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Multiple associative structures created by
reinforcement and incidental statistical learning
mechanisms
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Matthew F.S. Rushworth1,2

Learning the structure of the world can be driven by reinforcement but also occurs inci-

dentally through experience. Reinforcement learning theory has provided insight into how

prediction errors drive updates in beliefs but less attention has been paid to the knowledge

resulting from such learning. Here we contrast associative structures formed through rein-

forcement and experience of task statistics. BOLD neuroimaging in human volunteers

demonstrates rigid representations of rewarded sequences in temporal pole and posterior

orbito-frontal cortex, which are constructed backwards from reward. By contrast, medial

prefrontal cortex and a hippocampal-amygdala border region carry reward-related knowledge

but also flexible statistical knowledge of the currently relevant task model. Intriguingly,

ventral striatum encodes prediction error responses but not the full RL- or statistically derived

task knowledge. In summary, representations of task knowledge are derived via multiple

learning processes operating at different time scales that are associated with partially

overlapping and partially specialized anatomical regions.
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The ability to learn about the consequences of our actions is
critical for survival. Reinforcement learning (RL) provides
a framework for formally studying learning and has

inspired a major reconceptualization of its underlying neural
mechanisms.

In most studies of reward-based learning, one or several stimuli
are associated with varying amounts of reward and their values
have to be inferred and updated over time. Consequently, two
neural representations are of interest: the encoding of the
expected reward at the time of the stimulus, and the deviation
from the expected outcome, or prediction error (PE), at the time
of the outcome. The majority of research to date has focused on
the PE at the time of outcome, present in dopamine neurons in
the ventral tegmental area (VTA) and its projection area ventral
striatum1–4, and shown they satisfy PE axioms5,6, reflect task
context and task demands7–11, signal value and identity devia-
tions12,13 as well as social information14,15.

There has also been particular interest in two classes of RL
often referred to as model-free and model-based16 but their
underlying neural mechanisms are less well understood. In
model-free RL actions or stimuli are directly reinforced by sub-
sequent delivery of reward while in model-based learning actions
and stimuli are reinforced in a manner that reflects knowledge of
task structure. While model-free and model-based learning can be
distinguished at a behavioral level, it has been difficult to associate
them with different neural structures or processes. Suggestions
that model-free and model-based learning might be linked to
striatum and prefrontal cortex respectively have not been sup-
ported empirically16,17; model-based and model-free PEs were co-
localized in ventral striatum.

Here we took an alternative approach to investigate the neural
mechanisms associated with model-free and model-based learn-
ing. Rather than focusing on the PEs that occur during learning,
we focused on the knowledge or associative structures that are
formed by the learning process. In order to do this, participants
learned not just associations between a single stimulus and
reward but between chains of stimuli leading to reward2,18,19 as
well as the statistical relationships between stimuli regardless of
reward. This allowed us to test whether the associative structures
derived from different learning processes might prove more dis-
tinguishable than their PEs. We therefore undertook two main
series of analyses of behavior and neural activity that contrasted
knowledge learned from RL versus statistical relationships. We
also tested whether RL-acquired knowledge may be static and
inflexible20 compared to the cognitive maps formed flexibly
through statistical learning21.

Another computation that arises when multiple actions or
states occur before encountering reward is to establish which
stimuli or actions are eligible to be assigned reward. Recent work
suggests that the amygdala might mediate this process through a
mechanism that spreads reward to stimuli in close temporal
proximity22–24. Here we asked whether this process might also be
present in space, i.e. whether eligibility might initially be assigned
to stimuli in spatial proximity to reward.

Participants attended two sessions prior to scanning to learn
associations between stimulus sequences and reward. During the
fMRI experiment, we then probed the neural correlates of the
associative structures that they had constructed in these beha-
vioral sessions. We provide evidence for dissociable brain net-
works that represent associations derived from RL versus
statistical learning and which operate at different time scales.

Results
On separate days prior to scanning, participants (n= 26) per-
formed a behavioral task where they learnt to associate a four-

step sequence of stimuli (ABCD) with reward (rewarded
sequence: RewSeq). Unlike in previous work assessing sequence
learning e.g.,25–27, however, the sequence was not learnt from its
starting element. Instead, participants pressed buttons to move
around a 3 × 4 grid towards stimuli that were highlighted by the
computer one after the other in a continuous stream (Fig. 1a,
Supplementary Fig. 1a–c). Importantly, the start of the rewarded
sequence was not signaled but occurred after an unpredictable
number of other stimuli. When D was reached, a reward
appeared, and participants had to infer the rewarded sequence
and determine its length through careful and repeated observa-
tion. Unusually, this allowed us to test one of the key predictions
of RL – that associations between stimuli and reward are con-
structed by propagating reinforcement from the stimuli imme-
diately prior to reward to earlier stimuli28. As a consequence,
participants should know the end of the sequence before its
beginning, and associations learnt via RL should comprise
stimulus–stimulus (e.g., A to B) as well as stimulus–reward
relationships (e.g., D to Reward). Unbeknownst to participants,
they transitioned through another four-step sequence (A′B′C′D′)
equally frequently but this sequence was not rewarded (control
sequence: ConSeq). This allowed us to assess (i) knowledge of the
stimulus route leading to reward (the RL-acquired knowledge)
while controlling for statistical learning, (ii) the existence of
incidentally learned statistical knowledge of stimulus transitions
which should be present for both RewSeq and ConSeq, and (iii)
the possibility of spread of reward effects across space.

Participants anticipate sequence transitions and reward. To
establish that participants had acquired knowledge of the
rewarded sequence in the pre-scan learning task, we first probed,
using reaction times (RTs), whether participants were able to
predict the occurrence of reward. Participants were instructed to
press a button as soon as either reward (a picture of a treasure
box) or a similarly frequent but unpredictable control stimulus (a
picture of a bridge) appeared on the screen. An 8 × 2 repeated-
measures ANOVA with factors block and stimulus type (reward/
bridge) showed main effects of stimulus type and block and an
interaction between stimulus type and block (all F > 15, p < 0.001,
η2= 0.95, 0.56, 0.39, Fig. 1b). RTs were faster for reward, became
faster over blocks, and speeding was more prominent across
blocks for reward (Bayesian repeated-measures ANOVA: full
model P(M|data)= 1, BFm= 6.85e9). This demonstrates that
participants were able to link reward occurrence to the preceding
stimulus sequence.

Secondly, we probed knowledge of the stimulus–stimulus
associations between sequence elements by analyzing RTs to the
stimuli preceding the reward. More precisely, we examined RTs
to the first movement that initiates transitioning between two
stimuli of RewSeq (or ConSeq), e.g. the button press that initiates
the path from A to B or A′ to B′ (and similarly B to C and C to D
or B′ to C′ and C′ to D′). We reasoned that participants who
anticipate A’s successor will initiate the first movement towards B
faster. Indeed, participants showed overall faster RTs to RewSeq
transitions compared to equally frequent ConSeq transitions (2 ×
3 repeated-measures ANOVA with factor sequence (RewSeq/
ConSeq) and transition (AB,BC,CD); effect of sequence type
F(1,25)= 96.36, p < 0.001, η2= 0.79). RTs also became faster as
participants progressed through the sequence (effect of transition:
F(2,50)= 73.68, p < 0.001, η2= 0.75) and this speeding was more
pronounced for RewSeq compared to ConSeq, and thus, when
approaching reward (interaction transition × sequence type: F
(2,50)= 42.20, p < 0.001, η2= 0.63; Bayesian repeated-measures
ANOVA: P(Full Model|Data)= 1, BF= 3.3e33; Fig. 1c). Thus,
participants were able to anticipate correct sequence successor
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elements. Additional analyses confirmed participants’ preference
for RewSeq over ConSeq stimuli during choice (Supplementary
Methods, Supplementary Note 1 and Supplementary Fig. 1d).

Sequence knowledge is acquired backwards from reward. To
establish how knowledge of the rewarded sequence was initially
acquired, we examined participants’ ability to produce the correct
sequence. After each pre-scan learning block participants were
asked to enter the correct order of stimuli that they thought led to
reward. The length of sequences entered by participants ranged
between 1 and 7 stimuli after one block of learning but between 4
and 5 stimuli after four blocks. Some participants initially entered
the correct last few elements preceding reward (BCD or CD) and
then gradually extended the sequence to A. Others over-specified
the sequence and appended additional elements to its beginning
which they subsequently gradually pruned (e.g. xxABCD). In all
cases, the sequence was learnt backwards (for an example parti-
cipant, see Fig. 1d). To quantitatively assess this, we calculated the
percentage of times each of the four elements A, B, C, and D was
included in the sequences participants produced during the 8
learning blocks. A 4 × 8 repeated-measures ANOVA revealed
effects of element (p= 0.002, F(3,75)= 5.46, η2= 0.18), block
(p < 0.001, F(7,175)= 9.54, η2= 0.27) and element × block (p <
0.001, F(21,525)= 4.33, η2= 0.15), with elements C and D
included first, element B included on average from block 2, and

the starting element A included last (Bayesian repeated-measures
ANOVA: full model P(M|data)= 0.993, BFm= 600.70; Fig. 1d,
Supplementary Note 2 and Supplementary Fig. 1e, g).

Behavioral evidence for statistical learning. Participants also
showed evidence for reward-unrelated statistical learning: initi-
ating button presses from A′ to B′, followed by B′ to C′ and C′ to
D′ showed progressive RT speeding29–32 because transitions,
despite never being associated with reward, became increasingly
predictable (Supplementary Note 3; gray bars in Fig. 1c).

Neural representations of sequence knowledge. On separate
days within the same week, we invited participants to two MRI
sessions to investigate the neural representations that had formed
during the initial learning sessions. During scanning, we high-
lighted one stimulus at a time in pseudo-random order on the
same 3 × 4 grids presented during the pre-scan learning task. The
participants’ task was now simply to press a button when they
detected a flower on the highlighted stimulus (10% of trials; catch
trials). This focused their attention on the currently relevant sti-
mulus (Fig. 1a). Knowledge of the rewarded sequence was no
longer relevant for performing the task.

We first examined differences in BOLD activity between
rewarded and control sequence elements, thus probing changes in
BOLD that were driven by the presence of reinforcement. We
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Fig. 1 Learning of reinforced sequences occurs backwards from reward. a Pre-scan learning task (left): on day 1+ 2 of testing, participants moved an agent
(purple circle) to highlighted stimuli (yellow) using up/down/left/right buttons. For each of three fixed 3 × 4 layouts (contexts: green, pink, gray), they had
to learn a hidden sequence (ABCD) that led to reward. This reinforced sequence (RewSeq) was embedded in a continuous stream of highlighted stimuli
and thus learnt by trial and error, and its beginning and length inferred over time. A control sequence (ConSeq) composed of other stimuli (A′B′C′D′) was
encountered equally frequently but not followed by reward. Scan task (right, day 3+ 4): one stimulus was highlighted after another, but now participants
had to press a button when they detected a flower on the highlighted square. By carefully controlling the order of stimuli, we could probe representations of
RL-driven sequence knowledge and statistical knowledge. b Participants anticipated reward at the end of the sequence: RTs to reward were faster than RTs
to a bridge shown at unpredictable times, and reward-RTs became faster over training (error bars= SE; dots= individual participants). c Participants RTs
for initiating the first movement towards the next stimulus were faster as they progressed through the rewarded sequence (from A to B, B to C, and C to
D), and speeding was more pronounced for RewSeq compared to ConSeq. Thus, participants anticipated the correct sequence successor stimulus. Looking
at only ConSeq transitions (gray bars), there was a significant effect of transition, suggesting statistical learning in the absence of reward. d Sequence
knowledge was constructed backwards from reward. (Top) Sequences produced by one participant after the first, second, and third block of the pre-scan
learning task. Initially, the sequence was thought to contain two stimuli (CD), but additional stimuli were appended block by block, with full sequence
knowledge reached after block 3. (Bottom) Percentage of times the stimuli A/B/C/D were included in the sequence produced after each learning block. C
and D were included first, B on average after block 2, and A was included last. Error bars denote SE; see Supplementary Fig. 1
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contrasted reward-sequence elements that were preceded by
another reward-sequence element (rr pairs) with control-
sequence elements that were preceded by another control-
sequence element (cc pairs). We hypothesized that rewarded
sequence elements may have become more similar in their neural
representation than the corresponding elements of the control
sequence (sequence fusion; Fig. 2a). In other words, we expected
cross-stimulus suppression, and thus a smaller BOLD signal, for
repeated occurrence of rewarded sequence elements (rr),
compared to control sequence elements (cc). This contrast was
therefore intentionally non-directional and the included transi-
tions did not have to obey the correct sequence order (e.g. CB or
BD transitions, see Methods and Supplementary Table 2).

Several regions showed differences in the neural representation
of rewarded compared to control sequence elements (rr-cc): (a)
medial prefrontal cortex (mPFC), spanning parts of areas 32 and
14 m, (b) temporal pole (tempPole), and within the same
extended cluster (c) posterior orbitofrontal cortex (pOFC),
comprising posterior area 47/12 and aspects of anterior insula
(all cluster-level corrected; peak MNI coordinates mPFC: 0, 40,
−6, z= 4.0; tempPole: 48, 10, −28, z= 4.19; pOFC: 30, 18, −22,
z= 3.73; Fig. 2a, b; for a complete table of activations see
Supplementary Table 1). Because of a priori hypotheses about the
role of the amygdala, we also examined the same contrast within
the amygdala and found a significant activation in right amygdala
(peak coordinate: 28,−6,−22; z= 2.97; p < 0.05 using threshold-
free cluster enhancement (TFCE33) in a small volume containing
left and right amygdala; Fig. 2a). The peak of this activation was
located at the border between amygdala and hippocampus and is
therefore referred to as amygdala-hippocampus border (amyg/
hippo). All four regions showed less activation for the rr
compared to the cc condition (for illustration, see Fig. 2b),

suggesting representations of rewarded sequence elements had
become more similar to one another than control sequence
elements. Importantly, because we had matched, between
rewarded and control sequences, how often participants experi-
enced the sequence elements and their transitions, this effect
could not be explained by frequency or experience. Thus, in these
regions, reward had strengthened associations between sequence
elements.

The (rr-cc) contrast probed knowledge of associations between
rewarded sequence elements via cross-stimulus suppression but
may also have be driven by a main difference in BOLD activity
between rewarded and control sequence elements. To confirm
our interpretation as cross-stimulus suppression effects, we
performed several control analyses. First, we examined the
impact of the temporal delay between successive sequence
elements. Neural adaptation effects should scale with the
temporal delay between stimuli and this was indeed the case in
two of our four ROIs, temporal pole and amyg/hippo (Fig. 2c, d,
Supplementary Fig. 2a and Supplementary Note 6). Secondly, we
confirmed that none of our ROIs were showing a main effect
difference between rewarded and control elements (contrast xr-
xc: Supplementary Fig. 2b, Supplementary Note 6). Finally, we
confirmed that effects of cross-stimulus suppression indeed
broadly applied to transitions across the rewarded sequence and
were not driven solely by a subset of sequence pairs (Supple-
mentary Note 7 and Supplementary Fig. 2e).

Neural representations of RL-driven associative structures.
Nevertheless, this type of response pattern – indicating a shared
representation of the elements that belong to the rewarded
sequence regardless of precise order – would not be sufficient for
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Fig. 2 Reinforced sequence knowledge in pOFC, temporal pole, amyg/hippo and mPFC. a Regions where elements of the rewarded sequence have grown
together more in their neural representation than elements of the unrewarded but equally frequent control sequence. Repetition suppression predicts less
activation for a RewSeq element that follows another element of RewSeq (i.e., after a pair including two elements of A, B, C, or D: rr), compared to a
ConSeq element that follows another element of ConSeq (pairs made up of A′, B′, C′, or D′: cc), if their representations overlap more strongly (i.e., recruit
the same neural populations). In this contrast, we identified medial prefrontal cortex (mPFC), temporal pole (tempPole) and (within the same cluster)
posterior orbitofrontal cortex (pOFC; all cluster-corrected), and a region at the border of amygdala and hippocampus (amyg/hippo; TFCE-corrected within
bilateral amygdala mask; shown at z > 2.3 uncorrected). b For illustration, parameter estimates are shown in spheres centered on the peak activation in
these four regions. c Repetition suppression effects in temporal pole and amyg/hippo were modulated by the temporal distance between successive
RewSeq elements, with stronger suppression for shorter inter-stimulus intervals (ISI) as predicted (short < 2 s, mid= [2,3.5] s, long > 3.5 s; *p < 0.05 in
one-sample t-test). d The raw BOLD time-series in temporal pole (left) and amyg/hippo (right) in response to the second of two successive RewSeq
elements after a short, mid or long ISI illustrate the BOLD modulation shown in panel c. Error bars denote SE; see also Supplementary Fig. 2
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anticipating sequence elements in the correct order, or to
anticipate reward. Thus, it does not capture the full extent of RL
knowledge acquired prior to scanning. We therefore reasoned
that a BOLD signature of the correctly ordered rewarded
sequence should also be present. A brain region in which reward
is back-propagated to previous stimuli, for example, via TD
learning, should demonstrate a particular sensitivity for the cor-
rectly ordered stimulus sequence that has led up to reward in the
past. Importantly, we expected such a signature to get stronger as
reward is approached, thus going in the opposite direction to the
suppression effects reported for undirected pairs. Within the
same GLM as used above (GLM1, Supplementary Fig. 2d), we
tested whether any of our four ROIs reflected knowledge of the
correct sequence order (Fig. 3a). We compared activity between
RewSeq and ConSeq when the correct stimulus transitions were
experienced (i.e. B after A, C after AB, and D after ABC). Two
regions, the temporal pole and adjacent pOFC, exhibited stronger
BOLD for correctly ordered transitions of RewSeq compared to
ConSeq (p(pOFC)= 0.0014, t(25)= 3.59; p(tempPole)= 0.0051, t
(25)= 3.07; one-sample t-tests; Fig. 3b; Supplementary Table 2).
Examination at the whole-brain revealed bilateral effects in both
regions (Supplementary Fig. 3). Further inspection of pOFC/
tempPole signals showed a BOLD build-up as participants
advanced through the rewarded sequence (GLM main effect of
progress: p= 0.012, t(25)= 2.70, ROI and ROI × progress: p > 0.1;
one-sample t-test; illustrated in Fig. 3c), and it showed that the
entire third- and fourth-order structure (e.g., ABC not just BC)
had to be fulfilled for this build-up to be present (2 × 2 ANOVA
ROI × HigherOrder: effect of HigherOrder F(1,25)= 5.712; p=
0.025; Supplementary Note 8 and Fig. 3c). Such a signal could
reflect temporally discounted reward expectancy or reward
proximity. However, since participants’ behavior showed that the
reinforced associative structure is formed backwards, this BOLD

signature likely formed via backpropagation of reinforcement
(Fig. 1d, Supplementary Fig. 1e).

Notably, unlike in the pre-scan learning task, knowledge of the
rewarded sequence was irrelevant for participants during the scan
task. Performance in the scan task simply depended on
responding to catch trials. We therefore tested whether the
correct sequence order effects reported above decreased as the
scanning session progressed. Contrast estimates for correct
sequence order (RewSeq vs ConSeq) were extracted from pOFC
and temporal pole, separately for each block. Because frequentist
statistics cannot provide evidence in favor of the null hypothesis,
we conducted a 2 × 6 Bayesian repeated-measures ANOVA with
factors ROI (pOFC and tempPole) and block. This revealed that
the Null Model was the best model and almost six times more
likely than any other model (BFm= 5.81, P(M|data)= 0.59),
including a model with an effect of Block (BFm= 1.43, P(M|
data)= 0.26). Thus, representations of the correctly ordered
reinforced sequence in temporal pole and pOFC were remarkably
inflexible throughout the experiment despite changing task
demands. They appear almost to have been frozen in a stable
state, possibly because no new reward-learning interfered with the
originally formed representations.

BOLD representations of statistical task relationships. Knowl-
edge of the correctly ordered sequence is important for guiding an
agent towards reward and represents the RL-acquired associative
knowledge in this task. Nevertheless, it is a sparse and possibly
quite inflexible code. For example, if correct order representations
in tempPole and pOFC are learned via TD, then they rely upon
fixed stimulus-to-stimulus mappings, and hence, swapping the
order of two elements in the sequence would mean that an
entirely new code has to be formed and the previous one over-
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Fig. 3 Correct sequence order (path to reward) in temporal pole and pOFC. a The encoding of correctly ordered sequence associations were examined
using occurrences of B after A, C after AB, and D after ABC, and by contrasting RewSeq and ConSeq. In other words, this contrast probed RL-acquired
directed higher-order stimulus–stimulus associations. b pOFC and tempPole, but not mPFC and amyg/hippo, showed stronger BOLD responses for correct
sequence order for RewSeq vs ConSeq and thus tracked the path to reward learnt pre-scanning; *p < 0.05 in one-sample t-test. c Illustration of the effects:
(Left) The average time-series to A, (A)B, (AB)C, and (ABC)D illustrate an increase in BOLD activation as participants progress through the correctly
ordered associations. (Right) Higher-order associations were necessary for driving the BOLD signal: BOLD average for C and D elements when higher-
order conditioned chains were respected (red; average of ABC or ABCD, bold highlights indicate time-locking) compared to when only the pair-structure
was fulfilled (average of xBC, xxCD; gray). d The BOLD representation of correct sequence order was robust and did not change over scan blocks despite
being irrelevant for the task performed during scanning. Error bars denote SE; see also Supplementary Fig. 3
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written. By contrast, a neural code with knowledge of spatial or
statistical contingencies (e.g., transitions that are generally more
or less likely to occur in the task) would allow more flexibility in
learning new relationships21. We tested this idea by examining
neural representations related to the spatial proximity of sub-
sequent states (a simple prior on likely state transitions) and to
the statistical frequency of these transitions themselves. Impor-
tantly, such representations would rely on incidental learning
mechanisms and relate to all stimuli, whether reinforced or not.
They cannot be driven by reward associations. We expected
suppression of BOLD, and thus weaker signals for nearby or
likely transitions. However, note that the effects described below
went in the opposite direction (see also Supplementary Table 2).

We first asked whether information about spatial distances
between all elements, measured in terms of steps that make up a
path on the grid, was present in our previously defined ROIs
(GLM2, Supplementary Fig. 2d; Fig. 4a). This spatial distance
contrast was not correlated with the ROI-defining contrast rr-cc
(Pearson’s r=−0.02; see also Supplementary Fig. 2f). BOLD
signals in both mPFC and amyg/hippo but not temporal pole or
pOFC scaled with distance, with stronger (rather than weaker)
responses for stimuli that were closer in space to the previous
stimulus (p(amyg/hippo)= 7.91e-6, t(25)=−5.6; p(mPFC)=
7.54e-6, t(25)=−5.62; p(pOFC) and p(tempPole) > 0.1; all one-
sample t-tests; mPFC global peak: 0, 50, −14, z= 5.0; peak within
mPFC spherical ROI: 0, 36, −6, z= 4.01; amyg/hippo global
peak: 30, −4, −24, z= 5.26; Fig. 4b, c). At the whole brain, spatial

relationships were reflected in the activity of an extended network
of brain regions which included mPFC and the amygdala-
hippocampus border (all cluster-corrected; Supplementary
Fig. 4a). Note that during the pre-scan learning task, larger
spatial distances were associated with longer travel times
(correlation trajectory time and spatial distance: Pearson’s r=
0.5 and r= 0.66 on days 1 and 2). Thus, the experience of both
time and distance could have contributed to the formation of this
neural representation.

In addition to spatial proximity, a more important piece of
information for anticipating the next element during the scan
task, is the likelihood of transitioning between any two stimuli on
the grid (Fig. 4a, Supplementary Fig. 4c). We tested, using a
model with trial-by-trial updates (see Methods), whether BOLD
responses scaled with the frequency of an experienced transition
from the previous to the current stimulus in any of our ROIs.
Again, there was no correlation between this contrast and the
ROI-defining contrast (r=−0.01; Supplementary Figs. 2f and
4c). Indeed, mPFC and the amygdala-hippocampus border, but
not temporal pole or pOFC, had knowledge of these higher-order
statistical relationships (p(amyg/hippo)= 0.002, t(25)= 3.46; p
(mPFC)= 0.024, t(25)= 2.39; p(tempPole), and p(pOFC) > 0.05;
one-sample t-tests; Fig. 4b, c; Supplementary Fig. 4a); they
responded more strongly to transitions with a high frequency of
occurrence.

We confirmed in a control analysis that spatial distance and
transition frequency responses were not driven by the subset of
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stimuli of the rewarded sequence. There was no difference
between rewarded and control stimuli in either mPFC or amyg/
hippo in terms of BOLD modulations by spatial distance and
transition frequency (all p > 0.15, paired t-tests; Supplementary
Note 9 and Supplementary Fig. 4d).

To further understand the nature of the statistical associations
(task model), we probed whether transition frequency was
represented in terms of conditional transition probabilities
between stimuli given the initial stimulus or as absolute state-
transition frequencies. The latter is arguably a more global,
flexible, and abstract representation of the task space and less
dependent on the precise nature of the experiences during the
time when it was acquired. BOLD activity in both mPFC and
amyg/hippo was explained by a representation of state-transition
frequencies but not by the conditional probability of a transition
(Fig. 4b, Supplementary Note 10).

To examine the flexibility of statistical knowledge coding over
time, we speculated spatial distance might have been a prior
imposed during training, when participants were constrained by
1-step movements to walk around the 3 × 4 grid. If so, spatial
distance coding should become less pronounced as participants
experience that the scan task does not have spatial constraints. By
contrast, transition frequency coding might increase the longer
participants perform the scan task because it is a better predictor
of the next element than spatial distance (21% versus 9.5%
accuracy in predicting successor; chance is 8%). We inspected
parameter estimates for spatial distance and transition frequency
in mPFC across blocks of scanning and this was precisely what we
found (Fig. 4d). A linear regression revealed a significant
interaction of time and contrast (one-sample t-test: p= 0.0247,
t(25)=−2.34) with stronger transition frequency coding in later
blocks and spatial distance coding gradually diminishing over
time. Such a pattern was not observed in any of the other ROIs
(one-sample t-tests: all p > 0.3), not observed when replacing
transition frequency by transition probability (one-sample t-tests:
all p > 0.05), but it was present for transition frequency in mPFC
whether or not transition probability was included in the model
(one-sample t-test: p= 0.039, t(25)=−2.19 for a model also
including conditional probability).

To complete the picture, we tested whether statistically learnt
knowledge in mPFC and amyg/hippo was, over blocks of
scanning, replacing the undirected knowledge of the rewarded
sequence, as probed by our initial ROI-defining contrast
(sequence fusion: rr-cc). There was no evidence for a decline in
the sequence fusion contrast over blocks of scanning in either
region (one-sample t-tests: mPFC: p= 0.56; amyg/hippo: p=
0.38). Thus, even though mPFC and amyg/hippo hold flexible
statistical knowledge, the reward-driven associations they also
hold are persistent and inflexible.

Taken together, knowledge from two separate learning mechan-
isms converged in amyg/hippo and mPFC. Both regions carried
undirected knowledge of the rewarded sequence, as probed by the
ROI-defining contrast, but they also represented reward-
independent associations which were true across all stimuli. They
responded more strongly to likely transitions both in space (closer)
as well as statistical contingencies (more frequent) suggesting full
knowledge of task relationships and an encoding of associations
acquired through incidental learning mechanisms. In contrast to
the representations found in temporal pole and pOFC, statistical
representations are not linked to the directed reward associations
learned prior to scanning. Moreover, over time, mPFC transitioned
from a spatial towards a frequency coding scheme.

Dissociating tempPole-pOFC versus hippo/amyg-mPFC net-
works. Above we showed that BOLD responses in temporal pole
and pOFC reflected the correctly ordered rewarded sequence,

while mPFC and amyg/hippo carried knowledge of statistical
relationships between all stimuli. Formal statistical testing con-
firmed a dissociation between the patterns of BOLD activation
held by these two different networks (Supplementary Note 11),
consistent with work showing major anatomical differences
between pOFC and tempPole on the one hand and hippo/amyg
and mPFC on the other hand. For example, strong monosynaptic
connections within but not across these two networks34–36, and
stronger resting-state coupling within compared to between
networks (Supplementary Fig. 5).

Establishing eligibility through spread of reward in space.
Tracking state transitions as well as representing learned
sequence-reward associations is essential for forming an appro-
priate representation of the external world. However, sometimes
rewards can influence the response to stimuli that are not actually
predictive of reward but which simply occur close in time to the
reward and this temporal spreading of reward has been linked to
activity in the amygdala24,37. Here we tested for a spatial
spreading of reward which was possible because stimuli had
spatial relationships on the 3 × 4 layout. Specifically we asked
whether the amygdala showed changes in activity to stimuli that
were close in space to the location where reward had occurred
during the pre-scan learning task. We defined any element that
could be reached by one step (either horizontally or vertically) as
neighbors and compared activity for neighboring elements of D
with the neighboring elements of D′ (the final elements of the
rewarded and control sequences; Fig. 5a, b). This contrast was
examined in an amygdala ROI previously associated with tem-
poral spreading of reward (see Methods, ref. 38). Consistent with
our hypothesis, we found evidence for a stronger response to
neighbors of D compared to neighbors of D′ in the amygdala
(one-sample t-test: p= 0.03, t(25)= 2.30; peak in left amygdala:
−18, −8, −16, z= 3.0; note that the amygdala was the strongest
peak at the whole-brain). In participants behavior, on the con-
trary, we did not observe an effect of spatial spreading of reward
(Supplementary Note 12). Note that the number of neighbors was
exactly matched for the reinforced and non-reinforced sequences
so that difference between rewarded and non-rewarded sequences
were not confounded by differences in spatial uncertainty.

An important next question was whether the spread of reward
effect in the amygdala might relate to the strength of the contingent
BOLD representation of the rewarded sequence. Formation of
sequence knowledge could compete with reward-spreading, such
that people who strongly respond to relationships between rewarded
sequence elements (more suppression for rr versus cc) have a
weaker spatial spread effect (positive correlation because of sign of
cross-stimulus suppression). Alternatively, if these mechanisms
work hand in hand, the two signatures might correlate negatively.
Indeed, we found such a negative correlation within the amygdala
region defined above and this effect was only significant in the first
block of scanning, i.e. when learning effects were the most
pronounced (p values corrected for multiple comparisons: Pearson’s
correlation: r=−0.626, p= 0.0036 for block 1, all other blocks:
p > 0.15; Fig. 5c). In summary, a spread of reward effect apparent in
the amygdala is related to the representation of RL knowledge in the
same structure and may exist to guide the construction of a more
refined representation of sequence associations by motivating
behavior in the vicinity of a potential reward.

PE-related activity in VS reflects RL knowledge. The ventral
striatum (VS) plays an important role in learning from reinfor-
cement, in particular through its encoding of PEs at the time of
outcome. We therefore tested whether VS was involved in
representing associative knowledge in our task. First, we asked
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whether it exhibited activity reflecting knowledge constructed via
reinforcement (RewSeq versus ConSeq; correct sequence order),
knowledge of the task state-transition structure (spatial distance;
transition frequency), or information about reward proximity
(spatial spread). In an anatomically defined ROI (see Methods),
none of these effects were present (one-sample t-tests: all p > 0.4;
Fig. 6a). This absence of associative knowledge cannot be
explained by a lower signal in VS: the mean temporal signal-to-
noise ratio (tSNR) in VS was better than in amyg/hippo and
pOFC ROIs, and no different from vmPFC or temporal pole
ROIs, nor from the mean tSNR across the brain.

However, even if there is no evidence that VS activity reflects
stored associative knowledge, it is possible that its activity reflects
the PEs that might be experienced given that such knowledge is
present elsewhere in the brain. Notably, RL theory predicts that
PEs move, during learning, to the earliest reward-predicting
stimulus, here the starting element A of the rewarded sequence.
We therefore tested, whether VS would code A more strongly for
the rewarded compared to the control sequence. Indeed, we
found responses to A over and above A′ in lateral VS/putamen39

(cluster-corrected p < 0.05 in the right hemisphere: peak −24, 14,
−8, z= 3.30). But even in an ROI centered on this coordinate,
none of the other tests described above were significant (one-
sample t-tests: all p > 0.1; Fig. 6b–d). Finally, consistent with RL
predictions, VS coded for the picture of the flower (the reward
during scanning; one-sample t-test: p(anatVS)= 4.47e-09, t(25)
= 8.75; p(funcVS)= 1.32e-09, t(25)= 12.98) and the picture of
the treasure (the reward during learning; one-sample t-test: p
(funcVS)= 0.009, t(25)= 2.82 only in the functionally defined
ROI). These appeared at somewhat (treasure) or entirely (flower)
unpredictable times during scanning (Fig. 6a, b).

Discussion
We investigated the associative structures formed through rein-
forcement and incidental learning mechanisms and describe two

neural circuits with distinct coding schemes (Fig. 7). Temporal
pole and posterior OFC represented elements of a reinforced
sequence and increased with progress through correctly ordered
associations, thus encoding RL-driven associative structures. By
contrast, activity in mPFC and a region at the intersection
between amygdala and hippocampus reflected map-like knowl-
edge of the spatial and statistical associations between all stimuli,
suggesting knowledge of associative structures acquired via sta-
tistical learning. Strikingly, the ventral striatum, the key region
showing PEs at outcome time, did not represent complex asso-
ciative structures formed via RL or statistical learning, but con-
sistent with TD, it coded the reward PE associated with the first
stimulus that was predictive of reward, i.e., the start of the
rewarded sequence.

Our first key finding demonstrated BOLD representations of the
reinforced sequence in temporal pole and pOFC, with an increase in
activity as participants progressed through the correctly ordered
sequence (Fig. 3 and Supplementary Fig. 3; Fig. 7). While such a
BOLD increase would be consistent with temporally discounted
reward expectancy or reward proximity, participants’ behavior
demonstrates that the reinforced sequence was acquired backwards.
Thus, while we did not investigate BOLD activity during learning,
this suggests that these neural signals might have formed through
backwards propagation of reward as posited in RL models (Fig. 1
and Supplementary Fig. 1). Participants were able to remember the
sequence at the end of testing (100% accuracy) despite scrambled
transitions being shown during the scan sessions. In line with this,
BOLD signatures of the correctly ordered sequence in temporal pole
and pOFC did not change over time, suggesting this code was
inflexible and robust to interference. However, neither temporal pole
nor pOFC responded to the picture of the treasure, i.e. the reward
itself, suggesting a coding of knowledge formed as a result of RL
rather than a role in forming this knowledge.

A number of distinct cytoarchitectonic areas are situated in
pOFC where it transitions into anterior insula both in humans and
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macaques40,41 and they likely have distinct functions. Aspects of
the association between a visual stimulus and outcome are coded
in an adjacent more medial region of pOFC (42; MNI coordinates:
−18, 5, −23 in the previous study versus 30, 18, −22 here). The
medial pOFC may be particularly concerned with expectations
about particular outcome types42 while the more lateral pOFC
found here may be concerned with the associative links between
multiple predictive stimuli. Other more lateral and anterior OFC
regions have been linked with credit assignment during stimulus-
outcome learning, particularly when multiple cues are potential
eligible causes of outcomes22,23,42–45.

Prior work has highlighted ventral anterior temporal cortex in
encoding visual stimulus–stimulus associations46–48, and in
associating visual cues with reward49. While the focus has been
on the perirhinal cortex less is known about the more polar and
lateral regions of temporal cortex that were activated in our study
although the interactions between the perirhinal cortex, temporal
pole, and lateral inferotemporal cortex have been empha-
sized50,51. The coding of sequence knowledge in temporal pole
and interconnected pOFC may rely on multiple
stimulus–stimulus associations which would be consistent with
the visual inputs of these regions52–54. Notably, sequences that
rely on associations between multiple actions rather than stimuli
(typically taught in a quite distinct manner), depend on different
circuits, e.g.,25–27. Similarly, sequences for which progress is
internally tracked rather than externally cued rely on structures
such as anterior cingulate cortex49,55, an area more suited to
forming and updating progress in an internal task model56,57.

Our second main finding related to BOLD signatures of sta-
tistical knowledge in mPFC and an area at the interface of
amygdala and hippocampus (Fig. 4 and Supplementary Fig. 4;

Fig. 7; activity patterns from an adjacent hippocampal region
studied by58 are reported in Supplementary Fig. 6; BOLD activity
in hippocampus reflected statistical knowledge but did not dis-
tinguish between rewarded and control sequences). Statistical
knowledge provides increased flexibility to adapt to changing task
goals. For instance, it can expedite the learning of new or altered
sequences without requiring unlearning of rigid stimulus–stimulus
associations such as those seen in pOFC and temporal pole.

We identified two interesting signals in mPFC and amyg/
hippo. The first related to spatial relationships, with stronger
BOLD responses for transitions to spatially closer stimuli. The
spatial layout of stimuli was a major determinant of the task space
in pre-scan sessions when participants only moved between
adjacent elements. However, other transitions were experienced
during the scanning period. Notably the mPFC signal tracking
spatial relationships diminished over time in the scan task. The
second signal reflected higher-order associations between map
elements, namely the frequency of transitioning between any two
stimuli. The more frequent a transition, the more strongly mPFC
and amyg/hippo responded to the successor. Intriguingly, this
code was not conditional on the previous state but instead
reflected global transition frequencies, i.e., the likelihood of an
experienced transition given all experienced transitions on the
map. This signal got stronger as scanning progressed.

The task state-transition knowledge identified in mPFC and
amyg/hippo can be considered a form of cognitive map21.
Relatedly59, Constantinescu, O'Reilly and colleagues recently
showed that conceptual knowledge can be encoded in a map-like
manner using a grid code in the same mPFC region and an
adjacent mPFC area has been linked to the representation of the
current state in a map of task space60.
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It is important to note that reward-learning and processes akin
to those that we refer to as statistical learning can proceed
simultaneously21 and that the associative structures that form as a
result of RL and incidental learning of task statistics do not
simply map onto stimulus–reward and stimulus–stimulus asso-
ciations respectively. RL can mediate relationships between
reward-predictive stimuli, and thus stimulus–stimulus associa-
tions (A–B, B–C), as well as stimulus–reward associations (A-
reward, B-reward); indeed stimulus–stimulus associations are a
key focus of classic RL treatments28 of animal studies using
higher order conditioning, and they are particularly important
when the order of transitioning through the stimuli matters for
reaching reward. Hence, stimulus–stimulus associations are not
purely derived by incidental learning. Indeed we show that,
stimulus–stimulus associations are learned faster than one would
expect from purely statistical learning; propagating the reward
backwards across multiple stimuli speeds up learning.

Intriguingly, activity in mPFC and amyg/hippo simultaneously
reflected several dissociable aspects of the task. On the one hand
its activity reflected statistical learning – knowledge of transition
frequencies between task states regardless of reinforcement. On
the other hand, its activity reflected associations between rewar-
ded sequence elements over and above associations between
control sequence elements (regardless of order); this latter
representation depended on reinforcement. While statistical
knowledge was flexibly updated and constantly changing in
mPFC, reinforcement-based task representations did not change
over time, even though this knowledge was irrelevant to the task
performed during scanning. In summary, RL and statistical
learning mechanisms converge in mPFC but have different
temporal properties. It has previously been pointed out that
learning related representations acquired over different time
scales exist simultaneously in different brain regions61 and even
simultaneously within the same brain region62–64. In the current
study, however, the representations are not simply derived from
the same learning process operating at different timescales but as
a result of different learning processes operating at different
timescales.

Our third key result demonstrated a spatial spread of reward
signal in centromedial amygdala (Fig. 5 and Supplementary

Fig. 5; Fig. 7), a region with strong dopaminergic innervation65

and direct connections to autonomic brainstem structures66,67.
This signature is interesting in light of other work that has sug-
gested amygdala activity reflects a temporal spread of reward
effect22,23. The amygdala was shown to leak reward signals into
subsequent trials even if this reduced optimal choice behavior22

and amygdala signals became particularly pronounced when
spreading reward was the only viable learning mechanism23. In
both studies, suppression of non-contingent signals in the
amygdala facilitated contingent learning mediated by OFC. This
could explain work showing that OFC-lesion induced impair-
ments in value-guided choices are reversed by subsequent
amygdala lesions68, and that neurotoxic amygdala lesions
improve reversal learning69. Here we show that the amygdala’s
role in learning about states close in time to reward extends to
states close in space to reward.

A temporal spreading of reward may be useful when few
choices are available, and the same choice is repeated multiple
times, or when the actions during which reward is acquired are in
themselves extended in time. Correspondingly, spatial spreading
of reward may provide a behavioral advantage when similar
outcomes cluster around similar locations, which is true in many
ecological scenarios. It is also possible that spreading reward to
nearby stimuli can help determine which stimuli are eligible to be
assigned reward in initial stages of learning (eligibility trace28).
We examined if the representation of the reinforced sequence
(the contingent knowledge in our task) related to the spread of
reward signal in the amygdala. We found that more pronounced
spread signals related to more pronounced sequence representa-
tions. This suggests that contingent and non-contingent learning
mechanisms may have similar sources or that one drives
the other.

Our final striking observation was that the ventral striatum
BOLD response did not distinguish between rewarded and con-
trol sequence elements, relate to correctly ordered reinforced
knowledge, task statistics, or a spread-of-reward signal (Fig. 6 and
Supplementary Fig. 6; Fig. 7). Instead, ventral striatum showed
PE-like responses at the occurrence of the first element of the
reinforced sequence and thus precisely the signal that would be
predicted by TD theory.
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knowledge of undirected relationships within the rewarded compared to the control sequence (sequence fusion, Fig. 2a)
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Methods
Participants. Twenty-seven participants (11 female, age 19–35, mean 26 ± 0.77)
took part in this study. Screening criteria included no history of neurological or
psychiatric disorder, normal or corrected-to-normal vision and suitability for
undergoing MRI scanning. One participant who failed to complete the experiment
because he fell asleep repeatedly in the scanner was excluded from all analyses. The
final sample thus included 26 participants. The study was approved by the Uni-
versity of Oxford Central Research Ethics Committee (MSD-IDREC-C1-2013-095)
and all participants gave written informed consent.

Experimental procedure. Participants agreed to take part in four sessions on
separate days within 1 week (Supplementary Fig. 1a). The first two sessions were
behavioral and lasted 1–1.5 h and the third and fourth sessions included behavioral
and MRI testing and lasted around 2.5 h (of which 1.5 h was in the MRI scanner).
Participants were reimbursed £60 for their time (£10 for behavioral and £20 for
scan sessions) and could earn up to a maximum of £40 (£10 per session) for their
performance on the task. The average total payment was £96.7 ± 0.37.

Task design and procedure of pre-scan learning sessions. An array of 3 × 4
abstract stimuli were presented on the screen in a fixed configuration (Fig. 1a, left;
Supplementary Fig. 1b, c). Unbeknownst to the participant, four of these twelve
stimuli made up a sequence (referred to as ABCD) which led to reward (rewarded
sequence RewSeq). The aim of the behavioral training was to learn what caused the
reward, i.e. to learn the association between the sequence of four stimuli and
reward. More precisely, participants were instructed to find out how to unlock the
treasure and while we did not explicitly use the word sequence at any point, we
gave some examples in the instructions that would likely have made them realize
that learning was about more than one stimulus. The elements of RewSeq did not
have to be adjacent in space but they had to be experienced in the correct order for
reward to occur. Importantly, in contrast to prior work related to the acquisition of
sequence knowledge (mostly in the motor domain, e.g., refs. 25–27), participants
had to infer the length and start of the sequence neither of which was instructed.

The order of events was as follows (Fig. 1a, Supplementary Fig. 1c). The
computer highlighted one stimulus at a time with a yellow border and participants
were asked to move an agent (purple dot) to the instructed location using right/left/
up/down arrow keys (right hand index/middle/ring fingers). As soon as they
reached the highlighted stimulus, passing by several sequence irrelevant stimuli in
the process, the next stimulus was highlighted, and so forth. The highlighting of
stimuli happened in a continuous stream and in pseudo-random order. The 3 × 4
layout of stimuli only disappeared in two situations: (a) when the reward (picture
of treasure) appeared (six times per block), which was as soon as the participant
reached stimulus D after A, B, and C had been highlighted; (b) when a distractor
stimulus (picture of a bridge) appeared on the screen at unpredictable times (six
times per block). Participants were instructed to press the space bar as fast as
possible upon presentation of the reward or bridge (left hand index finger). The
frequency-matched bridge stimulus served as a reaction time (RT) control for the
reward, thus enabling us to measure reward anticipation. Participants were told
that only the highlighted stimuli mattered for learning but not the route they
walked from one highlighted stimulus to the next. Task timings were determined
by the participant’s walking speed and chosen paths and by their RTs to bridge and
reward.

Learning was repeated with different sequences in three different contexts
which were signaled with layouts of differently colored and shaped stimuli (green,
purple, and gray; Fig. 1a; Supplementary Fig. 1b). Thus, a total of three rewarded
sequences (RewSeq) made up of different stimuli in different locations had to be
learnt. In addition to the RewSeq, the remaining eight stimuli in each context made
up a control sequence ConSeq (comprising elements A′B′C′D′) which was
highlighted in the correct order as frequently as RewSeq but which did not lead to
reward and was thus not subject to reinforcement; and a second control sequence
ConSeq2 (A″,B″,C″,D″) which was less frequent and also unrewarded. Originally,
we had planned to compare ConSeq2 to ConSeq to probe statistical learning, or in
other words ConSeq2 served as a frequency control for ConSeq. Because of the rare
occurrences of ConSeq2, however, this analysis was lacking in power and model-
based analyses that included all stimuli seemed more appropriate to investigate
statistical learning (see below).

Participants were randomly assigned to one of two groups at the start of the
experiment. The stimuli assigned to the RewSeq and ConSeq sequences were
counterbalanced between the groups to rule out the possibility that any differences
in learning depended on specific features of the stimuli or details of the sequence
layout. In other words, what was RewSeq in a given context in group 1 became
ConSeq in group 2 and vice versa. In both training sessions, participants completed
four blocks (96 stimuli, plus 6 rewards) in each context, and thus a total of twelve
training blocks on day 1 and twelve training blocks on day 2. Blocks were sorted by
context on day 1 and completed in random order on day 2 but with context still
clearly signaled using the differently colored stimuli.

Immediately following each learning block participants completed a block of
binary choices (n= 54) between combinations of two stimuli highlighted using
green and blue squares in the usual configuration (i.e., as part of the 3 × 4 map
layout) to probe any preference for the rewarded stimuli (choice task). Subjects
were instructed to indicate which of the highlighted stimuli they associated with

reward (Supplementary Fig. 1c). After this they had three opportunities to enter the
correct sequence by walking around in the 3 × 4 maze and pressing space bar on
the stimuli they wanted to be included, following the correct order (sequence
completion task; Supplementary Fig. 1c). Their performance on these two tasks
determined their additional payment from the training sessions (1 point (~0.61
pence) for any choice of an RewSeq stimulus i.e. A, B, C, or D; 12 points (~7.5
pence) for entering a correct sequence; % of points out of maximum possible points
were translated into % of £10 received (max £7.3 for choice, max £2.7 for sequence
completion): mean £9.07 ± 0.19 on day 1; £9.90 ± 0.02 on day 2). Importantly,
feedback on performance was not given during the task but only at the end of each
day’s session.

Task design and procedure of scanning sessions. During scanning, the screen
displayed one of the familiar 3 × 4 layouts of abstract stimuli in each block. Again,
stimuli were highlighted one at a time and in pseudo-random order (ISIs drawn
from truncated Poisson-distribution: mean 2.8 s, range 1.5–10 s). However, there
was no agent and participants did not have to press several buttons to walk around.
Instead, they performed an incidental task to ensure their attention was focused on
the highlighted stimulus. Participants were asked to search for a small flower on the
currently highlighted stimulus (Fig. 1a, right; Supplementary Fig. 1c). If they
detected a flower and pressed a single button (right index finger on a button box)
within 800 ms of the stimulus being highlighted, they earned a bonus reward (total
of 42 flowers per block corresponding to £10; mean £8.50 ± 0.28 on scan day 1, on
average caught 35.79 ± 1.18 of 42 flowers; mean £9.20 ± 0.14 on scan day 2; on
average caught 38.10 ± 0.81 of 42 flowers). Occasionally, the picture of treasure was
shown in-between the highlighted stimuli on the grid (n= 24 per block out of a
total of 420 stimuli), just like during the pre-scan learning task. It was shown in six
possible places: after AB, xxCD, ABCD, A′B′, xxC′D′, A′B′C′D′. The 3 × 4 map
display disappeared for the duration of the picture of treasure (shown centrally)
and participants had to search for a flower on the treasure stimulus just as they did
for any other stimulus. Hence, what used to be the behaviorally relevant rewarding
stimulus had no particular meaning during the scanning task and no response was
required unless it contained a flower.

Before entering the scanner, participants performed one block of the pre-scan
learning task per context, identical to those performed during the preceding
behavioral sessions to refresh their memory of the learnt sequences (Supplementary
Fig. 1a). In the scanner, participants performed three blocks of ~20 min of the
scanning task described above, one in each context and with contexts drawn in
random order. Following scanning, they completed the choice and sequence
completion tasks from the training once per context to probe their sequence
knowledge. Finally, at the very end of the second day of scanning, participants
performed a short memory task (Supplementary Fig. 1c, Supplementary Note 5).
Each stimulus (n= 3 × 12= 36) was shown on its own in the 3 × 4 layout with the
other eleven stimuli grayed out: once in its correct position and place, once in a
different color (a color from one of the other two contexts) and once in a different
position but its original color. For each of these 3 × 36= 108 stimuli, participants
were asked to judge whether the stimulus was correct (as experienced during
training) or wrong (right index and middle finger, respectively).

Stimulus generation. The transition frequencies experienced during training and
scanning are shown in Supplementary Fig. 4c. All stimuli and all transitions
between RewSeq and ConSeq elements appeared equally often during the pre-scan
learning task. During scanning, the order of stimuli did not obey the transitions
experienced during training because the protocol was optimized for several dif-
ferent analyses. For instance, we wanted to be able to compare the BOLD response
to D stimuli in trials where it was preceded by A, B, C with trials in which this was
not the case. This also meant that during scanning, stimulus frequencies were not
entirely balanced but the relevant transitions between RewSeq and ConSeq
sequences that entered our contrasts were always balanced. Custom-written
MATLAB (The MathWorks, Inc., Natick, Massachusetts, US) code, with different
constraints for the pre-scan learning task and the fMRI scanning task, was thus
used to generate the respective pseudo-random sequences of highlighted stimuli.
All stimulus presentation was programmed in MATLAB and performed using the
Psychophysics Toolbox70.

Statistical analysis of behavior from pre-scan learning task. During the pre-
scan learning task, RTs to the reward and bridge provided measures of the presence
and absence of reward anticipation, respectively. This was because the bridge was
shown at unpredictable times whereas reward only occurred when the correct
sequence ABCD had been experienced. RTs to the six occurrences of reward and
bridge per block were averaged for each block and across the three contexts,
yielding eight RT measures per person (four blocks per context on day 1 and day
2). An 8 × 2 repeated-measures ANOVA with factors block and stimulus type
(reward/bridge) thus measured effects of reward anticipation (Fig. 1b). All ANO-
VAs were performed in JASP (JASP Team (2018), https://jasp-stats.org) and were
JZS Bayes factor ANOVAs71,72 with default prior scales, which allowed both fre-
quentist and Bayesian statistics and thus enabled measuring the likelihood of the
null hypothesis.
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RT changes to the first movement of a trajectory from one highlighted stimulus
to the next (i.e., when one highlighted stimulus had just been reached and the next
stimulus was highlighted by the computer) were used to probe the anticipation of
stimulus transitions. If the currently highlighted stimulus can serve to predict the
next one, participants should be able to move the agent in the direction of the
newly highlighted stimulus faster. We measured the RT to the first agent
movement separately for transitions AB, BC, and CD, for both RewSeq and
ConSeq, averaged across blocks and contexts. Hence, we performed a 2 × 3
repeated-measures ANOVA with factors sequence (RewSeq/ConSeq) and
transition (AB, BC, CD; Fig. 1c). Note that all the transitions included in this
ANOVA were experienced equally frequently and were thus equally predictable
from a probabilistic point of view. To examine consolidation of transition
knowledge across days, this ANOVA was also run as a 2 × 2 × 3 ANOVA with an
additional factor Day (Supplementary Note 4; Supplementary Fig. 1f).

To assess any progression in participants’ ability to complete the entire
sequence (a way of probing explicit sequence knowledge), we calculated the
percentage of times each of the four elements A, B, C and D was included in the
sequences participants produced during the sequence completion task at the end of
each learning block. We averaged across the three repetitions and across contexts,
which resulted in a 4 × 8 repeated-measures ANOVA with factors Element (A/B/C/
D) and Block (Fig. 1d).

Statistical analysis of behavior during fMRI scanning task. RTs produced to
flowers shown during the fMRI scanning task were fitted using a linear regression
with the following explanatory variables: (1) Distance in links to previous highlight;
(2) transition frequency (for more details see trial-by-trial model below); (3) any
member or RewSeq; (4) any member of ConSeq; (5) constant term. RTs during
scanning were faster for shorter distances and for elements of the RewSeq (p
(LinkDistance)= 4.67e-12, t(25)= 19.73; p(memberRewSeq)= 0.021, t(25)=
−6.75; for all other p apart from constant term: p > 0.1).

We summarized the performance on the memory test performed after the two
scan sessions (i.e. as the last test during data acquisition). We examined the
memory of the RewSeq and ConSeq sequence elements as the percentage of correct
responses in the memory task on stimuli shown in the correct place and position
(recognition) and those shown in either the wrong color or position (error
detection). We performed a 2 × 2 repeated-measures ANOVA with factors
sequence (R/C) × type of recall (recognition/error detection). The overall
percentage of correctly remembered stimuli was taken as a measure for overall task
space knowledge.

Trial-by-trial model of statistical relationships. We designed a simple model to
capture the underlying statistical relationships present in the scan task. The aim
was to obtain a trial-by-trial measure of the frequency (or probability) with which
participants expected each of the possible transitions from one element to another
within the task space. For the first scan session, we set the prior to the frequencies
experienced during the pre-scan learning task. Frequency here refers to the actual
number of times a transitions was experienced during training, in integer numbers.
These were saved in a 13 × 13 asymmetrical matrix TF (12 stimuli+ reward),
storing, in each cell TF (i, j), the value of the frequency of going from stimulus i to
stimulus j (as shown in Supplementary Fig. 4c). Note that the sum along the rows
and columns indicated how often participants experienced stimulus i and j overall,
respectively. During the pre-scan learning task, each stimulus was shown equally
often, so normalizing TF by rows or columns, thus transforming frequencies into
probabilities, did not have any effect apart from a scaling of the matrix as a whole.
For each trial in the scan task (starting from trial 2), the prior was then updated for
the experienced transition from i to j by adding 1, i.e.

TF i; jð Þ ¼ TF i; jð Þ þ 1;

This meant that every experienced transition carried equal weight during
updating. The matrix TF was then demeaned and used as a prior for the next trial.
We decided to demean to ensure that the overall scale of the numbers remained
unchanged while at the same time avoiding a monotonically increasing parametric
regressor. We checked carefully whether this decision mattered: for example, the
correlation between the demeaned regressor and an alternative that did not include
this demeaning step but detrended the resulting regressor at the end, was r=
0.9936.

For computing transition probability TP(j|i), the demeaning term from the TF
computation was remembered, added back onto the updated TF matrix, and each
row of TF was then normalized by the sum of this row (reflecting the frequency
with which the initial stimulus i occurred) to obtain TP, and thus a measure of how
likely it was to go from stimulus i to j, given i. A parametric regressor was
constructed based on the expected transition frequency of going from the previous
(i) to the current (j) stimulus (i.e. based on the TF cell before the update for the
current trial was performed). This regressor was time-locked to the presentation of
the current stimulus j. For the second scan session, the same model was used with
the only difference being that the prior was set to the transition frequencies from
the first day of scanning.

In modified versions of GLM2 (see below), conditional transition probability
either replaced the parametric regressor of transition frequency, or both were
included simultaneously. This was possible because during scanning, not all stimuli

appeared equally often, so transition frequency and transition probability were
distinguishable. We simultaneously kept a record of stimulus frequency per se by
adding +1 to a 1 × 12 vector tracking how often a stimulus was experienced.

To establish whether tracking transitions and thus statistical task regularities
provided a superior prediction of upcoming elements than a simpler prior of
spatial distance, we calculated the mean probability of all experienced transitions
using (a) knowledge of transition frequencies, (b) knowledge of spatial distances, or
(c) a flat prior, i.e. equal likelihood of any transition. For spatial distance coding, we
assumed that the probability of a transition linearly decreases with increasing
distance but conclusions remained unchanged using exponential or logarithmic
decays. Because the resulting mean probability is a function of the stimulus order
which was identical across participants (despite randomization of blocks), mean
values are reported without statistical tests.

FMRI Data acquisition. Images measuring the blood oxygenation-level-dependent
(BOLD) signal were acquired on a Siemens Prisma 3T MRI scanner using a
multiband T2*-weighted echo planar imaging (EPI) sequence with acceleration
factor of four and using a 32-channel head-coil. Slices were acquired in interleaved
order and at an oblique angle of −30° to the AC-PC line to reduce signal dropout
in orbitofrontal cortex. The voxel size was 2 × 2 × 2mm with a 1-mm gap; TE=
32.4 ms; repetition time= 1354 ms; flip angle= 74°; number of slices: 72. One run
(~20 min) contained approximately 850 volumes. A fieldmap (2 × 2 × 2mm) was
obtained for each subject to allow for corrections in geometric distortions. In one of
the two scanning sessions of each participant, a structural MPRAGE scan was
acquired with 192 slices; slice thickness= 1 mm; TR= 1900 ms; TE= 3.94 ms;
voxel size= 1 × 1 × 1 mm. In addition, physiological recordings were taken during
the functional MRI blocks to measure the participant’s pulse and breathing.

FMRI data preprocessing. Image preprocessing was implemented in FMRIB
Software Library (FSL)73 and consisted of bias correction using the bias field
obtained from segmentation74, motion correction75, distortion correction using
fieldmaps, brain extraction, high-pass filtering, and spatial smoothing with a
5-mm FWHM kernel. A hard regression was performed to regress out noise
explained by 24 motion regressors (the original six produced by FLIRT, their
derivatives, and the resulting 12 regressors squared; see e.g.76) and by 33 phy-
siological noise regressors created using the PNM toolbox (because of the short
TR, these were not voxel-wise regressors: oc= 4; or= 4; multc= 2; multr= 2;
rvt77). In addition, conservative independent component analysis was used to
identify and remove obvious artifacts (using MELODIC in Fmrib’s Software
Library; http://fsl.fmrib.ox.ac.uk/) and ICA noise components were regressed out
of the data using a soft regression. Images were registered to the high-resolution
structural image (BBR) and then the standard MNI152 template using nonlinear
registration (12 degrees of freedom)78.

FMRI Data analysis using general linear models. We constructed two general
linear models (GLMs). The first (GLM1) was designed to probe differences in
BOLD between the reinforced sequence RewSeq and the equally frequent sequence
ConSeq. It contained 18 regressors of interest:

(1) rr – the occurrence of an RewSeq element (A, B, C, or D) after another
RewSeq element

(2) xr – the occurrence of an RewSeq element after an element not part
of RewSeq

(3) corrOrderRewSeq – occurrences of RewSeq that follow the correct order, i.e.
B after A (AB), C after AB (ABC), or D after ABC (ABCD)

(4) Spatial neighbors of D (any element that can be reached within one step
from D)

(5) Goal element D when preceded by a spatial neighbor
(6) Goal element D preceded by any other element
(7) Starting element A
(8–14) the equivalent regressors for the control sequence ConSeq
(15–16) regressors (1–2) but for the less frequent control sequence ConSeq2
(17) Picture of treasure
(18) Picture of flower.

The contrasts of interest in GLM1 were rr-cc (Fig. 2a), which probes any
differences in BOLD to the second of two successive stimuli from RewSeq
compared to ConSeq (for more details, see Results); corrOrderRewSeq-
corrOrderConSeq which probes differences between RewSeq sand ConSeq when
transitioning through the correctly ordered associations (Fig. 3b and
Supplementary Fig. 3). Both of these measured knowledge that had formed as a
result of reinforcement learning. One other contrast of interest in GLM1 related to
the spreading of reward in space: we compared spatial neighbors of D with spatial
neighbors of D′ (Fig. 5). And a final contrast compared BOLD responses to the
starting elements A and A′ (Fig. 6).

The second GLM (GLM2) was designed to probe statistical learning and
therefore did not split the onsets of RewSeq and ConSeq elements. It contained 8
regressors of interest:
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(1) The onset of any stimulus (RewSeq, ConSeq, or ConSeq2 i.e. all 12 on the
3 × 4 map)

(2) Parametric effect of spatial link distance (i.e., the number of steps it would
take to walk from the previously highlighted stimulus to the current one)

(3) Parametric effect of transition frequency extracted from the trial-by-trial
model (i.e., estimated frequency of going through the transition that led to
the currently highlighted stimulus)

(4) Parametric effect of any reward expectation (A, AB, ABC, and ABCD)
(5) Parametric effect of any statistical sequence violation (i.e. Ax, A′x, ABx, A′B′

x, ABCx, and A′B′C′x, where x is not the stimulus that would follow the
correct order of the sequence)

(6) Parametric effect of expected stimulus frequency (updated on a trial-by-trial
basis as explained above)

(7) Picture of treasure
(8) Picture of flower.

The relevant contrasts in GLM2 were the parametric effect of spatial link
distance and transition frequency (Fig. 4) which were taken as measures for
statistical learning. The responses to treasure and flowers were virtually identical in
both GLM1 and GLM2 and are shown for the ventral striatum based on GLM2
(Fig. 6).

All regressors were convolved with the double-gamma HRF in FEAT and GLMs
were estimated for each subject and session. The shared variance between any two
regressors (Pearson’s r2) in these convolved GLMs did not exceed 0.25 for either
GLM1 or GLM2 (Supplementary Fig. 2d). The analysis involved multiple further
levels: at the second level, the sessions from the same day in each subject were
combined using fixed-effects (second stage); at the third level, the sessions from the
two days of each subject were combined using FLAME1 (mixed-effects79). Finally,
the fourth level corresponded to the group analysis and used FLAME1 to combine
across subjects. We originally performed analyses with a cluster-forming threshold
of p < 0.1 (z > 2.3) but repeated them with a more conservative cluster-forming
threshold of p < 0.001 (z > 3.1), following recent recommendations80. This did not
change the key results: (1) Sequence fusion RewSeq-ConSeq (Fig. 2a) still shows
significant cluster-corrected results in temporal pole and mPFC, merely the
extension to pOFC does not survive correction at the stricter threshold; (2) spatial
distance, transition and stimulus frequency coding (Supplementary Fig. 4a, b) do
not change apart from few voxels around the edge of clusters; (3) correct sequence
order (Supplementary Fig. 3) becomes weaker but remains cluster-level significant
in pOFC; (4) only lateral ventral striatum (putamen) is no longer significant for the
contrast A in RewSeq-ConSeq (Fig. 6b).

Because of a priori hypotheses, significance in the amygdala was established
using a mask. For the initial ROI-defining contrast rr-cc we had no strong
hypotheses about the location within the amygdala, so we applied non-parametric
threshold-free cluster enhancement (TFCE33) to establish significance at p < 0.05
within an anatomical mask of bilateral amygdala (Harvard Subcortical Atlas). For
establishing effects of spatial spread, we used the average amygdala coordinate
from38 (x=−21, y=−6, z=−19) and tested for significance in a 3-mm sphere
around this coordinate. For full transparency, we also report the cluster extent at
uncorrected levels: for the initial contrast (rr-cc) the peak in the amygdala was z=
2.8 within the amygdala anatomical mask and z= 2.97 in the same cluster but just
adjacent reaching into the hippocampus. The cluster extent at p < 0.01, z > 2.3 was
27 voxels within the amygdala mask in the right hemisphere, and 46 in the right
and 11 in the left hemisphere when considering voxels of the same cluster within
either amygdala or adjacent hippocampus, i.e. including the border. For the spatial
spread contrast, the strongest activation was located within the anatomical
amygdala mask at z= 3.0. The cluster extent at p < 0.01, z > 2.3 is 19 voxels.

Finally, because of a large body of literature relating the hippocampus to
statistical learning, we also constructed a 3-mm spherical ROI in bilateral
hippocampus based on the peak coordinate in58 (Left: −18, −19, −22; Right: 24,
−25, −22).

To further examine some of the effects revealed in GLM1 and GLM2, two
slightly modified variants of the original models were tested. First, to probe whether
effects obtained for the contrast rr-cc in GLM1 (Fig. 2a) were modulated by the
interval between subsequent RewSeq or ConSeq stimuli, four additional parametric
regressors were added to GLM1 and modeled the temporal distances between the
preceding and current stimulus for the four columns: rr, cc, xr, and xc. Second, one
regressor was replaced in, or added to, GLM2 so that instead of, or in addition to,
transition frequency, transition probability was modeled. These variables were quite
correlated (r2= 0.72) and were compared in their performance both separately and
when competing for variance to establish if one explained the ROI’s BOLD signals
better than the other. The two extended GLMs were convolved using MATLAB’s
conv.m with spm_hrf.m and then fit directly to the ROI time-courses.

ROI selection, parameter estimate, and time-course extraction. Spheres of 5
mm were constructed around the peaks from the above described contrast rr-cc in
mPFC (peak MNI coordinate 0, 40,−6, z= 4.0), temporal pole (peak MNI coor-
dinate 48, 10, −28, z= 4.2) and pOFC (peak MNI coordinate right: 30, 18, −22, z
= 3.73 and left: −38, 16, −20, z= 3.32), and a sphere of 3 mm was constructed
around the amygdala because of the small size of this region (peak MNI coordinate
right: 28, −6, −22, z= 2.9; left 26, −8, −26, z= 2.8; see Supplementary Fig. 2b).

An anatomical ROI for ventral striatum (nucleus accumbens) was constructed
from the Harvard Subcortical Atlas (probability threshold 0.25).

Parameter estimates extracted from these regions are in some cases shown for
illustration only (Fig. 2b). Additional statistical tests on parameter estimates in the
form of simple t-tests were only performed when these were orthogonal to the
contrast based on which the spheres were defined (e.g. Fig. 2c for temporal delay
effects or Figs. 3d and 4d for progression of effects over the duration of scanning).
Changes in parameter estimates over the six blocks (e.g. Figs. 3d and 4d) were
established by fitting a linear regression model with an effect of time (linear trend),
and if appropriate any main effects (e.g., contrast) and interactions, to the parameter
estimates extracted from each block based on GLM1 or GLM2. All t-tests were two-
sided except in one case: when testing for a modulation of the rr effect by the time
between successive stimuli, we expected repetition suppression to be stronger for
shorter time intervals (Fig. 2c and Supplementary Fig. 2a). Importantly, while
parameter estimates extracted from the ROI sphere in temporal pole were only just
significant in this test, there was a large cluster of voxels significant in this contrast
which was located immediately adjacent to our ROI in temporal pole.

Time-series were extracted from the same spheres described above. Again, no
statistical tests were performed on these data and they serve illustrative purposes
only. Time-series were up-sampled slightly for illustration (original TR= 1.354 sec,
up-sampled TR= 0.5 sec). For illustrating the effect of inter-stimulus interval on
the suppression effects reported in Fig. 2, the short ISI condition contains any trials
with ISI < 2 s, the mid ISI condition contains ISIs between 2–3.5 s and the long ISI
condition ISIs > 3.5 s. This division ensured all bins contained roughly equal
numbers of trials (Fig. 2d). Similarly, for the effects of spatial link distance and
transition frequency, trials were split into three equally large bins (Fig. 4c).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data underlying all figures are provided as part of the Open Science Framework
(OSF; https://osf.io/y325a; Digital Object Identifier (DOI): https://doi.org/10.17605/OSF.
IO/Y325A). The OSF project contains a zip folder with all source Data files (.mat), a
spreadsheet detailing the names of the source data files and all scripts relevant for
producing the figures (make_figX.m). Unthresholded fMRI maps of all contrasts are
available on Neurovault (https://identifiers.org/neurovault.collection:5765).
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