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Every day, chacma baboons, an old world primate, navigate to 
and from the safety of their sleeping post and distant foraging 
or watering sites1. The decision to move to alternative locations 

is not simply guided by accumulation of sensory evidence for that 
choice but by internal representation or memory of the alternative 
choice’s value. The same is true when they move back toward the 
sleeping post in the evening. While sensory and associative deci-
sion-making have been well-studied2, less is known about how rep-
resentations of counterfactual choices—choices not currently taken 
but which may be taken in the future—are held in memory and 
guide behavior.

In humans, the lateral frontal polar cortex (lFPC) holds coun-
terfactual information3–5. This may underlie its role in exploratory 
behavior6. However, many questions remain. First, some of the same 
studies report a similar pattern of activity in the anterior cingulate 
cortex (ACC)3,5,6. Other studies have emphasized a related role for 
the ACC in encoding the value of switching behavior and rejection 
of the default choice7,8. Here we introduce a simple paradigm that 
makes separation of the roles of the areas possible and distinguishes 
them from a third region: the hippocampus. Within the hippo-
campal formation, the subiculum projects monosynaptically to the 
ACC9. Information held in memory in such medial temporal struc-
tures may guide decision-making2. Although little is known about 
whether or how activity in the hippocampus encodes counterfac-
tual choices, it is clear that hippocampal lesions disrupt switching 
between choices in other tasks10.

We also address a second issue: whether macaques possess a 
brain region with a functional role corresponding to that of the 
human lFPC. The human frontal polar cortex can be subdivided 
into the lateral and medial sub-regions, lFPC and mFPC11,12. 
While resting state connectivity patterns exhibited by the human 
mFPC and the macaque FPC are similar, human lFPCs more 
closely resemble the macaque lateral prefrontal cortex (lPFC). It is 
therefore unclear if macaques hold counterfactual information as 
humans do and, if they can, whether it is mediated by the macaque 
FPC or lPFC. We know that when macaques are given feedback 
about what would have happened had another choice been made, 
they use it to guide their next choice13,14. However, how informa-
tion about the multiple counterfactual choices that typically exist 
in natural environments is retained while another choice is actually 
made is unknown.

Finally, our experiment allowed comparison of two fundamen-
tally different ways in which counterfactual choice information 
might influence behavior. On the one hand, information about cur-
rently unavailable choices must be held if future behavior is to be 
accurate when that choice once again becomes available. This might 
be mediated by some combination of ACC, lPFC and lFPC. On 
the other hand, holding information about currently unavailable 
choices may impact on the current decision being made. We show 
that the second influence of counterfactual choice is mediated by a 
distinct neural circuit centered on ventromedial prefrontal cortex 
(vmPFC) and/or medial orbitofrontal cortex (mOFC).

The macaque anterior cingulate cortex  
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The neural mechanisms mediating sensory-guided decision-making have received considerable attention, but animals often 
pursue behaviors for which there is currently no sensory evidence. Such behaviors are guided by internal representations of 
choice values that have to be maintained even when these choices are unavailable. We investigated how four macaque monkeys 
maintained representations of the value of counterfactual choices—choices that could not be taken at the current moment but 
which could be taken in the future. Using functional magnetic resonance imaging, we found two different patterns of activity 
co-varying with values of counterfactual choices in a circuit spanning the hippocampus, the anterior lateral prefrontal cortex 
and the anterior cingulate cortex. Anterior cingulate cortex activity also reflected whether the internal value representations 
would be translated into actual behavioral change. To establish the causal importance of the anterior cingulate cortex for this 
translation process, we used a novel technique, transcranial focused ultrasound stimulation, to reversibly disrupt anterior cin-
gulate cortex activity.
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Four macaques chose between pairs of abstract visual stimuli 
while in the magnetic resonance imaging (MRI) scanner (Fig. 
1a,b). On each trial, the two stimuli available for choice (available 
options) were drawn from a set of three, each associated with dis-
tinct reward probabilities (Fig. 1a). The rewards were delivered 
probabilistically in a manner that fluctuated across the session, with 
two of the options reversing toward the middle of a session (Fig. 1c). 
Each stimulus’ reward probability was uncorrelated from that of the 
others (<22% mean shared variance). On each trial one of the two 
available options was chosen by the monkey, the other was uncho-
sen and a third option was invisible and unavailable for choice. Both 
the unchosen option and the unavailable option can be considered 
counterfactual choices—although these choices were not made on 
the current trial, they might be made on a future occasion.

Behavioral analyses demonstrated that animals maintained rep-
resentations of counterfactual choice values to guide future behav-
ior on subsequent trials. We therefore used functional MRI (fMRI) 
to test whether neural activity reflected counterfactual choice values 
according to one of several possible schemes. fMRI allowed us to 
search for activity related to counterfactual choice value through-
out the brain. First, neural activity might represent the value of the 
unavailable option (Hypothesis 1; Fig. 1e). Alternatively, it might 
reflect the value of any counterfactual option—options that are cur-
rently unavailable for choosing and options that are available on 
the current trial but which are unchosen. In such a scheme, it may 
not be important whether a counterfactual choice is unavailable 
or unchosen; however, if such a representation is to guide future 
behavior, then it should reflect the ranked values of the alternative 
options (Hypothesis 2; Fig. 1f). We also compared this with a third 
scheme in which an unavailable option’s value had no influence 
on neural activity (Hypothesis 3; Fig. 1g). Notably such a coding 
scheme corresponds to the claim that ACC activity simply reflects 
decision difficulty8,15. According to this view, it is the difference in 
value between the choices available that determines decision dif-
ficulty (when the difference is large it is easy to identify the better 
choice but this is not the case when the difference is small). Thus, 
an option not actually available does not affect the difficulty of the 
current decision and therefore does not influence the ACC.

In our animal model it was possible to investigate not just corre-
lation between neural activity and behavior but the activity’s causal 
importance for behavior16. We used transcranial focused ultrasound 
stimulation (TUS). Like transcranial magnetic stimulation, TUS can 
alter neural activity17 but unlike transcranial magnetic stimulation it 
can even do so in relatively deep structures such as the ACC18. The 
TUS 250-kHz ultrasound stimulation was concentrated in a cigar-
shaped focal spot several centimeters below the focusing cone. A 
series of five experiments, each conducted in three macaques, has 
demonstrated that this protocol transiently, reversibly, reproducibly 
and focally alters neural activity17,18. A similar TUS protocol altered 
saccade planning in macaques when applied to the frontal eye fields 
but not to a location 10–12 mm distant19. Importantly, the mini-
mally invasive nature of the stimulation made it possible to exam-
ine not just a region of interest such as the ACC but also a control 
region in the same animals and to do so without MRI incompatible 
implants. In the current study, consistent with our ranked counter-
factual hypothesis (Hypothesis 2), ACC TUS impaired translation 
of counterfactual choice values into actual behavioral change.

Results
Animals learned option values and maintained them in mem-
ory without forgetting. To behave adaptively in this task, animals 
should estimate each option’s reward probability and maintain these 
estimates in memory. If there are three options (A, B and C), then 
animals should retain what they have learned about option C even 
if subsequent trials involved presentation of only options A and B. 
The representations of C’s value should then guide future decisions 

when C becomes available again. We therefore modeled animals’ 
choices using a reinforcement learner20,21 and tested whether the 
unavailable option’s estimated reward probability (which in our 
experiment determines expected value) either decayed over time 
and/or became distorted to account for risk preference22,23. After 
simulating behavior with several reinforcement-learning models 
(Methods and Supplementary Fig. 1), Bayesian model comparison 
revealed that monkeys did not forget unavailable option values nor 
distorted probability. Thus, animals learned the options’ values and 
maintained them in memory without forgetting even when options 
were not available on a given trial.

To confirm the relationship between the better model’s predic-
tions and behavior, we compared choice probabilities predicted by 
the Maintain model and the actual recorded frequencies of animals’ 
responses and found that the model matched behavior well (Fig. 
1d; Pearson R2 = 0.92). Having established the goodness of fit of the 
Maintain model to behavior, all further analyses were conducted 
using the expected values estimated with this model. To predict 
behavior as in humans and artificial decision-making networks24, 
estimates for the two available options were categorized as ‘high 
value’ (HV) and ‘low value’ (LV) and accuracy was categorically 
defined as HV selection. With these estimates, we found that the 
difference in value between the two available options (sometimes 
called ‘difficulty’ as depicted in Fig. 1g) as well as the total value of 
available options were reliable predictors of animals’ choice accu-
racy (value difference: Cohen’s d = 1.42, t24 = 7.12, P = 2.3 × 10−7; 
total value: Cohen’s d = 0.82, t24 = 4.10, P = 4.04 × 10−4) and reaction 
times (value difference: Cohen’s d = −0.74, t24 = −3.68, P = 0.001; 
total value: Cohen’s d = −1.11, t24 = −5.54, P = 1.07 × 10−5; Fig. 1d).

Value associations of counterfactual options guide future 
choices. To guide future behavior, it is essential to retain counter-
factual choice values in case these choices become available again 
in the future. There are at least two different ways that animals can 
maintain counterfactual information for future use. The first way is 
to consider which choices are available and which are not on each 
trial (Hypothesis 1; Fig. 1e)25 and thus to categorize the options as 
‘chosen’, ‘unchosen’ and ‘unavailable’. A second way to describe the 
options (Hypothesis 2; Fig. 1f) is to think of both the unchosen and 
the unavailable options as alternative courses of action constitut-
ing the counterfactual choices—potential choices that were not, or 
could not, be taken on the current trial but which might be taken in 
the future. Animals might rank the expected value associated with 
the counterfactual options. Therefore, we characterized them as the 
‘better’ and ‘worse’ counterfactual options irrespective of their avail-
ability. Finally, we can test the hypothesis that animals only repre-
sent the difficulty of the current decision (Hypothesis 3; Fig. 1g)15,26.

In line with the first hypothesis, we performed a logistic regres-
sion assessing whether the unavailable option’s expected value 
influenced its future selection when it next reappeared on the 
screen. Decisions to select the previously unavailable option were 
strongly related to its expected value (one-sample t-test on regres-
sion coefficients: Cohen’s d = 1.59, t24 = 7.95, P = 3.5 × 10−8; Fig. 2a). 
A complementary analysis confirmed these results and showed that 
the accuracy of the future choice was influenced by the currently 
unavailable option, particularly when its most recent expected 
value was the best of the three options (Cohen’s d = 1.06, t24 = 5.32, 
P = 1.87 × 10−5; Fig. 2b) beyond the effect of the current chosen and 
unchosen options (chosen: Cohen’s d = 0.98, P = 5.04 × 10−5; uncho-
sen: Cohen’s d = −0.87, P = 2.92 × 10−5).

In line with the second hypothesis, we performed a series of 
analyses similar to those described above but replacing value esti-
mates for the unavailable option by estimates for better and worse 
alternative choices. These analyses revealed that animals’ deci-
sions to switch to the better counterfactual choice were influenced 
by its expected value (Cohen’s d = 1.23, t24 = 6.16, P = 2.32 × 10−6) 
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but this was not true for the worse counterfactual choice (Cohen’s 
d = −0.09). In summary, the worse counterfactual had less of an 
influence on the decision to switch (Fig. 2c,d). Overall, the results 
demonstrate two ways of categorizing the choices made in the task: 
either by classifying them as ‘available’ and ‘unavailable’, or by con-
sidering the current chosen option in contrast to better and worse 
counterfactual choices. These frameworks guided analysis of fMRI 
data (Fig. 1e–g).

Hippocampal activity predicts successful future choices when the 
unavailable option becomes available again. Having established 
that animals not only represent choice value information that can-
not be used on the current trial, but exploit this information on 

pending trials, the first fMRI-related analysis explored the extent to 
which neural activity reflected the expected value of the currently 
unavailable option (Hypothesis 1; Fig. 1e, left panel). We tested for 
voxels across the whole brain where activity correlated with the trial-
by-trial estimates of the unavailable option’s expected value, partic-
ularly when the future selection was successful. We also included 
the expected value of the chosen and unchosen options as separate 
terms in the general linear model (GLM; GLM1 in Methods). This 
analysis revealed one region in which the neural value coding of the 
unavailable option was different for successful future selection com-
pared with unsuccessful future selection, surviving multiple cor-
rection (Z > 3.1, whole-brain cluster-based correction P < 0.001): 
right hippocampus (peak Cohen’s d = 0.72; Z = 3.61, CARET F99 
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Fig. 1 | Schematic view of the task, behavioral results and hypothesized neural schemes. a, On each trial, animals could choose between two symbols 
presented on the screen and had to keep in mind a third option, unavailable to them. The position of each symbol on the left or right part of the screen and 
the combination of available or unavailable options were fully and pseudorandomized, respectively. b, Each trial began with a random delay followed by the 
presentation of two abstract symbols for a period ending when the animals made a choice. During this time, monkeys pressed one of two touch sensors to 
indicate which of the two symbols (right or left) they believed was more likely to lead to a reward. Finally, the decision outcome was revealed for 1.5 s. The 
selected symbol was kept on the screen (or not) to inform the monkeys of a reward delivery (or no reward). c, The plots show the probability of receiving 
a reward for choosing option 1 (light green), 2 (dark green) or 3 (brown) on each trial in the 200-trial sessions. d, The top graphs show the proportion of 
correct choices (selecting the option with the highest reward probability) plotted as a function of difficulty (distance between the better high value (HV) 
and the worse low value (LV) presented options, left panel) and context value (sum of expected values of both HV and LV values, right panel). Decision 
accuracy improved with the higher value difference between available options and the higher total value. The bottom graphs show log-transformed mean 
reaction times (RT) for each session plotted as a function of difficulty and context. The log(RT) values decreased for easier decisions and higher trial 
values. Dark gray lines are linear fits to the data, and the lighter gray lines are the 95% confidence interval; n = 25 sessions. e, Because each of the values 
of the three options were uncorrelated with one another it was possible to look for neural activity according to three main coding schemes. If activity in a 
brain area covaries only with the value of the unavailable option, this suggests that the area is concerned with representing the value of an option held in 
memory on the current trial and which should not interfere with decisions taken on the current trial. f,g, If instead activity covaries with the ranked value 
of both the unchosen available option and the option held in memory, it reflects the value of any currently counterfactual choice that might be taken in 
the future (f). It is important, however, to distinguish such a pattern from a third possibility (g) in which neural activity is only reflecting the currently 
available options without representing the counterfactual or unavailable option. Thus, the activity would be negatively related to the HV available option 
value and positively related to the LV option value. This third pattern indicates that the brain area’s activity reflects the difficulty or uncertainty of the 
current decision, because the difficulty of selecting an option becomes harder as the LV option increases and as the HV option decreases but is unaffected 
by the value of the choice that cannot currently be taken (see the discussion by Kolling and colleagues15). Note that we also analyzed a fourth pattern, 
representing the value of each option separately, in Supplementary Fig. 3.
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Atlas (F99): x = 16.5, y = −7.5, z = −12). At a lower threshold, we 
also found its bilateral counterpart: left hippocampus (peak Cohen’s 
d = 0.61; Z = 3.05, F99 x = −14, y = −9, z = −12.5; Fig. 3a). There 
was, however, no significant relationship between hippocampal 
activity and the values of the choices that the monkeys were choos-
ing between on the current trial (Supplementary Fig. 2).

To illustrate the significant activity in bilateral hippocampal 
regions, we extracted the time course of the neural activation in 
two regions of interest (ROIs) (Methods; Fig. 3b, left panel). Note 
that this analysis was performed for illustrative purposes only as 
the ROIs were formally linked to the comparison between correct 
and incorrect future selection used to establish the ROI location27. 
The activity pattern represented in this analysis is noteworthy as it 
shows that the blood oxygenation level dependent (BOLD) signal in 
the hippocampus is scaled by the expected value associated with the 
unavailable options only when the currently unavailable option is 
going to be chosen correctly on a future trial.

The role of the hippocampus in maintaining information about 
currently unavailable choices may also encompass the prospect of 
rejecting the currently unavailable option if it is likely to be worse 
than the others28. To demonstrate this, we repeated the analysis in 
the trials preceding those in which the animal decided not to select 
a currently unavailable option. Critically, this analysis also revealed 
a greater BOLD signal for the value of the unavailable option on the 
current trial when this option was correctly rejected in the future 
compared to when it was incorrectly rejected (leave-one-out peak 
selection: right hippocampus, Cohen’s d = 0.59, t24 = 2.96, P = 0.006; 
left hippocampus, Cohen’s d = 0.44, t24 = 2.19, P = 0.03; Fig. 3b, 
right). In summary, hippocampal activity is scaled by the cur-
rently unavailable option’s value more strongly (for example, there 
is a stronger memory trace) when the next decision involving that 
option is going to be made correctly regardless of whether it is going 
to be chosen correctly (because it is highest in value) or rejected cor-
rectly (because it is lowest in value) in the future.

Finally, having established that hippocampal activity is related 
to the memory of unavailable options, we hypothesized that the 
variation in such activity (at trial t) across sessions might predict 
the variation in influence of the unavailable option’s value on future 
accurate switching behavior (at t + 1) (Fig. 2b). We found a significant  

correlation in the case of future decisions in which the unavail-
able option became accessible (Pearson R = 0.43, P = 0.03) but no 
correlation for the current decision while the unavailable option 
remained inaccessible (Pearson R = 0.01; Fig. 3c). This result again 
suggests that the hippocampus is involved in future planning but 
not current on-going decision-making.

ACC ranks counterfactual options according to their expected 
value. The previous analysis was predicated on the idea that the 
brain maintains information in memory pertaining to currently 
unavailable choices while encoding what is relevant for the current 
decision elsewhere in the brain. Therefore, we next sought brain 
regions encoding the key decision variable—how much better is the 
currently chosen available option compared to the currently rejected 
available option. We searched for activity parametrically encoding 
the difference in value between the currently chosen and uncho-
sen options (GLM2: chosen versus unchosen expected values). 
Such a neural pattern, when locked to decision time, is sometimes 
referred to as a choice or value-comparison signal. We found strong 
bilateral activations in a distributed network including ACC (peak 
Cohen’s d = −0.75; Z = −3.75, F99 x = 1, y = 20.5, z = 10.5), lPFC 
(right peak: Cohen’s d = −0.92; Z = −4.61, F99 x = 14.5, y = 17.5, 
z = 9.5; left peak: Cohen’s d = −0.86; Z = −4.29, F99 x = −15, y = 16, 
z = 9.5) and vmPFC and adjacent mOFC (peak Cohen’s d = −0.80; 
Z = −4.01, F99 x = −5, y = 14, z = 2) encoding the (negative) differ-
ence in expected value between the chosen and unchosen options 
(Fig. 4a; |Z| > 3.1, whole-brain cluster-based correction P < 0.001). 
In other words, activity in these areas increased as decisions became 
harder (for example, because the subjective value of the chosen 
option became lower or the subjective value of the unchosen option 
became higher or both).

To first illustrate the relationship between option values and 
lPFC and ACC activity, we extracted BOLD time courses (using 
a leave-one-out cross-validation approach to avoid circularity of 
analyses) from ROIs over each region and performed further anal-
yses (Methods). For each region, we found activity related to the 
difference between chosen and unchosen values was mainly driven 
by the negative relationship of the BOLD signal with the expected 
value of the chosen option (all |Z| > 3.1 for the chosen regressor);  
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Fig. 2 | Future switches are explained by the expected value associated with counterfactual options. a, Estimated expected values associated with the 
unavailable option on the current trial predict whether animals switch to it when it reappears on the screen on subsequent trials (y axis, probability of 
switching to the currently unavailable option; x axis, reward probability associated with the unavailable option estimated from the Maintain model). Each 
bin contains 20% of averaged data across trials (individual sessions in gray dots; average across sessions in red dots). b, A logistic regression confirms 
that accuracy is explained by the currently unavailable option’s value (higher accuracy for trials in which it is the best of the three options versus when 
it is not), in addition to the value of the future chosen and unchosen options (each session’s β coefficient is represented as a gray dot and the mean β 
coefficients is represented as a colored dot); a.u., arbitrary units. c, A similar analysis to the one shown in a, but on the basis of a new coding scheme in 
which the counterfactual options (current unchosen option and current unavailable option) are ranked according to their associated reward probabilities as 
the better and the worse counterfactual choices. d, A logistic regression confirms that the value of the better counterfactual option significantly influenced 
the frequency with which monkeys subsequently switched to it, but this was not the case for the worse counterfactual option. One-sample t-tests were 
used across session on the resulting regression coefficient β; n = 25, for all analyses.
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there was no significant activity for the unchosen option. 
Importantly, the analysis contained an extra regressor represent-
ing the unavailable option’s value, which also had no significant 
effect in the ACC and lPFC. Importantly, the negative relation-
ship between the ACC BOLD signal and the value of the chosen 
option may reflect the opportunity cost of switching away from the  
current choice.

Following this idea, in a second step, we tested whether the ACC 
might represent the possible alternatives that the animal might 
switch to in the future (Hypothesis 2). In this scheme, the two 
options not selected on the current trial, the unchosen option and 
the unavailable option, could both be considered counterfactual 
options that might be taken in the future and which could be ranked 
according to their expected value (GLM3: better versus worse alter-
natives model, as per behavioral analyses). Using Bayesian statistics 
for each region within the same network (see Methods), we found 
that the activity pattern representing better and worse alternatives 
provided a significantly better account of neural activity in both 
the ACC and lPFC compared to either the subjective choice com-
parison model (GLM2) or a third model (GLM4) that does not rep-
resent alternative options but rather the difficulty of selecting the 
current response (Hypothesis 3 in Fig. 1g) with exceedance prob-
ability φs > 0.95 (Fig. 4b; see Supplementary Fig. 3 and the Methods 
for full Bayesian model comparison29). Thus, while the ACC does 
not code for the value of the unchosen and unavailable options 
individually, it maintains a value of the best current alternative, and 
this effect is only visible in the data when the reference frame is 
altered from focusing on the unchosen/unavailable (first scheme or 
Hypothesis 1) to focusing on the best alternative (second scheme 
or Hypothesis 2). One interpretation of the activity pattern is that 

it forecasts choosing the better of the counterfactual options during 
future decisions.

We directly tested this hypothesis using multiple regressions to 
investigate whether the activity in the lPFC or ACC would predict 
upcoming switching behavior. For each ROI, we employed four 
regressors time-locked to the stimulus period of trial t, including 
(1) the expected value of the better alternative if the future trial is a 
switch to that option; (2) the expected value of the better alternative 
if the future trial is a stay (that is, a repetition of the same choice as 
on the current trial); (3) the expected value of the worse alterna-
tive if the future trial is a switch to that option; (4) the expected 
value of the worse alternative if the future trial is a stay. ACC activ-
ity predicted upcoming decisions to switch to the better and avoid 
the worse counterfactual (Fig. 4c; leave-one-out procedures for 
peak selection, post-hoc one-sample t-tests, best: Cohen’s d = 0.48, 
t24 = 2.41, P = 0.02; worst: Cohen’s d = −0.59, t24 = −2.94, P = 0.007) 
but this was not true in lPFC (all Cohen’s d < 0.23, P > 0.02). Such 
a pattern is consistent with a role for the ACC in evaluating future 
strategies before execution3,30–32. By contrast, the macaque anterior 
lPFC holds estimates of counterfactual choice values that are less 
immediately linked to behavior. Similarly, human frontal polar cor-
tex activity reflects the values of alternative choice strategies in a 
manner that is also less immediately linked to behavior26.

It has been suggested that ACC activity simply reflects deci-
sion difficulty8,15 (Fig. 1g). When one option’s value is much higher 
than the other option’s value, the decision is easy. However, when 
the values of the two options are similar, the decision is difficult 
because it is hard to reject an alternative that is close in value. Our 
neural model comparison rejected this hypothesis (Supplementary 
Fig. 3c). Another possible index of decision difficulty is the reaction 
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time (RT). We controlled for this in all our analyses by parametri-
cally modulating the duration of the boxcar regressor locked at the 
time of the decision by RT (regressor DEC in GLMs 1, 2, 3 and 4).

ACC disruption impairs translation of counterfactual choice val-
ues into actual behavioral change. To test whether counterfactual 
choice value representations in ACC were causally important for 
effective behavioral switching, TUS was applied to the same ACC 
region. We previously demonstrated, using resting state fMRI (rs-
fMRI) data that 40 s sonification at 250 kHz reaches the ACC and 
does so in a relatively focal manner having a lesser effect on adja-
cent, even overlying, brain areas18. Here we provide an additional 
demonstration that ACC-TUS increases activity correlation within 
the stimulated region but reduces correlation between the stimu-
lated region and other regions (Fig. 5a). The rs-fMRI scans were 
collected for two healthy animals (the rs-fMRI scans from the two 
animals were acquired under no stimulation; rs-fMRI scans from 
one animal were acquired post ACC-TUS). As in previous investiga-
tions, the effects are specific to the stimulated area (Fig. 5b). In two 
of the four macaques, the same stimulation was applied to the ACC 
using MRI-guided frameless stereotaxy19,33 immediately before nine 

testing sessions that were interleaved, across days, with nine control 
sessions in which no TUS was applied (Fig. 5a and Supplementary 
Fig. 4; Methods). We used a similar experimental design as in all 
previous fMRI sessions. There were clear differences in choice pat-
terns between the ACC-TUS and control conditions (Fig. 5c). For 
example, option 1 was often the best choice to take for most of the 
first part of the task (the inset in Fig. 5c shows that this was the 
case for approximately the first 120 trials of the task). The frequency 
with which option 1 was chosen during this period was, however, 
reduced after TUS (Cohen’s d = 0.66, t34 = 1.92, P = 0.06). However, 
closer analysis revealed that option 1 was not always chosen less fre-
quently after TUS. For example, the rate of choosing option 1 was 
unaffected on trials that followed those on which option 1 had pre-
viously been chosen (Cohen’s d = 0.36). The rate of choosing option 
1 was, however, significantly reduced on trials that followed those 
on which it had previously been a counterfactual option—on tri-
als on which it had previously been unavailable (Cohen’s d = 0.67, 
t34 = 1.97, P = 0.05; see Fig. 5d).

One possibility is that decisions are made differently after ACC-
TUS when they are difficult. Such a pattern of impairment would 
be expected by accounts of ACC function emphasizing the moni-
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toring of the difficulty or conflict involved in action selection8,15. 
According to such accounts, decisions are difficult if the values of 
the options are similar. We therefore examined accuracy as a func-
tion of the difference in value between the best and worse avail-
able options (HV and LV), defined as the objective values (reward 
probability over the last ten trials). While once again we found 
evidence for a difference in ACC-TUS versus control performance 
(Cohen’s d = 0.53, t17 = 2.31, P = 0.033), there was no evidence that 
TUS-induced impairment increased as difficulty increased (Fig. 5e, 
left-hand side; see Supplementary Fig. 5d for analysis of accuracy 
using reinforcement learning (RL) estimates); instead, if anything, 
the opposite was the case. In this respect the pattern of impairment 
is distinct to that seen after vmPFC/mOFC lesions when decision-
making is more impaired when decisions are difficult34.

The fMRI analyses suggested that ACC activity encodes the 
better counterfactual alternative but not the worse counterfactual 
alternative (Figs. 2f and 4b). Therefore, we examined whether ACC-
TUS diminished the influence of counterfactual options in general 
or diminished the influence of the better counterfactual option on 
behavior. We regressed the frequency with which monkeys switched, 
on one trial, onto the values of choices that, on a previous trial, had 
been counterfactual alternatives (Fig. 5d). As in previous analyses, 
without TUS, the value of the better counterfactual option signifi-
cantly influenced the frequency with which monkeys subsequently 
switched to it (Cohen’s d = 1.57, t17 = 6.7, P = 3.62 × 10−6) but this was 
not the case for the worse counterfactual option (Cohen’s d = 0.24, 
t17 = 1.03, P = 0.3). This was, however, not true for the TUS condition. 
When comparing control with TUS data, linear mixed-effect analy-
sis revealed a significant difference between the effect of TUS and 
the influence of the best counterfactual values on switching (Cohen’s 
d = 0.70, t34 = 2.05, P = 0.04). The significant difference between the 
influence of the better and worse counterfactual option value on 
future switching behavior that was present in the baseline condition 
(post-hoc test: Cohen’s d = 0.79, t17 = 3.39, P = 0.003) was abolished 
(Cohen’s d = 0.24, t17 = 1.05, P = 0.3) after ACC-TUS (Fig. 5f).

We further hypothesized that this behavioral change would 
impact the monkeys’ search strategies7 and reduce the influence of 
entropy (the unpredictability of the environment; see Methods for 
a computational definition of entropy) on their exploratory behav-
ior35. In a running window analysis, we used the slope of entropy 
to predict the slope of cumulative stay choices (that is, successive 
choices of the same option)36. As lower entropy favors exploiting 
knowledge to maximize gains and higher entropy favors explor-
ing new options and discovering new outcomes, we expect to 
see a negative relationship between entropy and the frequency of 
stay choices. In the control condition, we found such a relation-
ship (Cohen’s d = −1.20, t28 = −6.59, P = 3.77 × 10−7) but this was 
not the case after ACC-TUS (Cohen’s d = 0.04, t28 = 0.22, P = 0.82) 
(Fig. 5g). Note that, while local entropy and cumulative stay are 
negatively related to value difference (ACC TUS: Cohen’s d = −0.67, 

t28 = −3.65, P = 0.001; ACC-SHAM: Cohen’s d = −0.90, t28 = −4.95, 
P = 3.17 × 10−5; Supplementary Fig. 5a, b), we did not find any dif-
ference in the nature of the relationship between SHAM and TUS 
conditions (local entropy and value difference: Cohen’s d = −0.03, 
t34 = −0.11, P = 0.91; cumulative stay and value difference: Cohen’s 
d = −0.28, t34 = 0.83, P = 0.41).

In a final TUS experiment, to control for the anatomical speci-
ficity of the observed effects, we examined the effect of TUS of the 
lateral orbitofrontal cortex (lOFC) in four macaques, a brain region 
also associated with distinct aspects of reward-guided learning 
and decision-making37,38 (Methods). lOFC-TUS, however, had no 
impact on the way in which counterfactual choice value was trans-
lated into subsequent actual behavioral switching (Supplementary 
Fig. 6). There was no difference in the effect of the best counter-
factual on switching behaviors between the lOFC-TUS and lOFC-
SHAM (Cohen’s d = 0.19, t19 = 0.58, P = 0.56; similarly, if we only 
apply the test to the same two animals that had been examined in 
the ACC-TUS experiment: Cohen’s d = 0.21, t9 = 0.46, P = 0.66). 
Further direct comparisons between lOFC-TUS and ACC-TUS 
showing significant differences between the two types of TUS are 
reported in Supplementary Fig. 6. Additionally, there was no dif-
ference between the strength of the relationship between entropy 
and cumulative stay in lOFC-TUS and lOFC-SHAM conditions 
(Cohen’s d = 0.32, t19 = 0.99, P = 0.33).

The unavailable option value affects the current value compari-
son via vmPFC/mOFC. One other area, the vmPFC/mOFC, also 
carried a choice value-comparison signal (Figs. 4a and 6b). This 
pattern of decision-related fMRI activity in the vmPFC/mOFC has 
been reported previously in macaques38. Given the vmPFC/mOFC’s 
importance for many aspects of decision-making34,38, it is notewor-
thy that, unlike ACC, vmPFC/mOFC activity reflecting better and 
worse counterfactual values did not predict behavioral switches on 
future trials (as per the results presented in Fig. 4c). Instead, the 
vmPFC/mOFC is concerned with the decision being taken now 
rather than in the future. In the following analyses, however, we 
tested whether the value of the unavailable option was associated 
with any other impact on the vmPFC/mOFC.

We first assessed whether the unavailable option’s value was 
associated with any variation in monkeys’ choices between available 
options. We computed accuracy (HV selection) and used a logistic 
regression to predict this categorical variable as a function of the 
unavailable option’s value (including HV and LV in the model). Our 
results show that the higher the value of the unavailable option, the 
better animals were at discriminating between the two available 
options (Cohen’s d = 0.76, t24 = 3.79, P = 0.0005; similar results were 
obtained using a mixed-effect logistic regression model including 
sessions and animals as random effects using the lmer4 package in 
the R environment: χ2

(1) = 25.78, P < 0.001). To illustrate this effect, 
we represented frequency of choosing an option (for example, the 

Table 1 | Rois for rs-fMRi connectivity analyses

Roi A (ACC) B C D E F (MCC) G (PCC)

X −2.6 −1.8 −1.5 −1.8 −1.3 −0.9 −1.5

Y 20.4 13.8 6.5 −2.0 −8.9 −15.7 −21.0

Z 10.3 12.8 14.2 15.6 14.3 15.2 11.9

Roi H (PCC) i (PCC) J (PCC) K (lPFC) L (dlPFC) M (dlPFC) N (lPFC)
X −1.3 −1.1 −2.0 −6.7 −9.5 −14.8 −8.0

Y −25.7 −30.7 −24.7 20.4 14.8 14.7 19.4

Z 8.0 8.6 2.5 15.9 18.9 15.8 11.0

The XYZ coordinates of the ROIs used in the rs-fMRI connectivity analysis are listed. For the ACC seed analyses, we excluded ROI A (the ACC itself) and thus used B–N. For the lPFC seed analyses, we 
excluded the two ROIs too close to the seed to avoid circular analyses (namely, L and M). In addition, we excluded the ACC and neighboring ROIs and thus used F–J and N, since TUS over ACC seems to 
have an influence on the connectivity of the lPFC. MCC, middle cingulate cortex; PCC, posterior cingulate cortex; dlPFC; dorsolateral prefrontal cortex.
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right option) as a function of the value difference between the two 
available options (right and left option values) for two different 
levels of the unavailable option values (high versus low; median 
split). Importantly, although the unavailable option can never be 
chosen, its value is associated with a change in the efficiency of 
choice behavior (Fig. 6a; Cohen’s d = −0.53, t24 = −2.66, P = 0.01; 
see Supplementary Fig. 7 for individual animal details), and relative 
choice curves were steeper when the unavailable option had high 
versus low values.

To examine vmPFC/mOFC activity, we used a literature-based 
ROI selection (in area 11m/11; Fig. 5b, left). We focused on activity 
reflecting the value difference guiding decisions between available 
options (chosen value – unchosen value) and binned it according 
to the value of the unavailable option (low, [0 33]%; middle, [33 
66]%; high, [66 100]% percentiles of unavailable option value). 
The vmPFC/mOFC response to the chosen value – unchosen value 
difference was modulated by the currently unavailable option’s 
value (linear mixed-effect analysis: Cohen’s d = −1.15, t10 = −4.01, 
P = 0.002; Fig. 6b, right panel), in exactly the same way as behavior. 
Normally, vmPFC/mOFC activity reflects the value of the chosen 
option with a negative sign (Figs. 4b and 6d); as the chosen option’s 
value falls and choosing it becomes more difficult, there is more 

activity in the vmPFC/mOFC. This negative signal was dimin-
ished when the unavailable option value was very low and deci-
sions between available options were less accurate. In summary, 
low (high) value unavailable options were associated with weaker 
(stronger) vmPFC/mOFC value-comparison signals and weaker 
(stronger) current decision accuracy. Importantly, the same analysis 
in the ACC and lPFC (both hemispheres) shows that the other areas 
behave differently and do not represent such modulation of value 
comparison by the unavailable option (all P > 0.25).

To further test the strength of the link between the contextual 
factor’s impact on the current decision and its neural impact in the 
vmPFC/mOFC, we exploited variability in the behavioral effect 
across sessions. We hypothesized that variation across sessions in 
the size of the contextual influence on the vmPFC/mOFC would be 
related to variation in behavioral accuracy. To test this hypothesis, 
we first performed a partial regression analysis to reveal the uncon-
taminated effect of the contextual effect associated with the unavail-
able option’s value on accuracy after controlling for the effects of 
the available options’ values (Cohen’s d = 0.56, t24 = 2.84, P = 0.008; 
see Fig. 6c). Separately, we extracted the contextual effect associated 
with the unavailable option’s value-related signal change across ses-
sions (time-course analysis performed with the GLM2; see Fig. 6d  

–0.5 0.00 0.54

Right option – Left option

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 s

el
ec

tin
g 

rig
ht

Low unavailable
High unavailable

a

c

Modulation of value comparison
b

(x = –5)

C
or

re
ct

ed
–2

.5
7

–4
.7

vmPFC/mOFC ROI
(MNI: –5.5, 24, 6.5)

C
ho

se
n 

– 
un

ch
os

en
Z

-v
al

ue

β 
w

ei
gh

ts
 (

a.
u.

)
D

iv
er

ge
nc

e 
fr

om
 a

ve
ra

ge
 V

D

–0.4

–0.2

0

0.2

Low Mid High

Unavailable option value

B
et

as
 w

ei
gh

t (
a.

u.
)

–2 0 2 4 6 8

Time (s)

–0.15

–0.1

–0.05

0

0.05

0.1

Chosen
Unavailable

–0.5 0 0.5 1 1.5

–0.1

0

0.1

0.2

R = 0.58
P = 0.002

β weights (a.u.)
Unavailable

β 
w

ei
gh

ts
 (

a.
u.

)
P

ar
tia

l r
eg

re
ss

io
n 

(b
eh

av
io

ra
l)

–0.24 –0.06 0.08 0.22

Residuals unavailable

–0.1

–0.05

0

0.05

R
es

id
ua

ls
 a

cc
ur

ac
y

d e

P = 0.08

P = 0.01

Partial regression plot

Fig. 6 | Contextual modulation of value-guided choice. a, Average choice behavior when choosing between the left and right options plotted as a 
function of the value of the unavailable option (low, green; high, yellow). Decisions were less accurate when they were made in the context of a low-
value unavailable option. Curves plot logistic functions fitted to the choice data; n = 25 sessions. b, ROI analysis of the vmPFC/mOFC (left, ROI sphere) 
illustrates the relationship between the BOLD value-comparison signal and the expected value associated with the unavailable option (binned by low, 
mid and high values) (right). The greater the value of the unavailable option, the more negative the value difference; a more negative pattern is normally 
associated with decisions that are easier to make (see d). Data for individual animals are indicated by red dots (±s.e.m. in gray; n = 4 animals). MNI, 
Montreal Neurological Institute; VD, value difference. c, A partial regression plot shows the uncontaminated effect of the unavailable option’s value on 
accuracy (y axis, accuracy residuals; x axis, residuals of the unavailable option’s value). Each bin contains 20% of averaged data across sessions (± s.e.m.). 
One-sample t-test on betas of regression analysis; n = 25 sessions. d, ROI time-course analysis of the vmPFC/mOFC illustrates the relationship between 
BOLD and the fully parametric representation of the currently chosen and unavailable options. The shaded areas represent s.e.m. across sessions; n = 25 
sessions. e, While there was not a main effect of the unavailable option value, vmPFC/mOFC variation in activity related to the currently unavailable 
option’s value explains between-session variation in the currently unavailable option’s influence on decision-making. Scatter plot at the time of the peak 
effect of unavailable option value in the vmPFC/mOFC (leave-one-out peak selection; n = 25 sessions; Pearson’s R is reported).

NATuRE NEuRoSCiENCE | VOL 22 | MAY 2019 | 797–808 | www.nature.com/natureneuroscience 805

http://www.nature.com/natureneuroscience


Articles NATUre NeUroScieNce

for illustration of the chosen and unavailable options). Sessions 
with a greater contextual impact on the value-related signal in the 
vmPFC/mOFC also exhibited a higher contextual impact on accu-
racy in the current trial (Pearson R = 0.58, P = 0.002; see Fig. 6e).

Discussion
Decision-making is not only guided by accumulation of sensory 
evidence in favor of one choice over another but also by the val-
ues associated with choices that are currently unavailable but stored 
in memory2. It is both essential and a burden to store currently 
unavailable choice values when other choices are actually being 
taken at the current point in time. On the one hand, it is essen-
tial to retain unavailable choice values to guide future behavior; 
choices that are currently unavailable may be taken in the future 
if they become available again, if the value of the choice currently 
taken diminishes, if the current choice is no longer available or if 
the value of the unavailable choice exceeds that of other alternatives 
offered. On the other hand, holding information about unavail-
able choice values is a burden because it distracts from the current 
choice to be taken. Our results demonstrate that the value of a cur-
rently unavailable option is represented in the hippocampus (Fig. 
3), where it is isolated from the values of the choices immediately 
available; currently available choice options have little effect on 
hippocampal activity (Supplementary Fig. 2). In accordance with 
several previous studies from our laboratory7,24,34,39 and others40,41 an 
area in the mOFC/vmPFC is important for comparing the values 
of potential choices during the decision process. If, however, infor-
mation about the currently unavailable option (or potentially some 
other factor that is correlated with the unavailable option’s value but 
which is equally irrelevant to current performance) impacts on the 
mOFC/vmPFC (Fig. 6), then this distracts animals from the current 
choice to be taken. In contrast, translating the currently unavailable 
choice’s value into a counterfactual plan that can be executed in the 
future depends on the ACC (Fig. 4c). In line with this account, ACC 
TUS disrupts the influence that counterfactual choice values have 
on behavioral switching (Fig. 5f) but it does not impact the disrup-
tive effect associated with an unavailable option’s value on the cur-
rent choice that is being made (Supplementary Fig. 7). More broadly 
our results are in accordance with a view that decision-making is 

not accomplished by any single area in isolation but by multiple 
areas such as the mOFC/vmPFC and the ACC on the basis of dif-
ferent criteria42,43. The ACC is especially concerned with signaling 
the value of behavioral change and alternative courses of action7,44,45.

Like the ACC, the lPFC holds counterfactual choice values. In 
this respect, lPFC activity resembles that seen in or near the human 
lateral frontal pole (FPl). The cytoarchitecture of the macaque lPFC 
region studied here is not homologous with human FPl cytoarchi-
tecture46. There are therefore two ways in which the current findings 
might be related to previous findings in humans. First, the encoding 
of counterfactual choice values in humans may have been incor-
rectly attributed to FPl and ought to be attributed to a specialized 
part of area 46 located in the anterior prefrontal cortex that is dis-
tinct to the more posterior regions 9/46v and 9/46d47. Alternatively, 
FPl may be a comparatively new and specialized region in humans. 
While we know that human FPl and medial frontal pole (FPm) 
share cytoarchitectonic features, it is possible that some of the cir-
cuit level interactions and functions of macaque 46 are associated 
with the FPl in humans11. When species diverge over the course of 
evolution, what was originally a single area may become duplicated 
in one species but not in another, and connections previously asso-
ciated with another area may become associated with the new area48.

Notably, while the lPFC held counterfactual choice values in a 
relatively straightforward manner that was unaffected by the likeli-
hood that they would influence a change in behavior, this was not 
the case in the ACC (Fig. 4). By contrast, both the fMRI and TUS 
results suggest that the ACC is concerned with the translation of 
counterfactual information into a change of behavior.

The ACC and lPFC have both been linked to the use of coun-
terfactual information in macaques in previous neurophysiologi-
cal recording studies13,14. One advantage of the approach taken in 
the present study is that we were able to record activity from both 
regions simultaneously and from the hippocampus and vmPFC/
mOFC. The previous studies focused on the use of counterfactual 
feedback—after making a choice. By contrast, here we focus on 
how this information is held at the time of decision-making while 
another choice is actually taken. In addition, we consider how coun-
terfactual information is held even when a choice is temporarily 
unavailable.

lPFC
ACC

mOFC
lOFC

Hippo

Counterfactual choice and choice switching

Choice updating and selection

Ranking
counterfactual choices

Translating counterfactual
choice into behavioral switching

Disrupting effect of unavailable
choice on current decision

Choice value
updating

Choice
selection

Unavailable choice

Fig. 7 | Schematic view of brain regions hypothesized to encode counterfactual choice. Encoding counterfactual choice (in yellow, dashed lines, including 
the ACC, lPFC and the hippocampus), and choice updating and selection (in red, continuous lines, including the lOFC and mOFC/vmPFC, respectively). A 
blue line represents the hypothesized effect exerted by the hippocampus, via the mOFC/vmPFC, on the current choice. Hippo, hippocampus.
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While the hippocampus, dlPFC and ACC hold information 
about currently unavailable choices to guide future behavioral 
change, other mechanisms associated with the vmPFC/mOFC 
have been linked to comparison of the values of specific choice 
options on the current trial (Fig. 7). Information about currently 
unavailable choices is not relevant for such a mechanism but if it 
impinges on it then it distracts from the current choice to be taken. 
Although the presence of high-value distracting information can 
impair decision-making via a process of divisive normalization 
of choice values39,49, so can distracting low-value choice infor-
mation39. The two effects may depend on the distinct manner in 
which choices are encoded in the intraparietal cortex and vmPFC/
mOFC, respectively, and it is possible that they may even act to 
cancel one another in many situations. However, manipulations to 
augment or diminish the influence of one mechanism or another 
may reveal one type of distracting influence more clearly. For 
example, while low-value distractors may disrupt decision-making 
via the vmPFC/mOFC, in the absence of the vmPFC/mOFC, the 
opposite effect prevails and decisions are particularly vulnerable to 
disruption by high-value alternatives34,50.
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Methods
Subjects. Four male rhesus monkeys (Macaca mulatta) were involved in the 
experiment. They weighed 10.4–11.9 kg and were 7 years of age. They were group 
housed and kept on a 12 h light dark cycle, with access to water for 12–16 h 
on testing days and with free water access on non-testing days. All procedures 
were conducted under licenses from the United Kingdom (UK) Home Office in 
accordance with the UK Animals (Scientific Procedures) Act 1986 and with the 
European Union guidelines (EU Directive 2010/63/EU).

Four animals were trained to perform the behavioral task in the MRI  
scanner (a horizontal 3T MRI scanner with a full-size bore). fMRI data  
from all four animals are reported. In a second part of the study we investigated  
the effect of TUS. Because of the positions of the head posts in two animals  
it was only possible to place the TUS cones to target the ACC. It was, however, 
possible to apply TUS to the lateral location appropriate for targeting lOFC in all 
four animals.

Behavioral training. Before the data acquisition, all animals were trained to work 
in an MRI-compatible chair in a sphinx position that was placed inside a custom 
mock scanner simulating the MRI scanning environment. They were trained to use 
custom-made infrared touch sensors to respond to abstract symbols presented on 
a screen and learned the probabilistic nature of the task until reaching a learning 
criterion. The animals underwent aseptic surgery to implant an MRI-compatible 
head post (Rogue Research). After a recovery period of at least 4 weeks, the 
animals were trained to perform the task inside the actual MRI scanner under head 
fixation. The imaging data acquisition started once they performed at more than 
70% accuracy (choosing the option with the highest expected value) for at least 
another three consecutive sessions in the scanner.

Experimental task. Animals had to choose repeatedly between different  
stimuli that were novel in each testing session (Fig. 1a). We used a probabilistic 
reward-based learning task inspired from tasks originally designed to study 
reinforcement learning. Choice options were allocated pseudo-randomly to the 
right- and left-hand sides of the screen and monkeys responded with a right 
or left infrared sensor placed in front of each of their hands. The rewards were 
delivered probabilistically and the probabilities associated with the three options 
fluctuated during the entire session, with the probability of two of the options 
changing toward the middle of a session (Fig. 1c). Thus, the probability range 
for option A was [90 to 10%], the probability range for option B was [70 to 30%] 
and the probability range for option C was [10 to 90%]. Importantly, each day 
the task contained three choice stimuli, but only two of them were choosable on 
each trial (Fig. 1b). This manipulation alters the learning and decision task in 
two major ways. First, the subjects have to maintain in memory the value of the 
option that is not directly available. Second, it creates a horizon of choices that is 
not deterministic, as the animal cannot predict what option will be presented next. 
After making their decision, if an option selected led to a reward (as per the reward 
contingencies associated with each option), the unselected option disappeared 
and the chosen option remained on the screen and a juice reward was delivered. 
If an option selected led to no reward, no juice was delivered. The outcome phase 
lasted 1.5 s. Each reward was composed of two 0.6 ml drops of blackcurrant 
juice delivered by a spout placed near the animal’s mouth during scanning. 
Each animal performed up to 200 trials per session. Each animal performed 
five to seven sessions in the MRI scanner. No statistical methods were used to 
pre-determine sample sizes but our sample sizes are similar to those reported in 
previous publications51. The experiment was controlled by Presentation software 
(Neurobehavioral Systems Inc.).

Because very slow response trials may have been subject to interference  
in the choice selection process, they were excluded from the fMRI analysis of 
choice selection (which was time-locked to the onset of stimulus presentation)  
or in the other behavioral analyses linked to these (Figs. 1 and 2): trials with 
reaction times more than 3 standard deviations from the log-transformed RT 
median were not included in the fMRI analysis (0.3% of trials were excluded  
in this way).

Reinforcement-learning algorithms. We used four reinforcement-learning 
algorithms (Maintain model, Decay model, Maintain model with distortion 
and the Decay model with distortion) to estimate trial-by-trial expected values 
associated with each option using the animals’ responses52. For all models, if 
stimulus A was selected on trial i, its value, v, was updated via a prediction error, δ, 
as follows: vA(i + 1) = vA(i) + α×δ(i), where α is the learning rate and the prediction 
error was given by δ(i) = r(i) − vA(i), where r is the reward obtained. The values of 
the unselected stimulus (for example, B) were not updated. The two first models 
differ in their assumptions of the stimulus that was not shown on that trial (for 
example, C). In the Maintain model, the values of C were maintained at their 
current values such that vC(i + 1) = vC(i). In the Decay model, the values of C 
were updated as followed: vC(i + 1) = vC(i) + γ(vC(1) − vC(i)), where γ is the decay 
parameter. The third and fourth models assumed that a subjective value can be 
distorted by risk preference. Note, however, that while probability distortion might 
make a reward probability appear higher or lower than it might otherwise be, it 
cannot lead to re-ordering of option values, as it is a strictly monotonic function. 

For these models23,24,53, we fitted an additional free parameter η using the following 
equation, where w represents the new value associated with each option:
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To generate choices for both models, we first used a softmax procedure 
in which, on every trial, the probability of choosing stimulus A was given by 
PA(i) = σ(β(vA(i) − vB(i))) or PA(i) = σ(β(wA(i) − wB(i))) for the distortion models, 
where σ(z) = 1/(1 + e−z) is the logistic function and β is the degree of stochasticity 
in making the decision. The model choice probabilities were then fitted against the 
discrete behavioral choices to estimate the free parameters (α, β, γ, η).

Model fitting. To estimate the free parameters (α, β, γ, η), we used a maximum 
likelihood estimation and a constrained nonlinear optimization procedure (as 
implemented in fmincon in MATLAB) separately for each session. The associated 
likelihood function was given by
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A B

where NA and NB denote the number of trials in which stimulus A and B were 
chosen, and BA (BB) equals 1 if A (B) was chosen on that trial and 0 otherwise. We 
fitted this function similarly for the other two stimulus combinations (AC and BC) 
and found the optimal parameters by minimizing the sum of the three negative 
log-likelihoods.

Statistical analyses. For most analyses, we ran multiple linear or logistic 
regressions using MATLAB (glmfit, robustfit). For logistic functions, we used a 
logit link with categorical predictors. All regressors were normalized (as in all fMRI 
regression analyses) to ensure between-model, between-session and between-
modulator commensurability of the regression coefficients. For each session, we 
obtained one β regression weight for each regressor. These were then tested for 
statistical significance across all participants using either analysi of variance or  
t-tests. When assumptions about statistical tests were violated (data normality  
was tested by visually inspecting the residuals from the regressions), we 
transformed the data using a square root transform. All data were shown as mean 
with standard error of the mean (mean ± s.e.m.). Probabilities of P < 0.05 were 
considered as significant.

Reinforcement-learning simulation. To characterize the effect of delay and 
probability distortion over the maintain model assumptions, we generated for 
each trial t the probability of choosing the best option according to the models, 
given the animals’ history of choices and outcomes at trial t − 1 and the individual 
best-fitting free parameters. We submitted all model-simulated choice probabilities 
to the same statistical analyses described below. In a first analysis (left panel in 
Supplementary Fig. 1c), we were interested in investigating whether the different 
models made distinct predictions as a function of the elapsed time since the 
unavailable option was last seen. To do so, we used both simulated and real choice 
data to compare switches to the unavailable option when the latter had been 
unavailable for 1, 2 or 3 consecutive trials. (Note that the variance is significantly 
different in the three bins as the number of times that an option is the same 
for three consecutive trials is very limited (bin1, mean = 150; bin2, mean = 36; 
bin3, mean = 5). Second (right panel in Supplementary Fig. 1c), given the same 
model simulations, we investigated choice patterns before and after reversal. 
For this analysis, we looked at the choice frequency for each option before and 
after the 120th trial. Third (Supplementary Fig. 1d), the last feature of the data 
characterizing the task is the influence of valence (win/loss) on the switch/stay 
pattern. We thus compared the frequency of switch behavior after a win/loss.

Imaging data acquisition. Awake animals were head-fixed in a sphinx position 
in an MRI-compatible chair. We collected fMRI using a 3T MRI scanner and a 
four-channel phased array receive coil in conjunction with a radial transmission 
coil (Windmiller Kolster Scientific). fMRI data were acquired using a gradient-
echo T2* echo planar imaging (EPI) sequence with 1.5 × 1.5 × 1.5 mm3 resolution, 
repetition time (TR) = 2.28 s, echo time (TE) = 30 ms and flip angle = 90o, and 
reference images for artifact corrections were also collected. Proton-density-
weighted images using a gradient-refocused echo (GRE) sequence (TR = 10 ms, 
TE = 2.52 ms, flip angle = 25o) were acquired as reference for body motion artifact 
correction. T1-weighted magnetization-prepared rapid gradient echo (MP-RAGE) 
images (0.5 × 0.5 × 0.5 mm3 resolution, TR = 2,5 ms, TE = 4.01 ms) were acquired in 
separate anesthetized scanning sessions.

fMRI data preprocessing. FMRI data were corrected for body motion artifacts 
by an offline-SENSE reconstruction method54 (Offline_SENSE GUI, Windmiller 
Kolster Scientific). The images were aligned to an EPI reference image slice-by-
slice to account for body motion and then aligned to each animal’s structural 
volume to account for static field distortion55 (Align_EPI GUI and Align_Anatomy 
GUI, Windmiller Kolster Scientific). The aligned data were processed with high-
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pass temporal filtering (3-dB cutoff of 100 s) and Gaussian spatial smoothing 
(with full-width half-maximum of 3 mm). The data that were already registered 
to each subject’s structural space were then registered to the CARET macaque F99 
template56 using affine transformation.

fMRI data analysis. We employed a univariate approach within the GLM 
framework to perform whole-brain statistical analyses of functional data as 
implemented in the FMRIB Software Library57,58:

β ε β β β ε= + = + + ∕ + +Y X X X X1 4 N N1 1 2 2

where Y is a T × 1 (T time samples) column vector containing the times series 
data for a given voxel, and X is a T × N (N regressors) design matrix with columns 
representing each of the psychological regressors convolved with a hemodynamic 
response function specific for monkey brains59,60. β is a N × 1 column vector of 
regression coefficients and ε a T × 1 column vector of residual error terms. Using 
this framework we initially performed a first-level fixed-effects analysis to process 
each individual experimental run, which were then combined in a second-level 
mixed-effects analysis (FLAME (FMRIB’s local analysis of mixed effects) 1 + 2) 
treating session as random effects. For all analysis, we performed a cluster 
inference using a cluster-defining threshold of |Z| > 3.1 with a family-wise error 
(FWE)-corrected threshold of P = 0.001. Time-series statistical analysis was carried 
out using FMRIB’s improved linear model with local autocorrelation correction. 
Applying this framework, we performed the GLMs highlighted below.

GLM1—correct versus incorrect future selection of the currently unavailable 
option. Our first fMRI analysis was designed to reveal the brain regions 
representing the value of the currently unavailable option to guide accurate 
future decision-making. Specifically, locked to the decision time, we included a 
first boxcar regressor parametrically modulated by reaction times to account for 
difficulty effects, as well as two boxcar regressors with a duration of 100 ms that 
were then convolved with the hemodynamic response function: (1) a modulated 
regressor indexing the occurrence of a decision (Dec; all event amplitudes set to 
one and the duration set to the reaction time for that trial); (2–3) two parametric 
regressors whose event amplitudes were modulated by the expected value of the 
unavailable option for (a) future correct selection (unavcorr) and (b) future incorrect 
selection (unavincorr). Additionally, we included two fully parametric regressors 
whose event amplitudes were modulated by the expected value of the chosen (Ch) 
and unchosen (Unch) options that were available on the current trial. Locked to 
feedback time, we included a binary regressor representing positive and negative 
feedback (+1/−1) and a categorical regressor representing right and left responses 
(+1/−1), such as:

β β β β β β β ε= + + + + + + +Y Dec unav unav Ch Unch Fbk Side1 2 cor 3 incor 4 5 6 7

Finally, to further reduce variance and noise in the BOLD signal, we added two 
unconvolved regressors locked at the time of feedback and with a duration of TR 
(2.28 s) for left and right responses (to capture variance in the BOLD signal caused 
by any field distortion coincident with responding), six nuisance regressors one for 
each of the motion parameters (three rotations and three translations) and extra 
single-trial nuisance covariates for abrupt changes in the BOLD signal.

GLM2—subjective choice comparison (chosen option value versus unchosen 
option value). Our second fMRI analysis was designed to reveal the brain regions 
representing the decision-variable guiding choices between the options actually 
available on the current trial (chosen option value − unchosen option value). 
Locked to decision time, we included a first boxcar regressor parametrically 
modulated by reaction times (to account for difficulty effects), as well as three 
boxcar regressors with a duration of 100 ms that were then convolved with 
the hemodynamic response function: (1) a modulated regressor indexing the 
occurrence of a decision (Dec; all event amplitudes set to one and the duration set 
to the reaction time for that trial); (2–4) three fully parametric regressors whose 
event amplitudes were modulated by the expected value of the chosen option (Ch), 
unchosen option (Unch) and unavailable option (Unav) and the same covariates of 
non-interest as described in GLM1:

β β β β β β ε= + + + + + +Y Dec Ch Unch Unav Fbk Side1 2 3 4 6 7

In the third GLM (GLM3: counterfactual model), the unchosen and 
unavailable options were replaced by the better and the worse alternatives; in 
the fourth GLM (GLM4: difficulty model), the chosen and unchosen options 
were replaced by the high-value option and the low-value option presented; and, 
finally, in the fifth GLM (GLM5: object identity model), the chosen, unchosen and 
unavailable options were replaced by the values of options 1, 2 and 3 (see Fig. 1 and 
Supplementary Fig. 3).

Neural model comparison. To assess goodness of fit at the neural level and avoid 
double dipping in favor of the hypothesis that we wanted to support (GLM3)27, 
we first defined from GLM2 several ROIs within a network including all the brain 
areas that survived cluster level P < 0.001 (cluster-based correction) for the value-
comparison (chosen−unchosen) contrast. Within this network, we derived the 

log-evidence from GLM2, GLM3, GLM4 and GLM5. This log- evidence was then 
fed into a Bayesian model selection random-effects analysis (using the spm_BMS 
routine), which computed the exceedance probability of each GLM for each ROI. 
This analysis indicated which GLM best explained the neural data. We report the 
results for the ACC, lPFC and vmPFC/mOFC.

ROI analyses. We conducted analyses on ROIs defined as two-voxel radius 
spherical masks placed over the hippocampus (right: x = 16.5, y = −7.5, z = −12; 
left: x = −14, y = −9, z = −12.5 CARET macaque F99 coordinates), ACC (x = 1, 
y = 20.5, z = 10.5), lPFC (x = 14.5, y = 17.5, z = 9.5) and vmPFC/mOFC (x = −5, 
y = 14, z = 2). We used procedures now standardly employed in most human and 
animal neuroimaging studies39,51,61 in which the mean and s.e.m. (denoted in all 
figures by lines and shadings, respectively) of all the within-subject β weights were 
calculated across sessions for plotting the effect size time courses (each animal had 
a similar number of sessions).

Leave-one-out procedures for ROI spatial peak selection and time-series group 
peak signal. We used two leave-one-out procedures to avoid circularity in our 
analyses. The first aimed atidentifying ROI peak voxels for the analyses of main 
effects for areas identified in all fMRI analyses. For each group level analyses, 
our procedure involved leaving one session out at a time. From the results of the 
remaining 24 sessions, we extracted local maxima of the relevant clusters and 
centered the ROIs for the left out session on the local maxima. We repeated this 
for all sessions. Therefore, the ROI selection was statistically independent from 
the data of the session that was subsequently analyzed in the ROI. We also used 
a leave-one-out procedure on the group peak signal to avoid potential temporal 
selection biases. For every session, we calculated the time course of the group 
mean beta weights of the relevant regressor based on the remaining 24 sessions. 
We then identified the (positive or negative) group peak of the regressor of 
interest within the analysis window of 1−6 s from decision onset. Then, we 
took the beta weight of the remaining subject at the time of the group peak. We 
repeated this for all subjects. Therefore, the resulting 25 ‘peak’ beta weights were 
selected independently from the time course of the subject analyzed. We assessed 
significance using t-tests on the resulting beta weights.

Transcranial focused ultrasound stimulation. A single-element ultrasound 
transducer (H115-MR, diameter 64 mm, Sonic Concept) with a 51.74 mm focal 
depth was used with a coupling cone filled with degassed water and sealed with a 
latex membrane (Durex). The ultrasound wave frequency was set to the 250 kHz 
resonance frequency and 30 ms bursts of ultrasound were generated every 100 ms 
with a digital function generator (Handyscope HS5, TiePie Engineering). Overall, 
the stimulation lasted for 40 s. A 75-W amplifier (75A250A, Amplifier Research) 
was used to deliver the required power to the transducer. A TiePie probe connected 
to an oscilloscope was used to monitor the voltage delivered. The recorded peak-
to-peak voltage was constant throughout the stimulation session. Voltage values 
per session ranged from 128 to 136 V and corresponded to a peak negative pressure 
of 1.152 to 1.292 MPa, respectively, measured in water with an in-house heterodyne 
interferometer (see ref. 62 for more details about the simulation protocol). Based on 
a mean 66% transmission through the skull63, the estimated peak negative pressures 
applied ranged from 0.76 to 0.85 MPa at the target in the brain.

The transducer was positioned with the help of a Brainsight neuronavigating 
system (Rogue Research) so that the focal spot was centered on the targeted brain 
region, namely, the ACC (F99 coordinates x = 1, y = 20.5, z = 10.5) (identified 
according to coordinates of the maximum peak used in GLM2). The ultrasound 
transducer/coupling cone montage was directly positioned on previously shaved 
skin on which conductive gel (SignaGel Electrode; Parker Laboratories Inc.) had 
been applied. The coupling cone filled with water and gel was used to ensure 
ultrasonic coupling between the transducer and the animal’s head.

A sham TUS condition (SHAM) was also implemented as a non-stimulation 
control. Sham sessions were interleaved with TUS sonication days and completely 
mirrored a typical stimulation session (setting, stimulation procedure, neuro-
navigation, targeting of ACC, transducer preparation and timing of its application to 
the shaved skin on the head of the animal) except that sonication was not triggered.

To test for the specificity of TUS on the ACC, we collected 20 lOFC SHAM 
and 20 lOFC TUS (4 animals × 5 sessions) using the same experimental design as 
the ACC-TUS protocol. Two out of the four animals tested were also used in the 
ACC-TUS protocol. TUS and control days were interleaved in one of two pseudo-
random orders that were counterbalanced across animals in each experiment. For 
example, (T, T, R, S, S, R, T, T, T, R), where T, C and R stand for TUS, sham and 
rest days, respectively—note a rest day always intervened at the point of transition 
between TUS and sham days. No statistical methods were used to pre-determine 
sample sizes but our sample sizes are similar to those reported in previous 
publications64. Data collection and analysis were not performed blind to the 
conditions of the experiments.

Finally, given that the TUS procedure lasts for 40 s and has a relatively 
sustained impact on neural activity, it will be possible in future experiments to 
examine the impact of ACC stimulation while recording activity from the ACC 
and interconnected areas either with fMRI or some other technique. However, 
if experiments of this type are to be attempted it will be possible to conduct 
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them only after initially carrying experiments of the sort that we report here; it 
is necessary to establish the precise location of a neural signal before it can be 
targeted with the spatially focal TUS technique.

Entropy analyses. For the analyses presented in Fig. 5 (behavioral analysis 
of TUS data), we used a running window analysis with entropy defined as 

= ∑ .=E i p x p x( ) ( ) log( ( ))i i j i j1
trials

, , , in which xi,j is the probability that a given option 
j is associated with a positive feedback on trial i. We then used the slope of entropy 
(difference between the beginning and the end of a window of 20 trials) as a 
measure of environmental predictability. A positive change in entropy reflects 
that the environment is less and less predictable and should trigger exploration, 
whereas a negative change in entropy should engage exploitative behavior. As a 
proxy for exploration/exploitation, we used the cumulative sum of stay behavior, 
which is simply a vector keeping track of the number of times a choice has been 
chosen. Note that a consecutive stay for an option A that has been chosen on trial t 
could also include trials for which A on the next trial (t + 1) would not be available 
but chosen on the subsequent trial (t + 2).

vmPFC partial regression analysis. To test the strength of the link between the 
unavailable option’s impact on the current decision and its neural impact in the 
vmPFC/mOFC, we computed the accuracy residuals (Y*, from regressing accuracy 
against the values of the two available options omitting the unavailable one) and 
the unavailable residuals (X*, from regressing the unavailable option value against 
the values of the two observable options) and then regressed Y* against X* (ref. 65) 
for each session separately (see the average effect in Fig. 6c).

Macaque rs-fMRI data acquisition, preprocessing and analysis. The rs-fMRI 
and anatomical MRI scans were collected for two healthy animals (rs-fMRI scans 
from the two animals were acquired under no stimulation; rs-fMRI scans from 
one animal were acquired post ACC TUS) under inhalational isoflurane anesthesia 
using a protocol that was previously proven successful66,67 in preserving whole-
brain functional connectivity as measured with BOLD signal. In the case of the 
TUS conditions, we used the same procedure as that employed in refs. 17,18. No 
statistical methods were used to pre-determine sample sizes but our sample sizes 
are similar to those reported in previous publications64.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request

Code availability
The code to generate the results and the figures of this study are available from the 
corresponding author upon reasonable request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Four healthy male rhesus monkeys (Macaca mulatta) were involved in the experiment. Each animal performed between 5 to 7 fMRI scans. A 
total of 25 fMRI scans were used. No statistical methods were used to pre-determine sample sizes but our sample sizes are in accordance with 
gold standards as described in (Friston, Neuroimage, 1999; Desmond, Journal of Neuroscience Methods, 2002) and our previous work (Chau, 
B. K. H. et al. Neuron, 2015; Papageorgiou, G. K. et al. Nat. Commun., 2017). 
In a second part of the study we investigated the effect of TUS.  Because of the positions of the head posts in two animals it was only possible 
to place the TUS cones to target ACC in two animals.  It was, however, possible to apply TUS to the lateral location appropriate for targeting 
lOFC in all four animals. No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in 
previous publications (Vanduffel, W., Zhu, Q. & Orban, G. A. 2014, Neuron). 
An additional rsfMRI and anatomical MRI scans were collected for two healthy animals (rs-fMRI from the two animals were acquired under no 
stimulation; rsfMRI from one animal was acquired post ACC-TUS). No statistical methods were used to pre-determine sample sizes but our 
sample sizes are similar to those reported in previous publications (Vanduffel, W., Zhu, Q. & Orban, G. A. 2014, Neuron).

Data exclusions No fMRI session were excluded from the fMRI. Because of the positions of the head posts in two animals it was only possible to place the TUS 
cones to target ACC in two animals. Trial exclusion criteria for the behavioral analyses was pre-established and was defined as three standard 
deviation above the median of the absolute log-transformed reaction times (Hoaglin,Mosteller, Tukey, 1983).  Indeed, very slow response 
trials may have been subject to interference in the choice selection process. 

Replication All the effects that are reported are ones that were replicated across the group of individuals tested; they were found across the whole group 
of individuals in a mixed effects analysis.  In addition some of the key effects relating to activity in the anterior cingulate cortex were examined 
in a second experiment in which the impact of the anterior cingulate cortical disruption was tested.  The results of the second experiment 
confirmed the inferences drawn in the first experiment.

Randomization TUS and control days were interleaved in one of two pseudorandom orders that were counterbalanced across animals in each experiment.  
For example (T,T, R, S,S, R, T,T,T, R) where T, C, and R stand for TUS, sham, and rest days respectively – note a rest day always intervened at 
the point of transition between TUS and sham days. 

Blinding Data collection and analysis were not performed blind to the conditions of the experiments. It was not possible to use TUS while being blind 
given our protocol.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Six male rhesus monkeys (Macaca mulatta) were used in the experiment (four for the fMRI part, and two for the rsfMRI part). 
They weighed 10.4–11.9 kg and were 7 years of age. They were group housed and kept on a 12 hr light dark cycle, with access to 
water 12–16 hr on testing days and with free water access on non-testing days. 

Wild animals The study did not involved wild animals.
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Field-collected samples The study did not involve samples collected from the field.

Ethics oversight All procedures were conducted under licenses from the United Kingdom (UK) Home Office in accordance with the UK The 
Animals (Scientific Procedures) Act 1986 and with the European Union guidelines (EU Directive 2010/63/EU).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type Event related fMRI design and resting-state fMRI.

Design specifications Each animal performed 200 trials. The details of the events in each trial are summarized in figure 1b. Each trial started 
with an inter-trial interval (ITI) showing a blank screen ranging between 5 and 7 seconds. Two options were then 
presented on the screen, monkeys chose one of the options by reaching the touch sensor placed in front of it (decision 
phase). If the stimulus chosen yielded a reward then it remained on the screen for 1.5 s while the reward was delivered. 
For the resting state collection, rs-fMRI from the two animals were acquired under no stimulation and rsfMRI from one 
animal was acquired post ACC-TUS under inhalational isoflurane anesthesia using a protocol which was previously 
proven successful in preserving whole-brain functional connectivity as measured with BOLD signal. In the case of the 
TUS conditions, fMRI data collection began only after completion of the TUS train (delay between ultrasound 
stimulation offset and scanning onset: 37.5 minutes; SEM: 2.21 minutes).

Behavioral performance measures 200 responses were recorded in each session as well as reaction times. We fitted a reinforcement learning model to the 
animal choices, estimating trial by trial subjective values associated with each option. The fitting procedure is described 
in the Methods. We also used multiple logistic and linear regressions to explain behavioral responses.

Acquisition

Imaging type(s) Functional

Field strength 3 Teslas

Sequence & imaging parameters The full sequence and imaging parameters are reported in the Methods in the section Imaging Data Acquisition. FMRI 
data were acquired using a gradient-echo T2* echo planar imaging (EPI) sequence with 1.5 x 1.5 x 1.5 mm3 resolution, 
repetition time (TR) = 2.28 s, Echo Time (TE) = 30 ms, flip angle = 90, and reference images for artifact corrections were 
also collected. Proton-density-weighted images using a gradient-refocused echo (GRE) sequence (TR = 10 ms, TE = 2.52 
ms, flip angle = 25) were acquired as reference for body motion artifact correction. T1-weighted MP-RAGE images (0.5 x 
0.5 x 0.5 mm3 resolution, TR = 2,5 ms, TE = 4.01 ms) were acquired in separate anesthetized scanning sessions.

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software The preprocessing of the fMRI data used tools of FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and the Magnetic Resonance 
Comparative Anatomy Toolbox (MrCat; http://www.rbmars.dds.nl/lab/toolbox.html).

Normalization Linear and non-linear registration to F99 space was achieved using FLIRT (Jenkinson et al., 2002; Jenkinson and Smith, 
2001) and FNIRT (Andersson et al., 2007; Jenkinson et al., 2012) with configurations adjusted to reflect macaque rather 
than human brain characteristics.

Normalization template We used the macaca mulatta F99 template in Caret (Van Essen, 2002; Van Essen and Dierker, 2007) as our group 
template.

Noise and artifact removal FMRI data were corrected for body motion artefacts by an offline-SENSE reconstruction method 5 (Offline_SENSE GUI, 
Windmiller Kolster Scientific, Fresno, CA). The images were aligned to an EPI reference image slice-by-slice to account 
for body motion and then aligned to each animal's structural volume to account for static field distortion 6 (Align_EPI 
GUI and Align_Anatomy GUI, Windmiller Kolster Scientific, Fresno, CA). The aligned data were processed with high-pass 
temporal filtering (3-dB cutoff of 100s) and Gaussian spatial smoothing (full-width half maximum of 3mm). The data 
that were already registered to each subject’s structural space were then registered to the CARET macaque F99 
template7 using affine transformation.

Volume censoring We did not remove volumes during which significant movement occurred, instead, we used our motion-related artifacts 
(i.e. regression of motion parameters) as regressors of non interest that were not convolved in our general linear 
models.

Statistical modeling & inference

Model type and settings We employed a univariate approach within the general linear model framework to perform whole-brain statistical 
analyses of functional data as implemented in the FMRIB Software Library. Using this framework we initially performed 
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a first-level fixed effects analysis to process each individual experimental run which were then combined in a second 
level mixed-effects analysis (FLAME 1 + 2) treating sessions as a random effects.

Effect(s) tested The full models are described in the methods including the nature of all regressors entered in the analyses. See GLM1, 
GLM2, GLM3 and GLM4.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

We used a leave-one-out procedure to identify ROI peak voxels for the analyses of main effects for areas 
identified in all fMRI analyses. We conducted analyses on ROIs defined as two-voxel radius spherical 
masks placed over the hippocampus (Right: x = 16.5, y = -7.5, z = -12; left: x = -14, y = -9, z = -12.5 CARET 
macaque F99 coordinates), ACC (x = 1, y = 20.5, z = 10.5), lPFC (x = 14.5, y = 17.5, z = 9.5), vmPFC/mOFC 
(x = -5, y = 14, z = 2). For each group level analyses, our procedure involved leaving one session out at a 
time. From the results of the remaining 24 sessions, we extracted local maxima of the relevant clusters 
and centered the ROIs for the left out session on the local maxima. We repeated this for all sessions. 
Therefore, the ROI selection was statistically independent from the data of the session that was 
subsequently analyzed in the ROI.

Statistic type for inference
(See Eklund et al. 2016)

We performed a cluster inference using a cluster-defining threshold with |Z| > 3.1.

Correction FWE-corrected threshold of P = 0.001.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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