. The top and bottom 2.5% of the sample for adoption and
termination rates are winsorized. In all columns, we control for the log real sales and the total number of suppliers of the producer
of last year. We restrict our sample to producers whose maximum numbers of suppliers exceed one over time. Standard errors
are clustered at the producer level. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Table B.5: Responses of sales to the total number and churning of suppliers (OLS)
(1) (2) (3) (4) (5)

Dependent variable: Sales growth

Supplier no. growth rate 0.021*** 0.020*** 0.013 0.031***
(0.008) (0.008) (0.010) (0.009)

Rate of churning 0.027*
(0.015)

Rate of adoption 0.009 0.019**
(0.011) (0.008)

Rate of termination 0.032** -0.004
(0.015) (0.012)

Sales of last year -0.208*** -0.208*** -0.208*** -0.208*** -0.208***
(0.028) (0.029) (0.028) (0.028) (0.028)

Supplier no. of last year -0.009 -0.010 -0.009 -0.009 -0.010
(0.007) (0.007) (0.007) (0.007) (0.007)

Observations 14,828 14,828 14,828 14,828 14,828
R-squared 0.145 0.145 0.145 0.145 0.145
Number of producers 1,831 1,831 1,831 1,831 1,831
Producer Fixed Effect Yes Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes Yes

Notes: Annual data for the sample period 2003 to 2020. Sales growth and Supplier number growth rate are the growth rates
of the producer’s real sales and its total number of suppliers, respectively. Rate of churning is the minimum of the adoption
and termination rates. Producer and year fixed effects are controlled. The top and bottom 2.5% of the sample for adoption and
termination rates are winsorized. In all columns, we control for the log real sales and the total number of suppliers of the producer
of last year. We restrict our sample to producers whose maximum numbers of suppliers exceed one over time. Standard errors
are clustered at the producer level. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Appendix C. Estimation of the curvature of management costs69

We follow the identification strategy of Arkolakis et al. (2023) to determine the curvature of the manage-70

ment cost function in our model. Arkolakis et al. (2023) assume a random search of producers for suppliers,71

which allows the log total number of suppliers to be linearly related to the log sales of the producer and72

unaffected by the individual productivity of any supplier. As a result, they can directly estimate the cur-73

vature of the management cost function using this linear relationship. In contrast, in our specification, the74

idiosyncratic productivity of the marginal supplier—equal to the marginal cost of management—declines75

in the number of suppliers of the producer, which is critical for our analysis of the adoption and termination76

of suppliers. Our specification generates a non-linear relationship between the log total number of suppliers77

and the log sales of the producer, which prevents us from directly estimating this relationship to calibrate78

the curvature of the management cost function as Arkolakis et al. (2023) do. Therefore, instead of pre-79

cisely following Arkolakis et al. (2023), we follow their identification strategy and use an indirect inference80

method to estimate the curvature of the management cost function.81

First, we generalize the management cost function in our baseline model to allow flexible curvature η,82

i.e., G (zi,N , zi,E) = ξ · V η
i /η. Then, we use the indirect inference method following Gourieroux et al.83

(1993) to estimate η. Specifically, we conduct panel regressions of the log number of suppliers on the log84

real sales of the producer, controlling for producer fixed effects, using both data and model-simulated data85

under different values of η:4
86

ln(Vi,t) = β0 + βdata
1 ln(Yi,t) + αi + ϵi,t, (C.1)87

ln(Vi,j) = β0 + βmodel
1 ln(Yi,j) + αi + ϵi,j, (C.2)88

where Vi,t (vs. Vi,j) and Yi,t (vs. Yi,j) are the number of suppliers and real sales of producer i in data89

year t (vs. simulated economy j), respectively, and αi is the producer fixed effect. βdata
1 and βmodel

1 are90

the estimated coefficients of the log real sales of the producer in the data and in the model-simulated data,91

respectively. According to the indirect inference method, the curvature of the management cost function η92

is estimated such that βmodel
1 is equal to βdata

1 (0.237). Notably, our identification strategy of the curvature93

of the management cost function—viz., using βmodel
1 to identify the curvature—is akin to the method used94

by Arkolakis et al. (2023) to identify the curvature of their search cost function.95

Our estimated curvature of the management cost function is equal to 2.2 when βmodel
1 = βdata

1 = 0.237,96

evincing that calibrating curvature to 2 is empirically reasonable.97

Appendix D. Scaling and switching effects98

We show that changes in aggregate TFP exert two distinct scaling and switching effects on the total99

measure and the composition of suppliers. These forces are critical for the responses of the adoption and100

4We simulate 100 economies, each composed of 300 producers as in Section 7.3.
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termination rates of the single producer to aggregate TFP shocks.101

The response of the single producer to aggregate TFP shocks critically depends on the economic rele-102

vance of the costs of management, adoption, and termination of suppliers, which are measured by the costs103

of management, adoption, and termination of suppliers in units of the idiosyncratic productivity of the pro-104

ducer ai, and are defined as ξ̃i ≡ ξ/ai, c̃
+
i ≡ c+/ai, c̃

−
i ≡ c−/ai, respectively. A higher ξ̃i indicates that the105

producer faces a larger management cost relative to its idiosyncratic productivity; similarly, a higher c̃+i (vs.106

c̃−i ) indicates that the producer faces a greater adoption (vs. termination) cost relative to its idiosyncratic107

productivity. For notational convenience, we define the total adjustment costs in units of the idiosyncratic108

productivity as: c̃i = c̃+i + c̃−i , which measures the economic relevance of total adjustment costs.109

The scaling effect. The higher aggregate TFP leads producers to increase the total measure of suppliers to110

benefit from the increased aggregate productivity (and profits) relative to the unchanged management costs.111

To take advantage of the higher productivity and resulting profits, producers increase their adoption of new112

suppliers and decrease their termination of existing suppliers, which we refer to as the scaling effect, as113

formalized in the next lemma.114

Lemma 3. The producer increases the total measure of new and existing suppliers to expand the scale of115

production in response to an increase in aggregate TFP. The size of the scaling effect is equal to:116

Scaling effect ≡ d lnV ∗
i

d lnA
=

2ξ̃iV̄
∗
i +

(
c̃+i − c̃−i

)(
2ξ̃i + αĀ

)
V̄ ∗
i

> 0, (D.1)117

which increases in ξ̃i and decreases in ai.118

Proof: In Appendix H.119

Lemma 3 shows that the magnitude of the scaling effect increases with the economic relevance of the120

management cost (ξ̃i), which governs the constraints on the producer’s scale of production, when c̃+i − c̃−i121

is close to zero and V̄ ∗
i is positive. In particular, producers with higher ξ̃i are more constrained by the122

burden of management costs and hence reduce the scale of production more strongly in response to a123

negative aggregate TFP shock. Because ξ̃i is inversely related to idiosyncratic productivity, the scaling124

effect decreases with idiosyncratic productivity.125

The scaling effect incentivizes producers to reduce the size of production by terminating existing sup-126

pliers in response to negative aggregate TFP shocks and, therefore, is critical to generate the countercyclical127

rate of termination among large producers established in Fact 2 (Figure 2).128

The switching effect. Adjustment costs generate a positive co-movement between rates of adoption and129

termination and aggregate TFP. For instance, the increase in aggregate TFP reduces the productivity dif-130

ferential between new and existing suppliers (see equation 9) and, therefore, incentivizes the producer to131

adjust the composition of suppliers by replacing existing with new suppliers. This incentive of switching132
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suppliers enhances both rates of termination and adoption of suppliers. We refer to this phenomenon as the133

switching effect, as formalized in the next lemma.134

Lemma 4. For a given measure of suppliers, an increase in aggregate TFP generates the switching from135

existing to new suppliers. The size of the switching effect is equal to:136

Switching effect ≡
∂s∗i,N
∂ lnA

=
∂s∗i,T
∂ lnA

=
c̃i

2αĀV̄i
∗ > 0, (D.2)137

which increases in c̃i and decreases in ai.138

Proof: In Appendix H.139

Because replacing existing with new suppliers involves simultaneous adoption and termination of sup-140

pliers, the switching effect entails equal changes in the rates of adoption (s∗i,N ) and termination (s∗i,T ) of141

suppliers. Lemma 4 shows that the size of the switching effect increases with c̃i, which declines in idiosyn-142

cratic productivity ai. In particular, smaller producers with lower ai are more prone to a negative aggregate143

TFP shock than larger producers with higher ai in their replacement of existing suppliers with new ones.144

This is because smaller producers endure larger increases in the relevance of the fixed adjustment costs in145

relation to their decreased profits. Therefore, they are more inclined to refrain from adjusting suppliers and146

hence display larger declines in adoption and termination rates (i.e., a larger switching effect).147

Appendix E. The role of the existence of both management and adjustment costs148

To clarify the role of management and adjustment costs in the heterogeneous cyclicality of the termina-149

tion rate across producers, we estimate the cyclicality of the adoption and termination rates for each group,150

bN,k and bT,k, using data simulated with two counterfactual models. One is a model without adjustment151

costs (Panels a and c in Figure E.10), and the other is a model without management costs (Panels b and d in152

Figure E.10).153

When there are no adjustment costs (Panels a and c), the switching effect is absent (Lemma 4), and the154

cyclicality of termination is uniquely determined by the scaling effect. These results imply that producers155

reduce the size of production by terminating existing suppliers in response to a lower aggregate TFP. As156

a result, the rate of termination is countercyclical for all producers and highly countercyclical for smaller157

and lower-productivity suppliers, as the scaling effect is stronger for them. This is in stark contrast to158

the data where the rate of termination is procyclical for smaller producers and countercyclical for larger159

producers. Without adjustment costs, the aggregate rate of termination is countercyclical: the coefficient of160

log aggregate output in equation (14) is estimated as -0.14, which is also inconsistent with the data.161

When management costs are absent (Panels b and d), the scaling effect is absent (Lemma 3), and the162

cyclicality of termination is uniquely determined by the switching effect that induces producers to decelerate163

the churning of suppliers in response to a low aggregate TFP. Thus, the termination rate is procyclical for all164

producers and more so for smaller and less productive producers whose switching effect is stronger. Again,165
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Figure E.10: Coefficients of regressing the adoption and termination rates on sales: counterfactual models
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(a) Counterfactual model without adjustment costs (Adoption)
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(b) Counterfactual model without management costs (Adoption)
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(c) Counterfactual model without adjustment costs (Termination)
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(d) Counterfactual model without management costs (Termination)

Notes: Panels (a) and (b) (vs. c and d) plot the coefficients of regressing the adoption (vs. termination) rate on real output growth
for different producer groups using the simulated data from the counterfactual model with zero adjustment costs (Panels a and c)
and the simulated data from the counterfactual model with zero management costs (Panels b and d), respectively. In all panels, we
divide the 3,000 simulated producers into 10 groups according to the log measure of suppliers. Within each group, we calculate
the group-wise adoption and termination rates and regress them on real output growth. For the x-axis, we compute the average
measure of suppliers across economies for each producer, which is then averaged across the producers within each group.

these findings are incompatible with the data. Without management costs, the aggregate termination rate is166

procyclical: the estimated coefficient of log aggregate output in equation (14) is 0.1, contradicting the data.167

Appendix F. Optimality conditions and empirical discipline of the extended model168

Appendix F.1. Optimality conditions of the extended model169

The optimality conditions of the producer with respect to zi,E and zi,N for the constrained maximization170

problem in equation (18) yield:171

z∗i,E +
(1 + λi) c

−

[α− λi (1− α)]Aai
=

(1 + λi) ξV
∗
i

[α− λi (1− α)]Aai
, (F.1)172

z∗i,N − (1 + λi) c
+

[α− (λi − (1 + λi) τ̃N) (1− α)]Aai
=

(1 + λi) ξV
∗
i

[α− (λi − (1 + λi) τ̃N) (1− α)]Aai
, (F.2)173
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where λi is the Lagrange multiplier of the credit constraint for producer i, which captures the shadow cost174

of borrowing. The multiplier is strictly positive when the credit constraint binds and zero when it does175

not. The effective rate of subsidies on new inputs to the producer, τ̃N ≡ ατN/ [1− (1− α) τN ], due to176

sharing of the subsidies between producers and suppliers, strictly increases with τN . Subsidies on inputs177

from new suppliers increase the marginal benefits of using new inputs, thereby lowering the effective costs178

of adopting new suppliers relative to the marginal benefits, as evinced by the denominator in equation (F.2)179

that increases with τ̃N .180

A tighter credit constraint—reflected by a higher λi—raises the effective marginal costs of inputs, man-181

agement, and adjustment costs in two ways: (i) it directly increases the marginal costs of management and182

adjustment, as reflected by (1 + λi) in the numerators; and (ii) it increases the marginal costs of inputs and183

reduces the profits, thereby increasing the ratio of management and adjustment costs to the profits of the pro-184

ducer, reflected by the −λi (1− α) in the denominator. A positive rate of credit injection τL(A) relaxes the185

credit constraint and reduces λi, implicitly increasing the effective costs of management and adjustment and186

affecting the adoption and termination of suppliers. The first-order conditions in equations (F.1) and (F.2)187

nest the first-order conditions in equations (7) and (8) of our baseline model by setting τN = τL(A) = 0.188

Appendix F.2. Empirical evidence to discipline the extended model with credit constraints189

In this subsection, we document empirical facts on the relationship between the financial friction, the190

size of the producer, and the aggregate economic conditions, and then use these facts to discipline the model191

in Section 7.2.192

Specifically, we follow Lian and Ma (2021) to measure the profits and debts of the producer using193

CompuStat earnings before interest, taxes, depreciation, and amortization (EBITDA) and the sum of Long-194

term Debts (DLTT) and Debt in current Liabilities (DLC), deflate them using the GDP deflator, and denote195

them by bi,t and πi,t, respectively, for each producer i in each year t. We further denote the average profit of196

producer i over time by π̄i ≡ (
∑T

t=1 πi,t)/T , and use the ratio of debt to average profit bi,t/π̄i to measure the197

corresponding debt-to-profit ratio in the model—viz., the ratio of the LHS of equation (17) to the steady-198

state profit Πss
i on the RHS.5199

Merging the debt-to-profit ratio from CompuStat with the number of suppliers from FactSet supply chain200

data, we examine the relationship between the tightness of the credit constraint and the number of suppliers201

of the producer by running the following panel regression:202

bi,t/π̄i = β0 + β1 ln(v̄i) + γt + ϵi,t, (F.3)203

where v̄i ≡ (
∑T

t=1 vi,t)/T is the average number of suppliers of producer i over time. A positive coefficient204

5Because our model is static and has no capital, we can only model the credit constraint based on the profits rather than the
asset value of the producer. However, all our empirical results are robust to using the debt-to-asset ratio (i.e., the ratio of the
debt to the average asset over the years of the firm, with the asset measured by the total asset (AT) in CompuStat) instead of the
debt-to-profit ratio. As a result, the RHS of our credit constraint in equation (17) can be alternatively specified as a multiplier of
the long-term value of asset of the producer in a dynamic model.
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of β1 indicates that small producers with fewer suppliers have a tighter credit constraint than large produc-205

ers with more suppliers. We also examine the cyclicality in the tightness of the credit constraint and the206

heterogeneity in the cyclicality varies across different producers by running the following panel regression:207

d ln(bi,t/π̄i) = β0 + β1d ln(Yt) + β2 ln(v̄i/med(v̄i)) · d ln(Yt) + αi + ϵi,t, (F.4)208

where Yt is the growth rate of real gross output in year t. We are interested in the coefficients β1 and209

β2, which capture the cyclicality of the tightness of the credit constraint and the relationship between this210

cyclicality and the number of suppliers, respectively.6 A positive coefficient of β1 indicates that the credit211

constraints are tighter in recessions than in booms, and a negative β2 indicates that the increase in the212

tightness of credit constraints is more severe for small producers with fewer suppliers.213

Table F.6: Relationship between producer’s debt-to-profit ratio and supplier no. and real GDP growth

(1) (2)
VARIABLES Debt-to-profit ratio Debt-to-profit ratio growth

Supplier no. 0.174***
(0.051)

Real output growth 1.576***
(0.253)

Supplier no. * Real output growth -0.701***
(0.220)

Observations 19,347 14,980
R-squared 0.082 0.002
Number of producers 2,427 2,107
Producer Fixed Effect No Yes
Year Fixed Effect Yes No

Notes: Data are annual. Producer’s supplier number is the log average number of suppliers across years for the producer. The
producer’s supplier number in column (2) is divided by the sample median. Real output growth is the growth rate of the BEA
quantity index of gross output. Year and producer-fixed effects are controlled in columns (1) and (2), respectively. The top
and bottom 2.5% of the sample for adoption and termination rates are winsorized. We restrict our sample to producers whose
maximum numbers of suppliers exceed one over time. Standard errors are clustered at the producer level. *, **, and *** denote
significance at the 10%, 5%, and 1% levels, respectively.

Column (1) in Table F.6 shows the estimation results of the regression in equation (F.3). The positive and214

significant coefficient of the number of suppliers indicates that small producers with fewer suppliers have215

a tighter credit constraint than large producers with more suppliers, implying that the producer-specific216

multiplier in the credit constraint of equation (17), θi, increases in the size of the producer. Column (2)217

shows the estimation results of the regression in equation (F.4). The positive and significant coefficient of the218

growth rate of real gross output indicates that the tightness in the credit constraints is countercyclical, viz.,219

recessions are accompanied by tighter constraints. The negative and significant coefficient of the interaction220

term between the number of suppliers and the growth rate of real output indicates that the increase in the221

tightness of credit constraints during recessions is more severe for small producers with fewer suppliers than222

6v̄i is divided by the sample-median med(v̄i) so that β1 captures the cyclicality of the tightness of the credit constraint for
the producer with the median number of suppliers.
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large producers with more suppliers.223

Calibration of the parameters. We use the estimation of coefficient β1 in equation (F.3) to calibrate θi.224

Specifically, we assume that θi = θi0 + βθ ln(V
ss
i ) is a linear function of the number of suppliers. Because225

the range of the log number of suppliers in the data is larger than that in the model-simulated data (3.5226

vs. 0.4), we calibrate βθ to be 0.174 ∗ 3.5/0.4 ≈ 1.5, which is 8.75 times the coefficient of the number227

of suppliers in Column (1) of Table F.6. Given the calibrated βθ, we then calibrate θi0 so that one-third of228

all producers have binding credit constraints in the steady state.7 We further use the estimation results of229

equation (F.4) to calibrate ηA,i. Specifically, we assume that ηA,i = ηA,i0 + βη ln(V
ss
i /med(V ss

i )) is a linear230

function of the number of suppliers, where med(V ss
i ) is the number of suppliers of the median producer.231

We calibrate ηA,i0 to be 1.6, consistent with the coefficient of the real output growth in Column (2) of Table232

F.6. Because the range of the log number of suppliers in the data is larger than that in the model-simulated233

data (3.5 vs. 0.4), we calibrate βη to be −0.7 ∗ 3.5/0.4 ≈ −6.1, which is 8.75 times the coefficient of the234

interaction term in Column (2) of Table F.6.235

We calibrate the credit injection rate τL(A) and the rate of input subsidies τN to match the model-236

implied shares of credit injection and input subsidies in the aggregate output to the shares in the observed237

data. Specifically, by the time the program concluded in mid-2021, the PPP provided around $800 billion238

dollars in loans, among which $342 billion had a maturity of two years and the remaining $458 billion had239

a maturity of five years. Thus, the annualized ratio of PPP loans in the U.S. gross output in 2020 ($36.6240

trillion dollars) is around 0.72% (i.e., (342/2 + (800 − 342)/5)/(36.6 ∗ 1000)) ≈ 0.0072), resulting in a241

calibrated annual rate of credit injection of 0.42 when the detrended log aggregate output is at the year 2020242

level of -0.044. We set the credit injection rate τL(A) to have the ratio of the amount of credit injection on243

producers to the aggregate output in the model equal to 0.72% for any level of aggregate TFP. We set the244

rate of input subsidies τN = 2.6%, such that the steady-state ratio of input subsidies to aggregate output is245

also 0.72%.246

Appendix G. A brief literature review of switching costs247

This section of the Appendix reviews literature on the switching cost and categorizes its various dimen-248

sions into adoption and termination costs. Switching costs are mainly incurred in two types of situations—249

when consumers/households switch suppliers or retailers and when producers switch suppliers/vendors.250

Our adoption and termination costs correspond to the switching costs in the second situation.8251

Most theoretical work on switching costs builds on the switching costs for consumer/household purchas-252

ing. However, most of their analyses on the switching costs apply to our situation of producers switching253

suppliers as well. Among these works, Klemperer (1987, 1995) first provided a taxonomy of switching254

7In the FEDS Notes by Perez-Orive and Timmer (2023), the authors use data from S&P Global, Compustat, and Wharton
Research Data Services to calculate the shares of financially-distressed firms in the U.S. since the 1970s, which range from 10%
to 50% and average around 30%.

8Whitten and Wakefield (2006) and Van Deventer (2016) provide comprehensive reviews on the research of switching costs.
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costs. He classified switching costs into the compatibility of equipment, transaction costs of switching sup-255

pliers, learning costs in the use of new brands, uncertainty about the quality of untested brands, loyalty costs256

for the issuance of discount coupons and similar marketing strategies to adopt producers, contractual costs,257

and psychological costs. Among these types of switching costs, compatibility of equipment, learning costs258

in the use of new brands, and uncertainty about the quality of untested brands are purely adoption costs;259

transaction, contractual, and psychological costs of switching suppliers involve both adoption and termina-260

tion costs; and loyalty costs are purely termination costs. With the taxonomy of switching costs, Klemperer261

(1995) used a model to show that switching costs reduce competition and increase prices.262

Compared to the theoretical work, empirical studies on switching costs are more recent. Scholars have263

examined the costs for producers to switch suppliers in an array of vendor industries, such as hardware,264

computer purchasing, chemical, insurance, and IT outsourcing, with IT outsourcing as the most studied265

industry. (Ping, 1993; Heide and Weiss, 1995; Nielson, 1996; Whitten and Wakefield, 2006; Whitten,266

2010; Whitten et al., 2010; Barroso and Picón, 2012) The focus of their efforts was to identify various267

dimensions of switching costs. Most of the dimensions uncovered were similar to those in Klemperer (1987,268

1995); however, some additional dimensions specific to the producer-supplier relationship environment269

were revealed. For example, Nielson (1996), Whitten and Wakefield (2006), Whitten (2010), and Whitten270

et al. (2010) explored the costs of hiring and retaining skilled workers during switching, which belong to271

the adoption costs. Whitten and Wakefield (2006), Whitten (2010), and Whitten et al. (2010) investigated272

the costs of upgrading the management system along vendor switching, which entail both adoption and273

termination costs. Whitten and Wakefield (2006) and Whitten (2010) explored the sunk costs attendant274

with vendor switching (i.e., the non-recoverable time/money/effort associated with the existing vendor).275

The sunk costs are psychological but greatly influence the switching decision. The sunk costs belong to276

termination costs.277

Empiricism on switching costs has also documented the important role of the costs in vendor switch-278

ing. Whitten and Wakefield (2006) found that switching costs prevented producers from switching from279

unsatisfactory vendors. Whitten (2010) discerned that high switching costs promoted the continuation of280

producer-supplier relationships.281

Insufficient data concerning the size of switching costs exists. However, Van Deventer (2016) collected282

recent examples of discontinued IT outsourcing contracts, which provided an approximate size of costs for283

switching vendors. The share of switching costs in the values of the organizations had a median of 6.6%284

and were as high as 15%.285
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Appendix H. Model timeline and proofs for propositions286

Timeline of the model.287

Figure H.11: Timeline

Notes: At the beginning of the period, the final goods producer is endowed with a continuum of existing suppliers. Then, it
terminates a subset of the existing suppliers and adopts a subset of the new suppliers. Next, it bargains with each of its input
suppliers on the price of the intermediate input that splits the surplus of each production line. At the end of the period, the
producer manufactures the final output using the inputs from the selected new and existing suppliers.

Proofs for propositions.288

Using equations (7) and (8), we have289

1−
(
V ∗
i − V̄ ∗

i s
∗
i,N

)
=

ξV ∗
i − c−

αAai
290

⇐⇒
(
1 + V̄ ∗

i s
∗
i,N

)
= V ∗

i +
ξV ∗

i − c−

αAai
, (H.1)291

and292

(
1− V̄ ∗

i s
∗
i,N

)
=

ξV ∗
i + c+

αAai
. (H.2)293

Summing equations (7) and (8), we have294

2 = V ∗
i +

2ξV ∗
i + c+ − c−

αAai
295

⇐⇒ V ∗
i =

2αAai − c+ + c−

αAai + 2ξ
.296

Therefore, the steady-state total measure of suppliers of producer i equals297

⇐⇒ V̄ ∗
i =

2αĀai − c+ + c−

αĀai + 2ξ
298

=
2αĀ− c̃+ + c̃−

αĀ+ 2ξ̃
. (H.3)299

Taking the difference between equations (H.1) and (H.2), we have300

2V̄ ∗
i s

∗
i,N = −c− + c+

αAai
+ V ∗

i301

=⇒s∗i,N =
1

2

(
V ∗
i

V̄ ∗
i

− c− + c+

αAaiV̄ ∗
i

)
<

1

2

V ∗
i

V̄ ∗
i

, (H.4)302
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and303

s∗i,T =
[
V̄ ∗
i −

(
V ∗
i − V̄ ∗

i s
∗
i,N

)]
/V̄ ∗

i304

= −1

2

(
V ∗
i

V̄ ∗
i

+
c− + c+

αAaiV̄ ∗
i

)
+ 1, (H.5)305

and306

s∗i,E =
V ∗
i

V̄ ∗
i

− 1

2

(
V ∗
i

V̄ ∗
i

− c− + c+

αAaiV̄ ∗
i

)
307

=
1

2

(
V ∗
i

V̄ ∗
i

+
c− + c+

αAaiV̄ ∗
i

)
. (H.6)308

In equilibrium, the output of producer i satisfies:309

Y ∗
i =aiA

(
2− V̄ ∗

i s
∗
i,E

)
V̄ ∗
i s

∗
i,E +

(
2− V̄ ∗

i s
∗
i,N

)
V̄ ∗
i s

∗
i,N

2

⇐⇒ lnY ∗
i =lnai + lnA+ ln

[(
2− V̄ ∗

i s
∗
i,N

)
V̄ ∗
i s

∗
i,N +

(
2− V̄ ∗

i s
∗
i,E

)
V̄ ∗
i s

∗
i,E

2

]

=lnai + lnA+ ln

[(
2− V̄ ∗

i s
∗
i,N

)
V̄ ∗
i s

∗
i,N +

(
2− V ∗

i + V̄ ∗
i s

∗
i,N

) (
V ∗
i − V̄ ∗

i s
∗
i,N

)
2

]
.

(H.7)310

Lemma 1311

Proof. Taking the partial derivative of equation (H.7) wrt. lnV ∗
i , we have312

∂lnY ∗
i

∂lnV ∗
i

=
AaiV

∗
i

Y ∗
i

z∗i,E > 0.313

314

Lemma 2315

Proof. Taking the partial derivative of equation (H.7) wrt. s∗i,N , we have316

∂lnY ∗
i

∂s∗i,N
=

(
V ∗
i − 2s∗i,N V̄

∗
i

)
V̄ ∗
i

(2−V̄ ∗
i s∗i,N)V̄ ∗

i s∗i,N+(2−V ∗
i +V̄ ∗

i s∗i,N)(V ∗
i −V̄ ∗

i s∗i,N)
2

=
aiAV

∗
i

(
1− 2

V̄ ∗
i s∗i,N
V ∗
i

)
V̄ ∗
i

Y ∗
i

=
(c− + c+)

αY ∗
i /V̄

∗
i

> 0,

317

where the last equality comes from equation (H.4).318

319
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Lemma 3320

Proof. Combining equations (H.1) and (H.2), we have321

2 = V ∗
i +

ξV ∗
i − c−

αAai
+

ξV ∗
i + c+

αAai
. (H.8)322

Applying the implicit function theorem to equation (H.8), we have323

dV ∗
i

dlnA
=
2ξV̄ ∗

i + (c+ − c−)

2ξ + αĀai

=
αĀai

(
z∗i,E + z∗i,N

)
2ξ + αĀai

> 0.

324

Therefore,325

d lnV ∗
i

d lnA
=

2ξ̃iV̄
∗
i +

(
c̃+i − c̃−i

)(
2ξ̃i + αĀ

)
V̄ ∗
i

326

=
2αĀ/V̄ ∗

i − αĀ

2ξ̃i + αĀ
. (H.9)327

When c+ = c−,328

d lnV ∗
i

d lnA
=

2ξ̃i

2ξ̃i + αĀ
. (H.10)329

330

Lemma 4331

Proof. Taking the partial derivatives of equations (H.4) and (H.5) wrt. lnA, we have332

∂s∗i,N
∂ lnA

=
∂s∗i,T
∂ lnA

=
c̃i

2αĀV̄ ∗
i

> 0. (H.11)333

334

Proposition 1335

Proof. Taking the total derivative of equation (H.5) wrt. lnA, we have336

ds∗i,T
d lnA

= −1

2

d lnV ∗
i

d lnA︸ ︷︷ ︸
Scaling effect < 0

+
c̃i

2αĀV̄ ∗
i︸ ︷︷ ︸

Switching effect > 0

337

= −1

2

2αĀ/V̄ ∗
i − αĀ(

2ξ̃i + αĀ
) +

c̃i/V̄
∗
i

2αĀ
. (H.12)338

Therefore,339
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∂
(

ds∗i,T
d lnA

)
∂ai

=
1

2

2
(
2αĀ/V̄ ∗

i − αĀ
)(

2ξ̃i + αĀ
)2

(
− ξ̃i
ai

)
− c̃i

2aiαĀV̄ ∗
i

340

− 1

2

 c̃i
αĀ

− 2αĀ(
2ξ̃i + αĀ

)
 1(

V̄ ∗
i

)2 ∂V̄ ∗
i

∂ai
341

= − 1

2ai

2
(
2ξ̃i +

(
c̃+i − c̃−i

)
/V̄ ∗

i

)
ξ̃i(

2ξ̃i + αĀ
)2 +

c̃i
αĀV̄ ∗

i

342

− 1

2ai

 c̃i
αĀ

− 2αĀ(
2ξ̃i + αĀ

)
 1(

V̄ ∗
i

)2 ∂V̄ ∗
i

∂ai
,343

where the first term is always negative while the second term is negative for small ai and positive for344

large ai. Note that applying the implicit function theorem to equation (H.8) in the steady state, we have345

∂V̄ ∗
i

∂ai
=
2ξV̄ ∗

i + (c+ − c−)

ai
(
2ξ + αĀai

)
=
αĀ
(
z∗i,E + z∗i,N

)
2ξ + αĀai

> 0.

346

Thus, when ai increases from zero, ds∗i,T/d lnA first declines and then increases.347

Note that348

ds∗i,T
d lnA

= −1

2

2αĀ/V̄ ∗
i − αĀ(

2ξ̃i + αĀ
) +

c̃i/V̄
∗
i

2αĀ
349

=
1

2V̄ ∗
i

(
c̃i
αĀ

− 2αĀ

2ξ̃i + αĀ

)
+

1

2

αĀ(
2ξ̃i + αĀ

) .350

Assume both ξ and c+ + c− are sufficiently large. When ai approaches zero, 2αĀ/
(
2ξ̃i + αĀ

)
goes351

to zero and c̃i/
(
αĀ
)

becomes extremely positive. Therefore, ds∗i,T/d lnA is positive. When ai approaches352

positive infinite, ξ̃i and c̃i both go to zero, and353

ds∗i,T
d lnA

= − 2

2V̄ ∗
i

+
1

2
= −2− V̄ ∗

i

2V̄ ∗
i

< 0.354

Given that ds∗i,T/d lnA is continuous in ai, ds∗i,T/d lnA is positive when ai is small, and negative when355

ai is large. In other words, the rate of termination is countercyclical for producers with high idiosyncratic356

productivity, but procyclical for producers with low idiosyncratic productivity.357
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When c− = c+ = 0, we have358

ds∗i,N
d lnA

=
1

2

d lnV ∗
i

d lnA
> 0,359

ds∗i,T
d lnA

= −1

2

d lnV ∗
i

d lnA
< 0,360

i.e., procyclical adoption and countercyclical termination (i.e., Schumpeterian cleansing) for all producers.361

362

Proposition 2363

Proof.

ds∗i,N
d lnA

=
1

2

d lnV ∗
i

d lnA
+

1

2

c̃i
αĀV̄ ∗

i

> 0.364

Therefore,365

ds∗N
d lnA

=
∑
i

ds∗i,N
d lnA

Ȳ ∗
i

Ȳ ∗ > 0.366

367

Appendix I. Extended model with flexible convexity in management and adjustment costs368

Appendix I.1. Flexible combination of convexity in management and adjustment costs369

We extend our model to allow for flexible combinations of the degree of convexity in the management370

and adjustment costs (i.e., flexible combinations that nest linear and quadratic specifications for those costs).371

The management cost becomes372

G (zi,N , zi,E) = ξ0Vi + ξ1 · V 2
i /2, (I.1)373

where parameter ξ0 governs the size of the linear component and ξ1 governs the size of the quadratic (i.e.,374

strictly convex) component. The share of the quadratic component in the entire management cost, denoted375

by ξ̂1 ≡ ξ1/(ξ0 + ξ1), captures the degree of convexity in the management cost function.376

We allow for similar flexible combinations in the degree of convexity in adjustment costs. Particularly,377

we assume symmetric functions of the adoption and termination costs, which are written as378

c+ (Vi,N) ∗ Vi,N = c0Vi,N + c1V
2
i,N/2, (I.2)379

c− (Vi,T ) ∗ Vi,T = c0Vi,T + c1V
2
i,T/2, (I.3)380

where Vi,N ≡ V̄ ∗
i si,N = 1−zi,N and Vi,T ≡ V̄ ∗

i si,T = zi,E−1+V̄ ∗
i are the measures of adopted new suppliers381

and terminated existing suppliers, respectively. Parameter c0 governs the size of the linear component, and382
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c1 governs the size of the quadratic (i.e., strictly convex) component. The share of the quadratic component383

in the entire adoption (vs. termination) cost, denoted by ĉ1 ≡ c1/(c0 + c1), captures the degree of convexity384

in the adoption (vs. termination) cost function.385

In our baseline model of Sections 4 and 5, we have ξ̂1 = 1 and ĉ1 = 0 such that the management386

cost is quadratic and the adoption and termination costs are linear (i.e., G (zi,N , zi,E) = ξ1 · V 2
i /2 and387

c+ (Vi,N) = c− (Vi,T ) = c0).388

Appendix I.2. Convexity of costs and cross-sectional scaling and switching effects for the termination rate389

In this section, we experiment with different degrees of convexity in the management and adjustment390

costs. We fix ξ0 + ξ1 and c0 + c1 to the baseline values that are consistent with the acyclical aggregate391

termination rate. Then, we change the degree of convexity of the management cost by varying the share of392

the quadratic component in the management cost (i.e., ξ̂1). Similarly, we change the degree of convexity of393

the adjustment cost by varying the share of the quadratic component in the adoption and termination costs394

(i.e., ĉ1).395

Figure I.12: Convexity in management and adjustment costs and the scaling and switching effects
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(a) Baseline model
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(b) Counterfactual model

Notes: The figure plots the impacts of scaling (dotted red curve) and the switching (dashed blue curve) effects on the response of
termination rate to changes in aggregate TFP as functions of the (log) idiosyncratic productivity of the producer, respectively. The
solid black curve with circles is the total impact of the two effects, which indicates the (pro)cyclicality of the rate of termination.
Panel (a) is the baseline model with quadratic management cost and linear adjustment costs (i.e., ξ̂1 = 1 and ĉ1 = 0), and Panel
(b) is the counterfactual model with linear management cost and quadratic adjustment costs (i.e., ξ̂1 = 0 and ĉ1 = 1).

Panel (a) of Figure I.12 shows our baseline model that has quadratic management costs (i.e., ξ̂1 =396

1) and linear adoption and termination costs (i.e., ĉ1 = 0). In the baseline model, the switching effect397

significantly declines with the idiosyncratic productivity of the producer, while the size (i.e., the absolute398

value) of the scaling effect is insensitive to the idiosyncratic productivity. Thus, the total impact (i.e.,399

the procyclicality of termination)—which equals the sum of the switching effect and the negative scaling400

effect, as shown in equation (11)—decreases with the producer’s idiosyncratic productivity, generating401
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countercyclical termination for large producers and procyclical termination for small producers that are402

consistent with Figure 2 of Fact 2.403

Panel (b) of Figure I.12 shows the counterfactual specification of the model where the management cost404

is linear as in the network literature (i.e., ξ̂1 = 0 and therefore less convex than in the baseline model, e.g.,405

Lim, 2018; Huneeus, 2018), and the adjustment cost is quadratic as in the labor literature (i.e., ĉ1 = 1 and406

more convex than in the baseline model, e.g., Caballero and Hammour, 1994; Bloom, 2009; Zanetti, 2008).407

In this counterfactual specification of the model, the switching effect hardly changes with the idiosyncratic408

productivity of the producer, while the size (i.e., the absolute value) of the scaling effect significantly dimin-409

ishes with the idiosyncratic productivity. Thus, the total impact (i.e., the procyclicality of termination)—410

which equals the sum of the switching effect and the negative scaling effect, as shown in equation (11)—is411

negative for all producers and increases with the producer’s idiosyncratic productivity, generating coun-412

tercyclical termination for small producers as well as less countercyclical termination for large producers,413

against the empirical results in Figure 2 of Fact 2.414

Figure I.13: Diff. in the size of scaling/switching effect btw. large and small producers vis-à-vis convexity of costs

(a) Diff. in the size of scaling effect (b) Diff. in the size of switching effect

Notes: Panel (a) plots the difference in the size (i.e., the absolute value) of the scaling effect (for the termination rate) between the
two producers with (log) idiosyncratic productivity equal to 0.2 and −0.2 (vertical axis) vis-à-vis the convexity in the management
and the adjustment costs (horizontal axes). The size of the scaling effect equals the minus of the scaling effect because the scaling
effect is negative for the termination rate. Panel (b) plots the difference in the size of the switching effect (for the termination rate)
between the two producers with (log) idiosyncratic productivity equal to 0.2 and −0.2 (vertical axis) vis-à-vis the convexity in
the management and the adjustment costs (horizontal axes). The convexity in the management and adjustment costs are measured
by ξ̂1 and ĉ1, respectively.

Comparing Panels (a) and (b) in Figure I.12, we can conclude that the sensitivity of the scaling (vs.415

switching) effect to the producer’s idiosyncratic productivity—defined as the semi-elasticity of the size416

(i.e., the absolute value) of the scaling (vs. switching) effect to ai—declines with the degree of convexity417

of the management (vs. adjustment) costs. This pattern is verified by Figure I.13, where the difference418

in the size of the scaling (vs. switching) effect between the larger and the smaller producers—measuring419
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the sensitivity of the scaling (vs. switching) effect to ai—is plotted against broader combinations of the420

degree of convexity in management (vs. adjustment) costs.9 Panel a (vs. Panel b) in Figure I.13 shows421

that the difference in the size of the scaling (vs. switching) effect between the larger and the smaller422

producers is always negative, evincing that the size of the scaling (vs. switching) effect diminishes with the423

idiosyncratic productivity of the producer, consistent with Lemmas 3 and 4, and Figure I.12. Moreover, for424

the scaling (vs. switching) effect, the difference (between large and small producers) is more negative when425

the management (vs. adjustment) cost is closer to linear and less convex, indicating that the sensitivity of426

the scaling (vs. switching) effect to ai declines with the convexity of the management (vs. adjustment) cost,427

again consistent with Figure I.12.10
428

Figure I.14: Difference in (pro)cyclicality of termination btw. small and large producers vis-à-vis convexity of costs

Notes: The figure plots the difference in the total impacts of scaling and switching effects (for the termination rate) between a large
and a small producer with (log) idiosyncratic productivity equal to 0.2 and −0.2 (measured by the darkness of color) vis-à-vis the
convexity in the management (x-axis) and the adjustment costs (y-axis). The convexity in the management and adjustment costs
are measured by ξ̂1 and ĉ1, respectively. Our baseline model with quadratic (i.e., maximum degree of convexity) management
and linear (i.e., minimum degree of convexity) adjustment costs is indicated by the red circle in the bottom right of the figure.

Similar to Figure I.13, Figure I.14 plots the difference in the procyclicality of termination between the429

larger and the smaller producers against various combinations of the degree of convexity in management430

and adjustment costs, where the procyclicality of termination is measured by the total impact of scaling and431

switching effects. The difference in the total impact between the large and small producers is indicated by432

the color, where the light (vs. dark) blue area indicates a more positive (vs. negative) total impact and,433

in turn, more procyclical (vs. countercyclical) rate of termination for the larger producer than the smaller434

9The larger and the smaller producers have log idiosyncratic productivity of 0.2 and -0.2, respectively.
10In Figure I.13, for the scaling (vs. switching) effect, the difference (between the larger and smaller producers) is also more

negative when the adjustment (vs. management) cost is closer to linear and less convex. However, the sensitivity of the scaling
(vs. switching) effect to ai declines more with the convexity of the management (vs. adjustment) cost than with the convexity of
the adjustment (vs. management) cost.

A-21



producer. The convexity in the management (x-axis) and the adjustment costs (y-axis) are measured by ξ̂1435

and ĉ1, respectively. Our baseline model with quadratic (i.e., maximum degree of convexity) management436

and linear (i.e., minimum degree of convexity) adjustment costs is represented by the red circle in the bottom437

right of the figure.438

Figure I.14 shows that when the management cost has a sufficiently large degree of convexity and the439

adjustment cost has a sufficiently small degree of convexity (i.e., sufficiently close to linear), the procycli-440

cality of termination is more negative (i.e., more countercyclical termination) for the large producer than441

for the small producer, evinced by the dark-blue area towards the bottom right of the figure that includes the442

red circle representing the quadratic management cost and linear adjustment cost in our baseline model. As443

Figure I.13 shows, the large convexity in the management cost and the small convexity in the adjustment444

cost make the scaling effect insensitive to ai and the switching effect more sensitive to ai. Therefore, the445

switching effect dominates in the sensitivity of the cyclicality of termination to ai, making the termination446

less procyclical (i.e., more countercyclical) for large producers than for small producers.11
447

In contrast, when the management cost becomes more linear (i.e., towards the left of Figure I.14),448

and/or adjustment cost becomes more convex (i.e., towards the top of Figure I.14), the switching effect is449

insensitive to ai while the scaling effect is more sensitive to ai. Therefore, the scaling effect dominates in450

the sensitivity of the cyclicality of termination to ai, making the termination less countercyclical for large451

producers than for small producers.12 This result is consistent with the counterfactual model in Panel (b) of452

Figure I.12 but contradicts Figure 2 of Fact 2.453

To understand why the sensitivity of the scaling (vs. switching) effect to the idiosyncratic productivity454

declines with the convexity of the management (vs. adjustment) costs, we study equations (I.4) and (I.5).455

In these two equations, the sizes of the scaling and switching effects are functions of the convexity of the456

management and adjustment costs (i.e., ξ̂1 and ĉ1), the size of the producer (i.e., V̄ ∗
i ), and other parameters.13

457

Scaling effect = −1

2

d lnV ∗
i

d lnA
= −1

2

[(
αĀai

)2
/2 + ξ1αĀai +

(
αĀai + ξ1

)
c1 + c21/2

]−1

(I.4)458

(ξ0 + ξ1)
[
(1− ξ̂1) + ξ̂1V̄

∗
i

]
/V̄ ∗

i ∗
(
αĀai + c1

)
.459

Switching effect =

[
(1− ĉ1) + ĉ1V̄

∗
i s̄

∗
i,N

]
/V̄ ∗

i

(αĀai + c1)(c0 + c1)
. (I.5)460

Equations (I.4) and (I.5) show that sizes of the scaling effect (i.e., 1
2
d lnV ∗

i /d lnA) and the switching461

effect are mainly affected by two opposite forces that are functions of the size of the producer: (1) the462

scaling (vs. switching) effect is positively correlated to the marginal management (vs. adjustment) cost463

(i.e.,
[
(1− ξ̂1) + ξ̂1V̄

∗
i

]
vs.
[
(1− ĉ1) + ĉ1V̄

∗
i s̄

∗
i,N

]
), which increases with the size of the producer V̄ ∗

i when464

11Recall that the size of the switching effect diminishes with the size of the producer in Lemma 4, evinced by Figure I.12.
12Recall that the size of the scaling effect diminishes with the size of the producer in Lemma 3, evinced by Figure I.12.
13Recall that the producer’s size in terms of total measure of suppliers (i.e., V̄ ∗

i ) increases with its idiosyncratic productivity,
i.e., more (vs. less) productive producers correspond to larger (vs. smaller) producers.
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the management (vs. adjustment) cost is strictly convex (i.e., ξ̂1 > 0 vs. ĉ1 > 0); (2) the scaling (vs.465

switching) effect is inversely related to the steady-state measure of suppliers of the producer (i.e., V̄ ∗
i )466

because the ratio of the management (vs. adjustment) cost to the profit—which determines the size of the467

scaling (vs. switching) effect—is smaller for larger producers with higher profits than for smaller producers.468

Consequently, the relationship between the scaling (vs. switching) effect and the idiosyncratic productivity469

(or size) of the producer and, in turn, the sensitivity of the scaling (vs. switching) effect to ai, depends on470

the degree of convexity in the management (vs. adjustment) cost. When the management (vs. adjustment)471

cost is more convex, the marginal cost increases with V̄ ∗
i by a larger extent, making the ratio of the marginal472

cost (i.e., the first force) to the size of the producer (i.e., the second force) less variant to changes in the473

size of the producer and leading to a smaller sensitivity of the scaling (vs. switching) effect to ai that is474

consistent with Panel a (vs. Panel b) in Figure I.13.475

In our baseline model, the management cost is at the maximum convexity (i.e., quadratic with ξ̂1 = 1)476

and the adjustment cost is at the minimum convexity (i.e., linear with c̃0 = 0). Therefore, the scaling effect477

is insensitive to the producer’s idiosyncratic productivity, while the switching effect is significantly sensitive478

to the idiosyncratic productivity. The switching effect, which is positive and declines with ai, dominates479

the changes in the total impacts to ai and makes the termination rate more procyclical for small producers480

while more countercyclical for large producers, evinced by Panel (a) in Figure I.12.481
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