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Abstract

Social neuroscience aims to describe the neural systems that underpin social cognition and behaviour. Over the past
decade, researchers have begun to combine computational models with neuroimaging to link social computations to the
brain. Inspired by approaches from reinforcement learning theory, which describes how decisions are driven by the
unexpectedness of outcomes, accounts of the neural basis of prosocial learning, observational learning, mentalizing and
impression formation have been developed. Here we provide an introduction for researchers who wish to use these models
in their studies. We consider both theoretical and practical issues related to their implementation, with a focus on specific
examples from the field.
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Introduction
Learning about actions and outcomes fundamentally shapes
social cognition and behaviour. For example, to help others,
we need to know how our decisions reward or avoid harming
someone else. Before we decide what to choose for ourselves,
we can engage in observational learning by watching the good
or bad things that happen to other people, and we can infer
others’ mental states by tracking their actions and outcomes
over time. But how do we form associations between actions
and outcomes when they occur in a social context? And are the
brain areas involved in social learning uniquely ‘social’ or do they
reflect domain-general processing shared with other cognitive
faculties? One of the most important influences on psychology,
neuroscience and economics has come from associative or rein-
forcement learning theory that precisely and mathematically
describes how decisions are paired with outcomes over time
(Sutton and Barto, 1998; Dayan and Balleine, 2002).
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Inspired by early behaviourist work on classical conditioning
(Pavlov, 1927; Sutton and Barto, 1998), Rescorla and Wagner (1972)
proposed their learning model which described how learning
occurs via a prediction error, the discrepancy between what
we expect to happen and what actually happens. This error
correction learning process can be described mathematically.
The idea is that the expectations of future reward (or avoidance
of punishment) (Vt+1) should be a function of current expecta-
tions (Vt) and their discrepancy from the actual outcome that is
experienced (rt), known as the prediction error (PEt), multiplied
by a learning rate (a). The prediction error is simply the size of
the difference in the outcome we actually receive (rt) and the
expectation of that outcome (Vt). The prediction errors’ scaling
by a subject-specific learning rate modulates the influence of the
prediction error on learning:

Vt+1 = Vt + a ∗PEt
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Fig. 1. The influence of recent outcomes onto choice, for different learning

rates. Shown is the influence of the outcomes received on the last seven trials

for making a choice on the current trial, for three different learning rates. Red

shows a hypothetical participant with a learning rate of 0.9. This learner updates

strongly based on recent outcomes. There is a strong influence of the outcome

on the previous trial (n − 1), and a weaker influence of the outcome received two

trials back (n − 2) but virtually no influence of earlier outcomes. A learner with

smaller learning rates, here shown for 0.5 (grey) or 0.2 (blue), shows increasingly

longer-lasting influences of outcomes received on trials further back from the

current trial.

where
PE = rt − Vt

In simple language:

Expectations on the next trial = the expectation on the cur-
rent trial + learning rate ∗ prediction error (reward – current
expectation)

Perhaps central to questions of social reinforcement learn-
ing, these prediction errors can be social in nature, i.e. ‘social’
prediction errors, such as the expectation that my action will
help someone vs the outcome that it did or did not (Lockwood
et al., 2016), or my expectation that I will be liked by someone
else and the outcome that I was or was not (Will et al., 2017; Yoon
et al., 2018). Whilst brain areas classically associated with rein-
forcement learning such as ventromedial prefrontal cortex and
ventral striatum have been linked to processing both social and
non-social prediction errors (discussed in more detail below),
there may also be social prediction error signals in regions some-
what specialized for social processing (i.e. that do not typically
respond to reward processing in general). These regions include
the anterior cingulate gyrus (Behrens et al., 2008; Apps et al.,
2015; Lockwood et al., 2018), subgenual anterior cingulate cortex
(Lockwood et al., 2016; Will et al., 2017), temporo–parietal junction
and dorsomedial prefrontal cortex (e.g. Hampton et al., 2008;
Koster-Hale and Saxe, 2013; Hill et al., 2017). A more extensive
discussion about the distinction between brain regions coding
social and non-social prediction errors is covered in several other
recent reviews (e.g. Joiner et al., 2017; Wittmann et al., 2018;
Olsson et al., 2020; Suzuki and O’Doherty, 2020).

In the context of reinforcement learning, as shown in the
update equation above, the prediction error is scaled by the
learning rate for updating expectations. The learning rate can
also differ according to the context in which learning occurs
(discussed in further detail in section ‘one parameter or many
parameters’ below). An example of how past outcomes influence
a current choice is illustrated for three different learning rates in
Figure 1.

Importantly, the utility of reinforcement learning (RL) models
has been bolstered by their neural plausibility—the discovery
that phasic activity of dopamine neurons in the midbrain encode
a prediction error (Schultz, 2007, 2013). Not only did this model-
derived updating signal have a distinct neural correlate, but it
arguably has transformed classical neuroimaging analysis tech-
niques (Behrens et al., 2009). Whilst classical fMRI studies had
to rely on a subtraction-based design where average activity
for two categories was contrasted (e.g. faces vs houses), now
there was a method that produced parametric values on every
single trial that could be used to look for areas of the brain
that covary with predictions from the model over time. In other
words, this advance in experimental design for the first time
provided a handle on the precise computation occurring in a
brain area. Moreover, model-based fMRI could potentially help
bridge different levels of explanation from the cognitive and
behavioural to the neural.

Studies in the field of social neuroscience have begun to
apply these models to understand how and whether quantities
predicted by RL are represented in the brain during social sit-
uations (Behrens et al., 2008; Hampton et al., 2008; Burke et al.,
2010; Suzuki et al., 2012; Seo et al., 2014; Apps et al., 2015; Hackel
et al., 2015; Sul et al., 2015; Kumaran et al., 2016; Lockwood et al.,
2016, 2018, 2019; Spiers et al., 2016; Wittmann et al., 2016, 2018;
Zaki et al., 2016; Cheong et al., 2017; Hill et al., 2017; Will et al.,
2017; Charpentier and O’Doherty, 2018; Konovalov et al., 2018;
Lindström et al., 2018; Lockwood and Wittmann, 2018; Yoon et al.,
2018; Farmer et al., 2019; Zhang et al., 2019; Olsson et al., 2020). The
implementation of these models has already provided impor-
tant new insights into multiple aspects of social behaviour. For
example, many studies have documented how medial prefrontal
cortex often responds to contrasts of Self > Other, in terms of
referential judgement and even processing of faces, leading
some authors to suggest that mPFC is critically involved in self-
representation (Kelley et al., 2002; Northoff et al., 2006; Sui and
Humphreys, 2015). However, we recently showed that using a
parametric approach this same portion of ventral mPFC in fact
tracks associative learning relevant to ourselves, friends and
strangers, on every trial, significantly above chance. We were
able to replicate an overall subtraction effect of Self > Stranger
but could additionally show that this area in fact held represen-
tations of all three agents in parallel. This finding would not be
possible in a subtraction design where the individual parameter
estimates themselves are not interpretable (Lockwood et al.,
2018).

Another example from parametric reinforcement learning
fMRI studies is that responses to prediction errors in ventral
striatum appear to be non-specific, that is, responses in this
area track PEs in both social and non-social contexts when
directly compared (Behrens et al., 2008; Burke et al., 2010; Sul
et al., 2015; Lockwood et al., 2016, 2018) (Figure 2C). Such a pat-
tern is consistent with ventral striatum encoding a domain-
general learning mechanism or domain-general reinforcement
(Schultz, 2007, 2013; Daw et al., 2011; Klein-Flügge et al., 2011),
rather than supporting the idea that this region encodes how
rewarding it is, or warm glow associated with helping another
person. These are just a few of the examples of how a parametric
analysis approach might lead to new insights into human social
behaviour.

In the next sections, we discuss the application of different
types of reinforcement learning models in social neuroscience
studies as well as practical methodological considerations for
researchers wishing to apply these models to their own data. We
focus on neuroimaging studies that have used RL models in this
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Fig. 2. Schematic of task structure from a two-armed bandit task and associated neural signals from social reinforcement learning studies. (A) Example of a two-armed

bandit task. At the offer stage, two options are presented that are probabilistically associated with a reward. In some experiments, they could also be associated with

different magnitudes of reward, or both reward probability and magnitude could be varied. Participants learn by trial and error which of the two options provides

a better outcome. At the time of the offer, various quantities can be modelled, including the associative strength between the picture and the outcome, the value

sum, value difference or value of the chosen option. At the time of the outcome, either the signed prediction error which codes the expectedness of the outcome

or an ‘absolute’ prediction error could be modelled. The absolute prediction error ignores the sign (positive or negative) of the prediction error but quantifies the

overall unexpectedness of the outcome. (B) Studies of social reinforcement learning that have reported tracking of value/associative strength signals in ventromedial

prefrontal cortex at the time of choice overlaid on an anatomical scan of the medial surface. (C) Studies of social reinforcement learning that have reported tracking

of prediction errors that overlap in social and non-social situations at the time of an outcome in the ventral striatum overlaid on an anatomical scan. Note that a

meta-analysis from NeuroSynth shows that the most robust response to the term ‘prediction error’ is in the ventral striatum (overlap from 93 studies). PE, prediction

error.

article. Parameters from RL models can also be applied to data
acquired using other types of methods (EEG, MEG, behavioural
parameters in lesion studies, pharmacology and TMS), and
therefore this guidance could also apply to those modalities.
Similarly, these guidelines should be relevant to any researcher
wishing to apply reinforcement learning to their studies even
in non-social domains, including studies in healthy people and
those with neurological and psychiatric disorders (Friston et al.,
2014; Lockwood, 2016; Scholl and Klein-Flügge, 2018). However,
they may also wish to consult many other reviews and excellent
guidelines on the topic (Daw and Doya, 2006; Dayan and Niv,
2008; Samson et al., 2010; Daw, 2011; Zhang et al., 2019).

Applying reinforcement learning models in
studies of social neuroscience: theoretical
considerations in reinforcement learning
What type of reinforcement learning model should I
chose?

A first question when designing a study to investigate a social
neuroscience question with RL models is how best to design the
experiment and what type of RL model to use. Here we briefly
review some of the most common RL models used in the field.
For advice on general experimental design, we refer to another
review that covers this topic (Wilson and Collins, 2019). The
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simplest reinforcement learning model allows for two paramet-
ric values to be calculated trial-by-trial that can be correlated
with neural responses. The first of these are the quantities
associated with expectations, often termed associative strength,
value or expected value (‘Vt’ in the equation in the previous
section). The second of these is known as the prediction error
(Figure 2A–C) (‘PE’ in the equation in the previous section).

A clear illustration of the difference between these two quan-
tities can be seen through an example of a two-armed bandit
task (Figure 2A). In this task, two options are presented, A and
B. A is associated with a high probability of reward and B is
associated with a low probability. By trial and error the partic-
ipant learns which of the two options is most likely to deliver a
reward. The expectations are calculated at the time of the choice
between A and B. There are now several options for creating
parametric regressors based on these expected values of A and
B. The researcher can decide whether the most relevant way to
model this quantity is as the value difference between the two
options (A and B) on every trial, the value of the chosen option,
the value of the chosen option minus the value of the unchosen
option or the sum/mean of the values on offer (Hunt et al., 2012).

It is also important to test for areas that inversely code
value difference (parametric value at the second level of an
fMRI analyses of −1) as several studies have reported areas that
negatively track value, that is, they increase their response when
the value difference is small and suppress their response when
the value difference is large (Scholl et al., 2015; Klein-Flügge et al.,
2016; Chong et al., 2017; Lockwood et al., 2018; Piva et al., 2019).
Neurally, previous studies have suggested that these quantities
are often associated with a signal in the ventromedial prefrontal
cortex in both social (Nicolle et al., 2012; Zhu et al., 2012; Boorman
et al., 2013; Sul et al., 2015; Lockwood et al., 2016, 2018; Apps
and Ramnani, 2017; Lockwood and Wittmann, 2018; Fukuda
et al., 2019; Piva et al., 2019) and non-social studies (Kable and
Glimcher, 2007; Hunt et al., 2012; Levy and Glimcher, 2012; Bartra
et al., 2013). Whether the sign of value tracking is functionally
meaningful is highly debated (e.g. positive vs negative tracking
of value) with differences in sign perhaps reflecting whether
the signal is tracking value, difficulty, salience or arousal (Bartra
et al., 2013). In studies that do not involve learning and where
all information about choice options is displayed on the screen,
the value difference can be computed without the need for a
learning/RL model and usually involves similar neural signals
(Nicolle et al., 2012; Klein-Flügge et al., 2016; Apps and Ramnani,
2017; Piva et al., 2019). Note that in such tasks, behavioural
analysis will in many cases still involve model fitting of other
types of models, for example, economic choice models of risk
and delay (Ruff and Fehr, 2014).

The second signal that is often calculated is the prediction
error, the difference between the outcome and the expectation
(Schultz, 2007). Considerations when studying a prediction error
signal include interpreting the sign of the prediction error. Often
brain areas will be found positively correlating with the PE signal
(areas that increase their response when the outcome is positive
and decrease their response when the outcome is negative).
However, as with the value difference or value coding, it is also
important to test for areas that show the reverse pattern, that is,
they increase their signal when the outcome is negative/neutral
and decrease their signal when the outcome is positive. Another
consideration is whether to examine ‘absolute’ prediction errors
that code for the general unexpectedness of an outcome regard-
less of being positive or negative or test for a ‘signed’ prediction
error. Finally, with the simple RL model, it can also be informative
to appropriately characterize the learning rate, which is usually a

single subject-specific parameter. The learning rate can then be
correlated with the parametric values from the model to assess
if individual differences in learning correlate with parametric
values of neural activity. Neurally, prediction error signals at the
time of outcome are most commonly associated with tracking
in the ventral striatum in both social (Behrens et al., 2008; Burke
et al., 2010; Boorman et al., 2013; van den Bos et al., 2013; Sul et al.,
2015; Lockwood et al., 2016, 2018; Hertz et al., 2017; Wittmann
et al., 2018) and non-social studies (O’Doherty, 2004; Daw et al.,
2011; Klein-Flügge et al., 2011; O’Doherty et al., 2017). In support
of a key role of ventral striatum in tracking a general prediction
error signal, we conducted a meta-analysis in NeuroSynth using
the term ‘prediction error’ which showed that across 93 studies,
ventral striatum was the most robustly activated brain area.

Aside from this simple RL model, there are several derivations
of the model that may be particularly relevant in studies of social
neuroscience. Observational learning—learning from the actions
and outcomes of others—has been characterized within a rein-
forcement learning framework through ‘observational action
prediction errors’ and ‘observational outcome prediction errors’
(Burke et al., 2010). Social computations might also be described
in a case where a person should estimate an expectation of
another person’s action in order to update their own action in
a strategic interaction. For example, in the inspection game a
worker needs to decide to work or not work on the basis of
their expectation that an employer will inspect or not inspect
(Hampton et al., 2008; Yoshida et al., 2010; Hill et al., 2017).
These social signals have been linked to activity in the temporo–
parietal junction and dorsomedial prefrontal cortex, areas typ-
ically associated with theory of mind-related computations in
classical studies (Saxe and Kanwisher, 2003; Younga and Saxe,
2008). Finally, models can be chosen of prosocial learning where
the action is always from the participant himself or herself, but
the outcome is varied to different social agents. This can create
a ‘prosocial prediction error’ where participants learn which of
their actions results in reward or avoidance of punishment for
others (Lockwood et al., 2016, 2019). In this case more complex
RL models can be used, such as those that distinguish between
‘model-free’ and ‘model-based’ learning. Model-free learning is
the term used to describe simple RL learning where actions
and outcomes are paired based on reinforcement. In contrast
model-based learning takes into account the structure of the
environment and specifically how actions and outcomes are
mapped. We recently showed that people were more ‘model-
free’ when learning about avoiding harm to others, and this
was reflected in multiple neural signals of model-free learning
(Lockwood et al., 2019).

Practical methodological considerations in
reinforcement learning: model fitting and parameter
estimation

Model fitting can at first appear a bit like a ‘black box’: when
feeding in choices of an individual participant, the optimization
algorithm spits out what is hoped to be the best parameter
estimate. In the next few sections, we will try and unpack what
exactly is happening within this ‘black box’. We will also outline
how, instead of blindly believing model fitting results, some basic
checks can help ensure robustness and validate the model fitting
procedure.

What is a parameter?. In contrast to variables like the prediction
error, which are estimated for every trial of an experiment, the
parameters fitted in a computational model are categorically
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Fig. 3. Softmax temperature, negative log-likelihood and error minimization: (A) obtained choice probabilities are shown for three different values of the inverse

temperature parameter of the softmax function (‘beta’). Larger inverse temperature values correspond to a steeper function and thus less noisy choices. Note that the

range of the beta values will depend on the range of the ‘decision variable’, here the probability difference between A and B which can vary between [−1, 1]. It can be

helpful to scale decision variables in comparable ranges so that the scale of the temperature parameter becomes interpretable (note that only multiplicative scaling,

but no additive shifting, should be applied to decision variables). (B) The choice probabilities are log-transformed and inverted (−log(choiceProb)) to obtain the negative

log-likelihood of each choice. This not only makes it practically possible to compute the likelihood (product) of all choices because the log of the product is the sum

of the log-transformed values. But it also means that very wrong predictions (e.g. a low 0.2 predicted probability of choosing option A when the participant actually

choses option A) will be given a stronger weight in the overall error. (C) The summed negative log-likelihood of all choices needs to be minimized to obtain the best fit.

This is done internally by fitting algorithms by varying the parameter values (here just alpha) until the parameter value that is associated with the minimum error is

found. Because of local minima, it is sometimes important to run fitting algorithms with multiple parameter starting values.

different in that they are represented by only a single number per
experimental session. For example, usually experiments assume
only a single learning rate (α) per session, and the value for
that number ranges between 0 and 1. The learning rate was
part of the equation described at the beginning of this article.
In addition, most learning experiments fit an additional param-
eter that captures, across the entire experiment, the noisiness
or stochasticity of an individual’s choices. This parameter is
referred to as the inverse temperature (‘beta’, (β)) and controls
the steepness of the softmax function. This function translates
the value difference between two options A and B into the
probability of choosing option A (a quantity needed for model
fitting as described below). It is shown for three different values
of beta in Figure 3A. Note that beta will scale with the range of
the values on the x axis (i.e. the value difference).

What is parameter fitting?. In general, fitting algorithms try and
minimize the error between the prediction achieved with a
particular combination of parameters (e.g. learning rate alpha
(α) and inverse temperature softmax beta (β)) and the true data.
For choice data, because the decision variable is fed through the
softmax function (Figure 3A), as explained above, each trial is
associated with a choice probability or in other words a likeli-
hood that this choice would have been made given the combi-
nation of model parameters. The question that follows is: what
is the likelihood of all choices together given this parameter
combination? The likelihood of multiple events is calculated
using the product of each of the individual observation’s like-
lihood. For example, the probability for tossing heads three
times in a row is 0.5 ∗ 0.5 ∗ 0.5 = 0.125. But multiplying many
small numbers (e.g. here the choice probabilities associated
with something like 200 trials) quickly becomes computationally
imprecise because the resulting product becomes very small.
A simple trick is therefore used: to calculate the error, the
logarithm of the product of all choice probabilities is computed
which is the same as the sum of the log-transformed prob-
abilities (log(a ∗ b) = log(a) + log(b)). Using the log-transformed

choice probabilities has another desirable effect, namely, that
completely opposite (and thus wrong) predictions more heavily
influence the error term than predictions close to the true choice
(Figure 3B). Finally, because the aim is to find the parameter
combination that maximizes the likelihood of the data, but most
algorithms are built to ‘minimize’, the error term that is returned
is the negative log-likelihood.

Establishing the parameter combination associated with the
maximum likelihood of a set of choices can be achieved using
many different toolboxes and programming languages. It is
not our aim here to cover the precise algorithms that achieve
this minimization (e.g. Nelder–Mead simplex algorithm used
by fminsearch in Matlab). From a more practical standpoint,
however, it is worth checking whether the maximum likelihood
(and associated set of parameters) is the same when initializing
the model fitting from different parameter starting values. If it
is not, it means that the algorithm might have gotten stuck in
local minima, rather than finding the global minima in all cases
(Figure 3C). This can happen particularly in complex models
with many parameters because the parameter space becomes
multidimensional or in situations with few trials. In such cases,
multiple initializations from a grid of starting values can be used,
and the parameters associated with the initialization that leads
to the maximum likelihood (minimum negative log-likelihood)
are reported. Independently, a grid search, which evaluates the
function at a grid of parameter values (without minimization)
and saves the negative log-likelihood for each combination, can
be helpful for developing an intuition for the landscape, but
it is computationally expensive. Below we give more advice
on how to check whether the parameters can be estimated
reliably.

Despite all the above efforts, fitting of individual participant’s
data can still be noisy and variable and involve outliers. There
are many reasons for this, for example, restricted time win-
dows during fMRI studies only allow for limited numbers of
trials, strategies differ between participants, some participants
produce noisy data, etc. Hierarchical fitting offers a solution to
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Fig. 4. Illustration of the effects of hierarchical fitting for two parameters alpha (learning rate) and beta (softmax temperature). Left column: shown are the initial

alphas and softmax betas obtained using a flat prior. The posterior obtained from the first iteration is shown in the dashed black line. Middle column: in this iteration,

the posterior from iteration 1 becomes the prior (blue). This ‘pulls in’ several estimates that were previously at the more extreme ends of the range for alpha and beta.

The posterior from this second iteration is sharper. Right column: Using the posterior from iteration 2 as the prior in iteration 3, there are only smaller changes in

parameter estimates in this third iteration. More iterations would follow (not shown) until the algorithm converges. Note that both parameters are shown in a range

between [-Inf, Inf] here. They are transformed to values between [0, 1] for alpha or positive values for beta using the transformations 1/(1 + exp(−alpha)) and exp(beta),

respectively.

this; the aim here is to maximize the likelihood of the choice
data whilst ensuring everyone’s fitted parameters are drawn
from a common Gaussian distribution (per parameter). In other
words, the goal is not merely to find the parameters that give
the maximum likelihood of the data, but what is maximized is
the product of the likelihood of the data given the parameters
and the likelihood of the parameters given the distribution of
parameters (e.g. Huys et al., 2011; Huys et al., 2012). The prior
distribution over the parameters, over multiple iterations, moves
outlier fits closer to the mean and thus serves to regularize
the resulting parameters (Figure 4). For a more detailed and
mathematically precise explanation, see: (Daw, 2011; Huys et al.,
2011, 2012) or the STAN documentation (Sorensen and Vasishth,
2016; Carpenter et al., 2017). For examples of social reinforcement
learning studies using this approach see: (Lockwood et al., 2016,
2019; Diaconescu et al., 2017; Hill et al., 2017).

Ultimately, one main advantage of using computational mod-
els to study social cognition is that once model parameters have
been fitted, they can be used to generate trial-by-trial estimates
for each individual, for example, for prediction errors or the
subjective values of choice options. These can then be related
to behavioural (e.g. reaction time) or neural data (e.g. BOLD
fMRI). In case of large parameter ranges or outliers in the fitted
parameters, it is worth considering using the mean fitted param-
eters from all participants to generate trial-by-trial predictors.
Sometimes this has been found to be more robust (Daw et al.,
2006, 2011; Schonberg et al., 2007; Lockwood et al., 2018, 2019).
This can also be worth considering when some participants have
very small learning rates close to 0, meaning their parametric
regressors are almost flat and cannot be used to meaningfully
explain variations in BOLD activation (this is less likely to be

problematic when doing a hierarchical fit; but even then, the
group-level parameter can be used). In general, we recommend
to visually inspect and normalize (z-transform) parametric pre-
dictors before inclusion in a behavioural or brain general linear
model (GLM), unless normalization is already implemented as
part of the software package. It is also worth noting that small
changes in parameter values (e.g. using the group mean rather
than the individual’s set of parameters) often produce highly cor-
related trial-by-trial regressors and consequently similar results.
Again, correlations can be inspected before deciding whether to
use individual or group parameter estimates.

One parameter or many parameters?. Central to questions of com-
putational modelling is the number of parameters required to
appropriately explain behavioural data. This consideration may
particularly affect social neuroscience studies where researchers
want to capture some aspect of social compared to non-social
learning or interactions between different parameters (such as
learning rates) with the same computational structure but pos-
sibly different values, such as learning rates for self being higher
than learning rates about other people. This is also a consider-
ation for non-social studies where there is an increasing appre-
ciation that different learning rates may be necessary to explain
learning from positive vs negative/neutral outcomes (e.g. Costa
et al., 2016; Eldar et al., 2016; Lockwood et al., 2019). Determining
the utility of including an additional parameter, e.g. to explain
different learning patterns, can be done using simulated data
and model comparison. This as well as another simple check to
ensure the fitted parameters can be trusted is discussed in the
next section.
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Validating the model fitting procedure: simulating data
and regression analyses

Before starting a new study, one should consider which model, or
variants of a model, is likely to describe behaviour in the task and
would be suitable to answer the scientific question of interest. In
many cases, there are already models available that can be used
or adapted (some of which we described above). Once a putative
model has been established, it is recommended that simulated
(also referred to as synthetic) data is generated. The advantage
of doing this is that the ground truth is known in simulated
data. For example, choices are produced for a virtual agent with
a learning rate alpha = 0.2 and an inverse temperature beta = 3.
What this means is that the experimenter knows and has full
control over exactly which parameters are used to generate
the data. This, of course, is never true for data collected from
participants.

Once simulated, synthetic data can be treated like data col-
lected from participants and the same model fitting procedures
can be applied. The crucial difference is that because we know in
advance which result we expect, we can check how close the fit-
ted values are to the true values. In the above example, fitting the
choices of the virtual simulated agent should result in parameter
estimates close to 0.2 for alpha and close to 3 for beta. In a
learning paradigm, synthetic choice data would be generated
using a range of different alphas, e.g. ranging from 0.1 to 1, and a
learning rate would be fitted to all these virtual agents to ensure
that the correct learning rate parameters can be recovered. This
is repeated for all parameters of interest. Parameter recovery thus
refers to the relationship, usually measured in terms of Pearson’s
correlation coefficient, between true (simulated) and recovered
parameters (e.g. Lockwood et al., 2019). The recovered parameters
are those obtained from fitting the model to the simulated data.
Whilst there is no hard boundary in terms of what constitutes
‘sufficient’ and ‘insufficient’ recovery, the stronger the correla-
tions, the more convincing it is that parameters can be estimated
robustly. Parameter recovery can be repeated for several putative
models. If it fails, this could have multiple reasons. Often, it
means that there is insufficient data to estimate the number of
parameters or that the parameters are not sufficiently indepen-
dent. Alternatively, there could be insufficient variation in the
critical task manipulations on which the parameters load (e.g.
fluctuations in the probability to estimate an adaptive learning
rate). Thus, parameter recovery can be taken as an indication
that a task schedule or its duration is sufficient. Finally, sim-
ulations can be used to test that the presence or absence of
an effect would be recovered correctly during model fitting. For
example, can a different learning rate when learning for oneself
compared to another agent be recovered from the simulated data
that does have this effect inbuilt, but not be recovered when both
agents were given the same learning rate during the simulation?
(‘model falsification’; Palminteri et al., 2017; see also Melinscak
and Bach (2019) for details on task optimization in associative
learning studies) Note that parameter recovery is particularly
important when designing a new experimental paradigm or new
trial schedules, as compared to using previous tasks that might
already be validated. The importance of this step is a relatively
recent realization, and unsurprisingly most studies, including
our own, did not routinely do this a few years ago. Nevertheless,
it can help to make sure that the design is suitable to answer the
researchers’ hypothesis.

A second recommendation is to use other non-RL approaches
to check that an effect that appears in parameters obtained
from an RL model is truly present and estimable. One such

way is to use a regression approach that can also provide an
estimate of the learning rate. Regressions have the advantage
of not depending on starting values, local minima or the precise
cost function, as is the case for many optimization algorithms. In
the case of fitting choice data, a logistic regression model would
be appropriate. However, depending on the effects captured by
the learning model, it may be necessary to reparametrize the
predictors so that they are suitable for a regression analysis. To
give an example of what this might entail for the learning rate,
we return to Figure 1 which shows that the learning rate captures
how much choices were influenced by the outcomes received on
the preceding trials. This influence of previous outcomes can be
captured by separate regressors that each model the outcome on
one of the preceding trials. A learning rate of 1 would mean that
only the previous trial’s outcome influences the next choice and
is therefore given a non-zero parameter estimate in a regression
analysis. In contrast, a smaller learning rate of 0.2 or 0.5 would
show non-zero parameter estimates that decrease with increas-
ing distance from the current trial with the largest influence
for the outcome on trial t-1, but a still considerable influence
of the outcome on trial t-2 and a more diminished influence
of the outcome on trial t-3, etc. (Figure 1). We recently used a
simple logistic regression (lme2 in R) in addition to a learning
model (Lockwood et al., 2019) to show the same effect using
two methods, namely, that learning to avoid harm for another
person was more model-free than learning to avoid harm for
oneself. Similarly, Wittmann et al. (2016) showed that RL-derived
estimates of performance influenced self and other evaluation;
as a control, similar influences were seen without the use of an
RL model when doing a regression using the previous history of
outcomes. In deterministic associative learning, the % correct
can also provide a good approximation of the true underlying
learning rate and thus provide a way to validate the model fitting
(Lockwood et al., 2018). Simple checks such as the ones outlined
in this paragraph are not time-consuming but can help to be
confident in the parameter estimates obtained through model
fitting.

Model comparison

To contrast hypotheses, it is sometimes necessary to compare
the performance of several models. For example, we might want
to test whether the same learning rate is used when learning for
oneself vs another person (Lockwood et al., 2016, 2018), and thus
we want to compare a model with the same learning rate for
both agents with a model that uses two separate learning rates.
Which of the two models describes a better fit to the data?

Unfortunately, model comparison is a much-debated topic,
with no one-size-fits-all solution. One of the most widely
modelled comparison tools is the Bayesian Information Criterion
(BIC; Schwarz, 1978). It approximates the Bayes factor (Kass
and Raftery, 1995) and is easy to compute as −2 ∗ log-
likelihood + numParams ∗ ln(nTrials). However, the BIC tends
to over-penalize more complex models with additional free
parameters and favours simpler models. This helps avoid
overfitting—a process whereby too many parameters are used
to explain data which can mean not just the structure but the
noise is fitted (Figure 5). But it is sometimes overly conservative.
On the contrary, sometimes the Akaike Information Criterion
is used (AIC; Akaike, 1998). The AIC is computed as −2 ∗ log-
likelihood + 2 ∗ numParams and has the opposite tendency of
preferring overly complex models. For both AIC and BIC, models
with small values are preferred over models with larger values.
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Fig. 5. Model complexity when comparing models. Example showing simulated datapoints in blue and three fits (black) ranging from linear (one parameter, left), to

cubic (three parameters, middle) to 10th order (10 free parameters, right). This illustrates the concept of underfitting (left), where the model is too simple and does

not capture the underlying structure of the data, vs overfitting (right) which describes situations in which the model captures not just the structure but also the noise

that is specific to the dataset and which will not generalize to new instantiations of the same underlying task structure. The right level of complexity (middle) should

capture the structure, but not the noise present in the data. Model comparison can help determine the right level of complexity, but it is a debated topic with multiple

options to choose from.

When AIC and BIC agree in their conclusion, it is an easy decision
to know which model to prefer. However, sometimes they do
not agree in which case it can be a judgement call to know
which model to prefer. If there is a specific hypothesis about
which parameters are expected to be different, and classical
statistics show that those parameters are significantly different,
then this can be a reason to favour a model that wins using
only one method. Moreover, in the simplest scenario, when
the models that are being compared have the same number
of parameters, it is sufficient to simply compare them based on
their log-likelihood.

Finally, as an alternative to AIC and BIC and other Bayesian
methods not described here due to their complexity (Stephan
et al., 2009; Penny, 2012; Klein-Flügge et al., 2015, 2016), cross-
validation can be used to evaluate the performance of different
models. The rationale is quite simple, yet it is a powerful method.
The measure of interest is how well a model predicts left-out
data and thus how robust and generalizable the prediction from
this model is to datapoints that have not influenced the fit.
Generally, it is recommended to leave out between a fifth and a
tenth of the data in each fold (James et al., 2017). More precisely,
the fitting procedure is applied to a subset of the data, e.g.
90% for 10-fold cross-validation. In the cases where there are
temporal dependencies between trials, such as in the case of
reinforcement learning, all trials can be included during fitting
but the negative log-likelihood returned for only 90% of data.
This means that the parameter optimization will be performed
on 90% of trials. The obtained parameter estimates are then used
to predict choices in the left-out 10% of trials, and this procedure
is repeated nine more times so that each trial has once been
left out and given an out-of-sample prediction. The average log-
likelihood of the left-out data given the model parameters can
then be used as a measure of model performance and compared
across different models (e.g. Zhu et al., 2012).

Summary and future directions
Reinforcement learning models have provided new insights into
social cognition and behaviour. Particularly when applied to
neuroimaging data, these models can be very powerful and allow
the estimation of trial-by-trial changes in the BOLD signal. There
are both theoretical and practical considerations when making
use of reinforcement learning models including the number of
parameters to include in the model, the type of model, the model

fitting procedure to use and whether and how to perform a
model comparison.

Future studies using a reinforcement learning approach
might help to further understand the difference in brain areas
tracking social vs non-social prediction errors. They might
also help to answer one of the fundamental questions in
social neuroscience, whether there are brain areas uniquely
specialized for social cognition. Moreover, the areas that are
considered part of the ‘social brain’ may broaden. For example,
there is an emerging role for the subgenual anterior cingulate
cortex in social cognition that has mainly come from recent
studies showing socially specific prediction error signals in this
area (reviewed in Lockwood and Wittmann, 2018), something
that would not be possible without a computational approach. It
may be that conceptualizing social situations within a reinforce-
ment learning framework can generate new hypotheses about
the kinds of social situations humans encounter in everyday
life, such as false beliefs about others’ mental states being
conceptualized as a prediction error problem (Apps et al., 2013;
Koster-Hale and Saxe, 2013). Finally, further studies can start
to examine how the different social and non-social signals are
integrated to shape our behaviour, perhaps through employing
connectivity analyses (Suzuki and O’Doherty, 2020). Overall,
we hope this introduction will serve as a useful guide for
researchers wishing to use reinforcement learning models in
their neuroimaging studies.

Resources
There are several excellent publicly available resources with
example code and tutorials for fitting reinforcement learning
models to data including:

A tutorial on fitting RL and Bayesian learning models by
Hanneke Den Ouden and Jill O’Reilly:

http://www.hannekedenouden.ruhosting.nl/RLtutorial/
Instructions.html.

A practical reinforcement learning course on Coursera:
https://www.coursera.org/learn/practical-rl.
A computational modelling course that covers the method-

ological considerations explained here in more detail and with
the corresponding code, by Miriam Klein-Flügge, Jacqueline
Scholl, Laurence Hunt and Nils Kolling:

https://git.fmrib.ox.ac.uk/open-science/computational-
models-course.
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